УДК 546.185

СИНТЕЗ, ПОВЕДЕНИЕ ПРИ НАГРЕВАНИИ И ГИДРОЛИТИЧЕСКАЯ УСТОЙЧИВОСТЬ ФОСФАТОВ-МОЛИБДАТОВ И ФОСФАТОВ-ВОЛЬФРАМАТОВ Na-Zr И Ca-Zr

© 2022 г. М. Е. Караева^{1,} *, Д. О. Савиных¹, А. И. Орлова¹, С. А. Хайнаков², М. С. Болдин¹, А. А. Попов¹, А. В. Нохрин¹, С. Гарсия-Гранда², В. Н. Чувильдеев¹

¹Нижегородский государственный университет им. Н.И. Лобачевского, пр. Гагарина, 23, Нижний Новгород, 603022 Россия ² Университет Овьедо, Овьедо, Испания *e-mail: mary-karaeva@yandex.ru Поступила в редакцию 11.04.2021 г. После доработки 27.08.2021 г. Принята к публикации 27.08.2021 г.

Осуществлен синтез соединений со структурой NZP состава Na_{1 – x}Zr₂(PO₄)_{3 – x}(XO₄)_x, Ca_{0.5 – x}Zr₂(PO₄)_{3 – x}(XO₄)_x, X = Mo, W ($0 \le x \le 0.5$). Тепловое расширение полученных соединений изучено методом высокотемпературной рентгенографии в интервале температур 25–800°С, наблюдается тенденция к уменьшению значений при уменьшении заселенности внекаркасных позиций структуры. На основе синтезированных фосфатов-молибдатов и фосфатов-вольфраматов методом ЭИПС получены керамические образцы с относительной плотностью более 97.5%. Измерены прочностные характеристики (микротвердость и трещиностойкость) и проведены испытания гидролитической устойчивости керамических образцов.

Ключевые слова: фосфаты, NZP-структура, рентгенофазовый анализ, порошки и керамика, метод электроискрового плазменного спекания, гидролитическая устойчивость, тепловое расширение **DOI:** 10.31857/S0002337X22010067

ВВЕДЕНИЕ

Соединения со структурой NaZr₂(PO₄)₃ (NZP, NASICON) характеризуются кристаллохимической формулой (M1)^{VI}(M2)₃^{VIII} [$L_2^{VI}(XO_4)_3$]^{*n*-}, где [$L_2^{VI}(XO_4)_3$]^{*n*-} – каркас структуры, (M1)^{VI},(M2)₃^{VIII} – позиции в пустотах каркаса.

Группа фосфатов со структурой NZP широка благодаря возможности изоморфных замещений в различных позициях структуры [1-3]. Каркас структуры сформирован многозарядными катионами L небольшого размера со степенью окисления 5+, 4+, 3+ или 2+ и анионами XO₄⁻. Большинство членов семейства NZP содержат фосфор как анионобразующий элемент X. Но также существуют соединения со структурой NZP, в которых фосфор замещен на анионы других элементов. Известны соединения, в которых фосфор замещен кремнием [4–8], серой [9, 10], ванадием [11], мышьяком [12], селеном [13], молибденом [14, 15].

Позиции типа М могут быть заселены полностью, частично или оставаться вакантными. В состав NZP-фосфатов могут входить катионы элементов в степенях окисления от 1+ до 4+. Заселение происходит в основном малозарядными и относительно большими катионами.

Благодаря наличию четырех кристаллографических позиций (М1, М2, L, X), в которых возможным является нахождение катионов различных размеров, открываются широкие возможности и перспективы использования материалов на основе соединений со структурой NZP. Они характеризуются высокой ионной проводимостью, коррозионной, термической [16], радиационной и химической устойчивостью, каталитической активностью [17].

Поведение фосфатов при нагревании и значения коэффициентов теплового расширения зависят от природы входящих в их состав ионов: заряда, размера и электроотрицательности. Благодаря тому, что в структуру могут быть введены различные элементы в разных сочетаниях и соотношениях, становится возможным создание материалов с заданными параметрами теплового расширения [10]. Для этих соединений при нагревании в большинстве случаев характерны расширение элементарной ячейки вдоль кристаллографической оси *с* и сжатие вдоль осей *а* и *b* (анизотропия теплового расширения). При частичном или полном замещении анионной части заряд каркаса *n* изменяется, а катионы в М-позиции компенсируют этот заряд для сохранения электронейтральности. Поэтому катионы в Мпозиции и общая заселенность позиций оказывают большее влияние на изменение коэффициентов теплового расширения при замещении.

