УДК 536.421.15

МИКРОСТРУКТУРА УЛЬТРАМЕЛКОЗЕРНИСТОЙ КЕРАМИКИ Al₂O₃-ZrO₂, ПОЛУЧЕННОЙ МЕТОДОМ ДВУХСТАДИЙНОГО ЭЛЕКТРОИМПУЛЬСНОГО ПЛАЗМЕННОГО СПЕКАНИЯ

© 2022 г. М. С. Болдин^{1,} *, А. А. Попов¹, Г. В. Щербак¹, А. А. Мурашов¹, А. В. Нохрин¹, В. Н. Чувильдеев¹, К. Е. Сметанина¹, Н. Ю. Табачкова^{2, 3}

¹Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского, пр. Гагарина, 23, корп. 2, Нижний Новгород, 603022 Россия

²Национальный исследовательский технологический университет "МИСИС", Ленинский пр., 4, Москва, 119049 Россия

³Институт общей физики им. А.М. Прохорова Российской академии наук, ул. Вавилова, 38, корп. 1, Москва, 119991 Россия

*e-mail: boldin@nifti.unn.ru Поступила в редакцию 12.04.2022 г. После доработки 30.05.2022 г. Принята к публикации 30.05.2022 г.

Исследовано влияние добавок моноклинного ZrO_2 (1.5, 5, 10 об. %) на кинетику усадки субмикронного порошка α -Al₂O₃. Керамические образцы изготавливались методом двухстадийного электроимпульсного ("искрового") плазменного спекания (ЭИПС). Показано, что двухстадийное ЭИПС (нагрев до температуры, соответствующей плотности 90% и изотермическая выдержка при этой температуре) позволяет получать керамику с ультрамелкозернистой микроструктурой и высокой, близкой к теоретической, плотностью. Установлено, что большие добавки (10%) ZrO_2 приводят к увеличению энергии активации ЭИПС и уменьшению скорости зернограничной деформации на стадии изотермической выдержки.

Ключевые слова: оксид алюминия, оксид циркония, плотность, диффузия, энергия активации **DOI:** 10.31857/S0002337X22100049

введение

В машиностроении широко используется керамика Al₂O₃—ZrO₃, получаемая методами свободного спекания или горячего прессования, имеющая оптимальное сочетание твердости, трещиностойкости, прочности на изгиб и износостойкости [1, 2].

Эффективным способом повышения механических свойств керамики является формирование ультрамелкозернистой (УМЗ) микроструктуры [3]. Одним из перспективных методов получения УМЗ керамики является высокоскоростное (до 2500°С/мин) электроимпульсное плазменное спекание (ЭИПС) нано- и субмикронных порошков [4].

Наличие пористости приводит к снижению твердости и прочности керамики, поэтому исследователи стремятся обеспечить высокую, близкую к теоретической, плотность за счет повышения температуры спекания. Это приводит к началу рекристаллизации и быстрому росту зерен [5] и, как следствие, к снижению механических свойств. В последнее время для обеспечения высокой плотности и сохранения УМЗ микроструктуры активно разрабатываются различные методы двухстадийного спекания керамики [6]. Как правило, в основе метода "step-by-step sintering" лежит принцип нагрева до температуры T_1 , охлаждение до более низкой температуры $T_2 < T_1$ и выдержка при этой температуре [6].

По нашему мнению, более эффективным является двухстадийный процесс ЭИПС, основанный на ограничении температуры спекания T_{90} , соответствующей плотности керамики 90%, с последующей выдержкой при T_{90} . В основу предлагаемого подхода положена идея о различном характере зависимости плотности и размера зерна от времени отжига [7]. Отметим, что в соответствии с [7] в керамиках с плотностью более 90% начинается интенсивный рост зерен. Вводя в структуру керамики наночастицы-стабилизаторы (например, ZrO₂), можно обеспечить предельно малую

1127

скорость роста зерен при быстром увеличении плотности.