Некоторые из соединений обладают малым и ультрамалым (до $(1-2) \times 10^{-6}$ град⁻¹) регулируемым тепловым расширением, устойчивы в гидротермальных условиях при температуре до 400°С и продолжительности контакта с водой в изученных системах до двух лет [16, 18–25]. Соединения на основе фосфатов со структурой NZP представляют интерес в качестве материалов для решения радиохимических проблем иммобилизации радиоактивных отходов (**PAO**) [26].

В настоящее время молибденсодержащие фракции РАО вместе с другими нуклидами отверждают путем включения в боросиликатные стекла [27], а также в клиновидную стеклокерамику [28, 29]. При наличии более 10 мас. % молибдена в многокомпонентных РАО возможно образование фазы пауэллита — минерала молибдата кальция CaMoO₄. Как следствие может иметь место неблагоприятное влияние на химическую стойкость стекол из-за влияния на растворимость молибдатов [27].

Стабильные кристаллические минералоподобные матричные вещества являются наиболее подходящими для иммобилизации Мо и W. Включение молибдена в NZP-подобные керамики приводит к снижению скорости его выщелачивания по сравнению с таковой в стеклах, стеклокерамике и синтетических минералоподобных материалах, содержащих индивидуальные фазы легкорастворимых молибдатов [14]. Перевод кристаллических соединений в керамики увеличивает их относительную плотность, при этом фазовый состав сохраняется неизменным, в то же время полученные керамики обладают высокими прочностными характеристиками [4, 23–25, 30–32].

Среди способов получения керамических образцов особого внимания заслуживает метод высокоскоростного электроимпульсного плазменного спекания (ЭИПС). Суть метода состоит в высокоскоростном нагреве порошкового материала в вакууме путем пропускания последовательных импульсов постоянного тока через образец и пресс-форму с одновременным приложением гидростатического давления. Для этого метода характерны высокие скорости усадки. Спекание образцов происходит с большой экономией времени (малое время спекания).

Керамические материалы, полученные этим методом, характеризуются высокой относительной плотностью и повышенными физико-механическими свойствами, что открывает новые возможности получения керамических материалов различного функционального назначения [2, 10, 30–32].

В настоящей работе синтезированы и исследованы свойства каркасных NZP-ортофосфатов, в которых ион фосфора в позиции каркаса частично замещен на ион молибдена или вольфрама, с различными катионами в полостях структуры.

Целью работы являлись синтез и изучение свойств данных материалов для оценки возможности их использования в качестве иммобилизационных матриц. Были изучены прочностные характеристики образцов, их термическая и гидролитическая устойчивости.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве объектов исследования выбраны твердые растворы $Na_{1-x}Zr_2(PO_4)_{3-x}(XO_4)_x$ и $Ca_{0.5(1-x)}Zr_2(PO_4)_{3-x}(XO_4)_x$, где X = Mo, W, x = 0.1, 0.2, 0.3, 0.4, 0.5.

Синтез порошков проводили методом совместного осажления. В смеси растворов молиблата либо вольфрамата аммония и нитрата натрия либо кальция растворяли навеску оксихлорида циркония. К полученному раствору при постоянном перемешивании по каплям добавляли 1 М раствор дигидрофосфата аммония. Реагенты смешивали в стехиометрических соотношениях. В результате образовывался гелеобразный осадок. Далее для более полного осаждения добавляли высаливатель (этиловый спирт). После кратковременного перемешивания гель сушили при 90°С в течение 1 сут. Полученный порошок термостатировали при температурах 600 и 800°C в течение 20 ч на каждой стадии с промежуточным диспергированием в агатовой ступке и контролем фазового состава методом РФА.

Из полученных порошков спекали керамику методом ЭИПС на установке Dr. Sinter model-625 (SPS SYNTEX, Япония). Порошки помещали в графитовую пресс-форму с внутренним диаметром 12.8 мм и нагревали за счет пропускания миллисекундных импульсов постоянного электрического тока большой мощности. Температуру измеряли с помощью пирометра Chino IR-AH, сфокусированного на поверхности графитовой пресс-формы. Спекание осуществляли в вакууме. Величина приложенного одноосевого давления составляла ~70 МПа.

Рентгенофазовый анализ порошков и керамик выполняли на рентгеновском дифрактометре Shimadzu LabX XRD 6000 с использованием Cu K_{α} -излучения ($\lambda = 1.54178$ Å, 20 10°–50°, шаг 0.02°). Тепловое расширение исследовали методом высокотемпературной рентгенографии. Высокотемпературную съемку рентгеновских спектров проводили на дифрактометре Panalytical X'Pert Pro с использованием высокотемпературной камеры Anton

Рис. 1. Дифрактограммы Na_{1 – x}Zr₂(PO₄)_{3 – x}(XO₄)_x с X = Mo (a), W (б), x = 0 (1), 0.1 (2), 0.2 (3), 0.3 (4), 0.4 (5), 0.5 (6).

2022

Paar HTK-1200N в интервале температур 25-800°С с шагом 100°С.

Плотность полученных керамик измеряли методом гидростатического взвешивания в дистиллированной воде на весах Sartorius CPA 225D. Точность определения плотности составляла ± 0.001 г/см³. Микротвердость (*HV*) керамик измеряли с использованием твердомера Duramin Struers-5. Нагрузка составляла 20 Н. Коэффициент трещиностойкости (K_{Ic}) рассчитывали по методу Палмквиста — по длине наибольшей радиальной трещины, образующейся при индентировании керамики пирамидой Викерса.

Гидролитическую устойчивость керамических образцов определяли в статических условиях в соответствии с ГОСТ Р 52126–2003 [33]. Пробы контактного раствора отбирали через 1, 3, 7, 10, 14, 21, 28 сут после начала испытаний. Анализ содержания молибдена и вольфрама в них выполняли методом масс-спектрометрии с индуктивно связанной плазмой на масс-спектрометре высокого разрешения ELEMENT 2 (Thermo Scintific, Bermen, Germany) по внешней градуировке. Градуировку проводили по растворам многоэлементного стандарта ICP-MS-68A-В производства High Purity Standarts (США).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Полученные образцы представляли собой поликристаллические порошки белого цвета. По данным рентгенофазового анализа (рис. 1, 2), изучаемые соединения кристаллизовались в ожидаемой структуре типа $NaZr_2(PO_4)_3$, гексагональная сингония, пр. гр. $R\overline{3}c$ (аналог $NaZr_2(PO_4)_3$ [34]) для Na-содержащих образцов и пр. гр. $R\overline{3}$ (аналог Ca_{0.5}Zr₂(PO₄)₃ [35]) для Ca-содержащих. На рентгенограммах образцов с Ca при x > 0.2 для фосфатов-молибдатов и x > 0.3 для фосфатов-вольфраматов присутствовали в значительном количестве рефлексы дополнительных фаз. Поэтому эти образцы далее не изучали.

Из рентгеновских данных определили параметры элементарных ячеек твердых растворов (табл. 1, 2).

Таблица 1. Параметры элементарных ячеек $Na_{1-x}Zr_2(PO_4)_{3-x}(XO_4)_x$

Х	x	a, Å	c, Å	$V, Å^3$
_	0	8.799(4)	22.826(7)	1530.6(7)
	0.1	8.811(8)	22.856(6)	1536.9(9)
	0.2	8.825(5)	22.882(7)	1543.5(3)
Mo	0.3	8.833(4)	22.904(9)	1547.8(0)
	0.4	8.851(9)	22.921(5)	1555.4(2)
	0.5	8.891(7)	22.897(1)	1567.7(8)
W	0.1	8.821(6)	22.862(2)	1540.7(7)
	0.2	8.827(5)	22.935(1)	1547.7(9)
	0.3	8.833(3)	22.989(5)	1553.4(7)
	0.4	8.857(1)	23.046(1)	1565.7(0)
	0.5	8.881(3)	23.053(7)	1574.8(0)

Puc. 2. Дифрактограммы $Ca_{0.5(1-x)}Zr_2(PO_4)_{3-x}(XO_4)_x c X = Mo(a), W(6), x = 0(1), 0.1(2), 0.2(3), 0.3(4), 0.4(5), 0.5(6).$

Построили графические зависимости параметров элементарной ячейки фосфатов-молибдатов и фосфатов-вольфраматов от состава соединений (рис. 3). При замещении фосфат-аниона (PO_4)³⁻ ($R(P^{5+}) = 0.17$ Å) на более крупные молибдат-анионы (MOO_4)²⁻ ($R(Mo^{6+}) = 0.41$ Å) и вольфрамат-анионы (WO_4)²⁻ ($R(W^{6+}) = 0.44$ Å) наблюдали увеличение параметров элементарной ячейки. Исключение составлял ряд Са-содержащих фосфатов-вольфраматов, для которого явно выраженные закономерности влияния состава на параметры элементарной ячейки не обнаружены.

Для изучения поведения полученных соединений при нагревании провели запись рентгенограмм образцов при повышенных температурах (25–800°С). Из рентгеновских данных рассчитали значения параметров элементарных ячеек образцов при различных температурах. Графические зависимости параметров ячеек от температуры представлены на рис. 4, 5.

По построенным зависимостям рассчитали значения осевых (α_a и α_c), среднего (α_{cp}) и объемного (β) коэффициентов теплового расширения, а также анизотропию теплового расширения ($\Delta\alpha$) исследуемых фосфатов-молибдатов и фосфатов-вольфраматов (табл. 3, 4; рис. 6, 7).

Можно отметить тенденцию к приближению к нулю значений параметров теплового расширения при уменьшении заселенности внекаркасной

Х	x	a, Å	c, Å	<i>V</i> , Å ³
_	0	8.784(6)	22.736(0)	1519.4(7)
Мо	0.1	8.792(0)	22.762(2)	1523.7(7)
	0.2	8.801(2)	22.777(7)	1528.0(2)
	0.1	8.813(5)	23.079(8)	1552.6(0)
W	0.2	8.815(2)	22.949(0)	1544.3(9)
	0.3	8.827(4)	22.996(8)	1551.9(0)

Таблица 2. Параметры элементарных ячеек $Ca_{0.5(1-x)}Zr_2(PO_4)_{3-x}(XO_4)_x$

Рис. 3. Зависимости параметров элементарной ячейки от состава $Na_{1-x}Zr_2(PO_4)_{3-x}(XO_4)_x(a-B)$ и $Ca_{0.5(1-x)}Zr_2(PO_4)_{3-x}(XO_4)_x(r-e)$: X = Mo(I), W(2).

позиции структуры в исследуемых рядах фосфатов-молибдатов и фосфатов-вольфраматов.

Методом высокоскоростного ЭИПС получили керамические образцы из Na-содержащих рядов с высокой относительной плотностью. Примеры диаграмм спекания приведены на рис. 8. Из анализа кривых следует, что среднее время спекания составляет 13 мин для фосфатов-молибдатов и 16 мин для фосфатов-вольфраматов. Максимальные температуру и время спекания имели соединения с *x* = 0.3.

Характеристики процесса спекания, значения достигнутых относительных плотностей, микротвердости и коэффициента трещиностойкости полученных керамик представлены в табл. 5.

Рис. 4. Температурные зависимости параметров элементарной ячейки $Na_{1-x}Zr_2(PO_4)_{3-x}(XO_4)_x$ с X = Mo (a–в), W (г–е), x = 0 (1), 0.1 (2), 0.2 (3), 0.3 (4), 0.4 (5), 0.5 (6).

Фазовый состав образцов в результате спекания не претерпел изменений.

Для образцов с максимальным содержанием молибдена и вольфрама (x = 0.4, 0.5) провели ис-

следования гидролитической устойчивости. По данным РФА, разрушения кристаллической структуры в результате гидролитических испытаний не зафиксированы.

Рис. 5. Температурные зависимости параметров элементарной ячейки $Ca_{0.5(1-x)}Zr_2(PO_4)_{3-x}(XO_4)_x$ с X = Mo (а–в), W (г–е), x = 0 (1), 0.1 (2), 0.2 (3), 0.3 (4).

Скорость выхода компонента с единицы площади поверхности (*R*) определяли по формуле

$$R = \frac{NL}{\tau}, \ NL = \frac{m}{\omega S}$$

где m — масса компонента, выщелоченная за данный интервал времени, г; τ — продолжительность периода выщелачивания, сут; S — площадь от-

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 58 № 1 2022

крытой геометрической поверхности, см²; ω – массовая концентрация компонента в исходном образце.

Полученные значения нормализованной потери массы и скоростей выщелачивания приведены в табл. 6, а их графические зависимости от времени представлены на рис. 9.

КАРАЕВА и др.

Х	x	$\alpha_a \times 10^6$, °C ⁻¹	$\alpha_c \times 10^6$, °C ⁻¹	$\alpha_{cp} \times 10^{6}, ^{\circ}C^{-1}$	$\beta \times 10^{6}$, °C ⁻¹	$\Delta \alpha \times 10^6$, °C ⁻¹
_	0	-4.20	20.37	3.99	11.82	24.56
	0.1	-4.43	19.82	3.66	10.90	24.25
	0.2	-3.63	20.50	4.41	13.14	24.12
Мо	0.3	-3.62	20.20	4.32	12.75	23.82
	0.4	-4.29	17.49	2.97	8.75	21.79
	0.5	-2.81	15.64	3.34	9.92	18.45
	0.1	-5.10	20.03	3.28	9.75	25.13
W	0.2	-3.51	17.00	3.33	9.99	20.52
	0.3	-2.94	15.09	3.07	9.23	18.04
	0.4	-2.71	11.85	2.14	6.45	14.56
	0.5	-3.71	11.65	1.41	4.23	15.36

Таблица 3. Параметры теплового расширения $Na_{1-x}Zr_2(PO_4)_{3-x}(XO_4)_x$

Таблица 4. Параметры теплового расширения $Ca_{0.5(1-x)}Zr_2(PO_4)_{3-x}(XO_4)_x$

Х	x	$\alpha_a \times 10^6$, °C ⁻¹	$\alpha_c \times 10^6$, °C ⁻¹	$\alpha_{\rm cp} \times 10^6, ^{\circ}\mathrm{C}^{-1}$	$\beta \times 10^{6}$, °C ⁻¹	$\Delta \alpha \times 10^6$, °C ⁻¹
_	0	-2.96	10.60	1.56	4.60	13.56
Мо	0.1	-2.73	10.10	1.55	4.71	12.83
	0.2	-2.61	9.57	1.45	4.30	12.18
W	0.1	-0.57	6.24	1.70	5.00	6.81
	0.2	-2.50	12.33	2.44	7.26	14.83
	0.3	-2.26	10.80	2.09	6.29	13.06

Рис. 6. Зависимости параметров теплового расширения от состава $Na_{1-x}Zr_2(PO_4)_{3-x}(XO_4)_x$ с X = Mo (a), W (б).

Рис. 7. Зависимости параметров теплового расширения от составов $Ca_{0.5(1-x)}Zr_2(PO_4)_{3-x}(XO_4)_x$ с X = Mo (a), W (6).

Рис. 8. Диаграммы спекания $Na_{1-x}Zr_2(PO_4)_{3-x}(XO_4)_x$ с X = Mo (a, б), W (в, г), x = 0.1 (1), 0.2 (2), 0.3 (3), 0.4 (4), 0.5 (5). НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 58 № 1 2022

			$1 \rightarrow 1 = \lambda$	2(-4/3) = x(-4/x)		
Х	x	t, °C	τ, мин	$\rho_{oth}, \%$	<i>HV</i> , ГПа	$K_{\mathrm{I}c}$, МПа м ^{1/2}
	0.1	920	12.58	100.07	3.60	
	0.2	932	13.08	—		
Mo	0.3	1110	16.50	97.55	5.28	0.86
	0.4	975	13.58	100.06		
	0.5	861	11.50	101.66	5.15	1.35
w	0.1	1190	18.08	97.70	5.34	1.29
	0.2	1100	16.83	98.75	5.60	1.62
	0.3	1110	17.58	98.59	5.64	1.51
	0.4	1065	15.67	100.20	5.46	1.07
	0.5	1065	15.08	100.70		

Таблица 5. Характеристики керамических образцов $Na_{1-x}Zr_2(PO_4)_{3-x}(XO_4)_x$

Таблица 6. Нормализованная потеря массы и скорость выщелачивания Мо и W из образцов $Na_{1-x}Zr_2(PO_4)_{3-x}(XO_4)_x$

Х	x	τ, сут	$m \times 10^4$, г	$NL \times 10^2$, г/см ²	$R \times 10^5$, г/(см ² сут)
		1	5.917	0.453	60.000
		3	1.417	0.561	23.583
		7	0.958	0.634	11.477
	0.4	10	0.375	0.663	8.475
		14	0.375	0.692	6.367
		21	0.458	0.727	4.511
Мо		28	0.375	0.755	3.532
IVIO		1	7.250	0.427	55.600
		3	1.833	0.535	21.591
		7	0.958	0.591	10.410
	0.5	10	0.433	0.617	7.657
		14	0.400	0.640	5.731
		21	0.442	0.666	4.042
		28	0.408	0.690	3.156
		1	8.333	0.352	12.300
		3	0.417	0.369	4.289
		7	0.275	0.381	1.903
	0.4	10	0.133	0.387	1.352
		14	0.125	0.392	0.979
		21	0.167	0.399	0.664
W		28	0.125	0.404	0.504
**		1	7.500	0.246	8.200
		3	0.392	0.259	2.859
		7	0.208	0.266	1.269
	0.5	10	0.125	0.270	0.901
		14	0.108	0.274	0.653
		21	0.167	0.279	0.442
		28	0.167	0.285	0.336

Рис. 9. Зависимости нормализованной потери массы (а) и скорости выхода компонента с единицы площади поверхности (б) керамик $Na_{1-x}Zr_2(PO_4)_{3-x}(XO_4)_x$ с X = Mo, x = 0.4 (1), 0.5 (2); X = W, x = 0.4 (3), 0.5 (4) от времени.

Достигнутые минимальные скорости выщелачивания за 28 сут проведения эксперимента имели значения 3.1×10^{-5} г/(см² сут) для соединений, содержащих молибден, и 3.36×10^{-6} г/(см² сут) для соединений, содержащих вольфрам.

ЗАКЛЮЧЕНИЕ

Из анализа результатов следует, что полученные соединения кристаллизуются в структуре типа NZP, гексагональная сингония, пр. гр. $R\overline{3}c$ для натрийсодержащих и пр. гр. $R\overline{3}$ для кальцийсодержащих фосфатов-молибдатов и фосфатоввольфраматов.

Замещение фосфат-аниона ($R(P^{5+}) = 0.17$ Å) на более крупные моибдат-(RMo^{6+}) = 0.41 Å) и вольфрамат-анионы ($R(W^{6+}) = 0.44$ Å) приводит к увеличению параметров элементарной ячейки. При уменьшении заселенности внекаркасной позиции структуры в исследуемых рядах фосфатовмолибдатов и фосфатов-вольфраматов значения параметров теплового расширения приближаются к нулю.

Керамики, полученные методом ЭИПС, обладают высокой относительной плотностью ($\rho_{\text{отн}} >$ > 97.5%). Микротвердость (*HV*) керамик составила от 3.60 до 5.64 ГПа, коэффициент трещиностойкости (K_{Ic}) – от 0.86 до 1.62 МПа м^{1/2}. По данным рентгенофазового анализа, структура соединений не разрушилась в результате спекания и после проведения исследований гидролитической устойчивости. Минимальные достигнутые скорости выщелачивания за 28 сут имеют значения: 31 × 10^{-6} г/(см² сут) для соединений, содержащих молибден, и 3.36 × 10^{-6} г/(см² сут) для соединений, содержащих вольфрам.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Орлова А.И., Корытцева А.К.* Фосфаты пятивалентных элементов: строение и свойства // Кристаллография. 2004. Т. 49. № 5. С. 811–819.
- 2. *Орлова А.И*. Изоморфизм в фосфатах NZP-подобного строения и радиохимические проблемы // Радиохимия. 2002. Т. 44. № 5. С. 385–403.
- Волков Ю.Ф., Томилин С.В., Орлова А.И. и др. Фосфаты актиноидов А¹M¹₂(PO₄)₃ (М¹ – уран, нептуний, плутоний; А¹ – натрий, калий, рубидий) ромбоэдрического строения // Радиохимия. 2003. Т. 45. № 4. С. 319–328.
- Oikonomou P., Dedeloudis Ch., Stournaras C.J., Ftikos Ch. [NZP]: A New Family of Ceramics with Low Thermal Expansion and Tunable Properties // J. Eur. Ceram. Soc. 2007. V. 27. P. 1253–1258.
- Oota T., Yamai I. Thermal Expansion Behavior of NaZr₂(PO₄)₃Type Compounds // J. Am. Ceram. Soc. 1986. V. 69. № 1. P. 1–8.
- Alamo J., Roy R. Ultralow-Expansion Ceramics in the System Na₂O-ZrO₂-P₂O₅-SiO₂ // J. Am. Ceram. Soc. 1984. V. 67. № 5. P. 78–80.
- Орлова А.И., Канунов А.Е., Самойлов С.Г., Казакова А.Ю., Казанцев Г.Н. Изучение кальцийсодержащих ортофосфатов структурного типа NaZr₂(PO₄₎₃ методами высокотемпературной рентгенографии // Кристаллография. 2013. Т. 58. № 2. С. 185–190.
- 8. Srikari Tantri P., Ushadevi S., Ramasesha S.K. High Temperature X-Ray Studies on Barium And Strontium

Zirconium Phosphate Based Low Thermal Expansion Materials // Mater. Res. Bull. 2002. V. 37. P. 1141– 1147.

- Alamo J., Roy R. Zirconium Phospho-Sulfates with NaZr₂(PO₄)₃-Type Structure // J. Solid State Chem. 1984. V. 51. № 2. P. 270–273.
- Savinykh D.O., Khainakov S.A., Orlova A.I. et al. New Phosphate-Sulfates with NZP Structure // Russ. J. Inorg. Chem. 2018. V. 63. № 6. P. 685–694.
- Петьков В.И., Суханов М.В., Шипилов А.С. и др. Синтез и строение ванадат-фосфатов циркония и щелочных металлов // Журн. неорган. химии. 2013. Т. 58. № 9. С. 1139–1145.
- Суханов М.В., Петьков В.И., Фирсов Д.В. др. Синтез, строение и тепловое расширение натрий-цирконий арсенат-фосфатов // Журн. неорган. химии. 2011. Т. 56. № 9. С. 1423–1429.
- Slater P.R., Greaves C. Synthesis and Conductivities of Sulfate/Selenite Phases Related to Nasicon // J. Solid State Chem. 1993. V. 107. P. 12–18.
- 14. Pet'kov V.I., Sukhanov M.V., Kurazhkovskaya V.S. Molybdenum Fixation in Crystalline NZP Matrices// Radiochemistry. 2003. V. 45. № 6. P. 620–625.
- Rashmi Chourasiaa O.P., Shrivastavaa P.K. Wattal Synthesis, Characterization and Structure Refinement of Sodium Zirconium Molibdato-Phosphate: Na_{0.9}Zr₂-Mo_{0.1}P_{2.9}O₁₂ (MoNZP)// J. Alloys Comp. 2009. V. 473. P. 579–583.
- Petkov V.I., Orlova A.I., Egorkova O.V. On the Existence of Phases with a Structure of NaZr₂(PO₄)₃ in Series of Binary Orthophosphates with Different Alkaline Element to Zirconium Ratios // J. Struct. Chem. 1996. V. 37. № 6. P. 933–940.
- Anantharamulu N., Koteswara Rao K., Rambabu G. et al. A Wide-Ranging Review on Nasicon Type Materials // J. Mater. Sci. 2011. V. 46. P. 2821.
- Орлова А.И., Петьков В.И., Егорькова О.В. Получение и изучение строения комплексных ортофосфатов циркония и щелочных элементов. Циркониевые фосфаты цезия и натрия // Радиохимия. 1996. Т. 38. № 1. С. 15–21.
- Abmamouch R., Arsalane S., Kasimi M., Zijad M. Synthesis and Properties of Copper-Hafnium Triphosphate Cu¹Hf₂(PO₄)₃ // Mater. Res. Bull. 1997. V. 32. N

 6. P. 755–761.
- Орлова А.И., Кеменов Д. В., Самойлов С.Г. и др. Тепловое расширение фосфатов циркония и щелочных металлов (Na, K) семейства NaZr₂(PO₄)₃ NZP // Неорган. материалы. 2000. Т. 36. № 8. С. 995–1000.
- Orlova A.I., Kemenov D.V., Pet'kov V.I. et al. Ultralow and Negative Thermal Expansion in Zirconium Phosphate Ceramics // High Temp.-High Press. 2002. V. 34. P. 315–322.

- Carrasco M.P., Guillem M.C., Alarmo J. Preparation and Structural Study of Sodium Germanium Phosphate-Sodium Titanium Phosphate Solid Solutions II. Evolution of Thermal Expansion with Composition // Mater. Res. Bul. 1994. V. 29. № 8. P. 817–826.
- 23. Орлова А.И., Зырянов В.Н., Котельников А.Р. и др. Керамические фосфатные матрицы для высокоактивных отходов. Поведение в гидротермальных условиях // Радиохимия. 1993. Т. 35. № 6. С. 120–126.
- 24. Орлова А.И., Лизунова Г.М., Китаев Д.Б. и др. Тез. докл. XIV Междунар. совещ. по рентгенографии минералов. Санкт-Петербург. 1999. С. 84–86.
- Стефановский С.В., Егорькова О.В., Орлова А.И. Тез. докл. VII Совещ. по кристаллохимии неорганических и координационных соединений. Санкт-Петербург. 1995. С. 36.
- Alamo J. Chemistry and Properties of Solids with the [NZP] Skeleton // Solid State Ionics. 1993. V. 63–65. P. 547–561.
- Соболев И.А., Ожован М.И., Щербатова Т.Д., Батюхнова О.Г. Стекла для радиоактивных отходов. М.: Энергоатомиздат, 1999. С. 156–171.
- 28. *Hayward P.J., Vance E.R., Cann C.D. et al.* Waste Management. II // Adv. Ceram. 1986. V. 20. P. 215–222.
- 29. Hayward P.J., Vance E.R., Cann C.D. Crystallization of Titanosilicate Glasses for Nuclear Waste Immobilization // J. Am. Ceram. Soc. 1989. V. 72. № 4. P. 579–586.
- Munir Z.A., Anselmi-Tamburini U., Ohyanagi M. The Effect of Electric Field and Pressure on the Synthesis and Consolidation of Materials: A Review of the Spark Plasma Sintering Method // J. Mater. Sci. 2006. V. 41. P. 763–777.
- Potanina E.A., Orlova A.I., Nokhrin A.V. et al. Characterization of Na_x(Ca/Sr)_{1 2x}Nd_xWO₄ Complex Tungstates Fine-Grained Ceramics Obtained by Spark Plasma Sintering // Ceram. Int. 2018. V. 44. № 4. P. 4033–4044.
- Орлова А.И., Корытцева А.К., Канунов А.Е. и др. Высокоскоростное электроимпульсное спекание керамических материалов на основе фосфатов со структурой NaZr₂(PO₄)₃ // Неорган. материалы. 2012. Т. 48. № 3. С. 372–377.
- ГОСТ Р 52126–2003. Отходы радиоактивные. Определение химической устойчивости.
- 34. Hagman L.O., Kierkegard P. The Crystal Structure of NaM₂^{IV}(PO₄)₃; M^{IV} = Ge, Ti, Zr // Acta Chem. Scand. 1968. V. 22. № 6. P. 1822–1832.
- 35. *Limaye S.Y., Agrawal D.K., McKinstry H.A.* Synthesis and Thermal Expansion of MZr₄P₆O₂₄ (M = Mg, Ca, Sr, Ba) // J. Am. Ceram. Soc. 1987. V. 70. № 10. P. 232–236.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 58 № 1 2022