В работе [8] отмечено, что при размерах частиц ZrO₂ менее 1 мкм тетрагональная фаза при охлаждении может стабилизироваться и не переходить в моноклинную, фактически не участвуя в процессе создания сжимающих напряжений. В работе использовались наночастицы оксида циркония в моноклинной модификации.

Целью работы является изучение эволюции микроструктуры керамики в процессе двухстадийного ЭИПС субмикронных порошков оксида алюминия с различным количеством добавок ZrO₂.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходными объектами являлись субмикронные порошки α -Al₂O₃ (Nanoe, Франция), а также порошки Al₂O₃ + 10 об. % ZrO₂ (Nanoe). Для получения порошков с различным содержанием ZrO₂ α -Al₂O₃ и Al₂O₃ + 10% ZrO₂ смешивали в разных пропорциях. Объектами исследования являлись порошки на основе субмикронного α -Al₂O₃ (серия 1) с добавкой 1.5 (серия 2), 5 (серия 3) и 10 об. % ZrO₂ (серия 4).

Перемешивание проводилось в планетарной мельнице FRITSCH — Pulverisette 6 в аммиачной воде с добавлением дисперсанта Dolapix CE 64 в течение 24 ч мелющими телами из оксида циркония. Частота вращения размольного стакана составляла 200 об./мин. Удаление воды проводилось в печи ЭКПС-10 (70°С, 12 ч).

ЭИПС образцов диаметром 12 и высотой 3 мм проводилось на установке Dr. Sinter model SPS-625 в графитовых пресс-формах. Величина приложенного одноосного напряжения составляла $\sigma = 70$ МПа. Спекание проводилось в вакууме (6 Па). Использовались два режима ЭИПС: нагрев с постоянной скоростью ($v_h = 50^{\circ}$ С/мин) до завершения усадки (режим I); нагрев со скоростью $v_h = 50^{\circ}$ С/мин до температуры t_{90} , определенной в ходе эксперимента по режиму I, с последующей изотермической выдержкой до 30 мин. Охлаждение образцов происходило вместе с установкой. Точность определения температуры составляла ±10°С.

В процессе ЭИПС измерялась зависимость усадки от температуры нагрева L(t). Вклад теплового расширения в L(t) учитывался в соответствии с методикой [9]. Пересчет L(t) в температурную зависимость уплотнения (ρ/ρ_{th}) проводился в соответствии с [9].

Плотность керамик (р) измерялась методом гидростатического взвешивания при комнатной температуре с помощью весов Sartorius CPA с точностью ± 0.005 г/см³. Теоретическая плотность (ρ_{th}) Al₂O₃ принята равной 4.05 г/см³. Теоретическая плотность образцов с добавкой 1.5, 5 и 10% ZrO₂ равна 4.025, 4.06 и 4.18 г/см³ соответственно.

Микротвердость (H_V) измерялась на твердомере Qness A50+ (нагрузка 20 H). Значение минимального коэффициента трещиностойкости K_{Ic} рассчитывалось по длине максимальной радиальной трещины (метод Палмквиста). Точность измерений величин H_V и K_{Ic} составляла ±1 ГПа и ±0.4 МПа м^{1/2} соответственно.

Микроструктура изучалась при помощи растровых электронных микроскопов (**РЭМ**) JEOL JSM-6490 и TESCAN Vega 3, а также просвечивающего электронного микроскопа (**ПЭМ**) JEOL JEM-2100. Размер частиц (R) и зерен (d) измерялся методом хорд. Рентгенофазовый анализ (**РФА**) проводился на дифрактометре Shimadzu XRD-7000.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

Исходные порошки имеют однородный гранулометрический состав (рис. 1а, 1в), средний размер частиц Al_2O_3 составляет $R \sim 100-200$ нм. В структуре порошков дислокации отсутствуют (рис. 16). Частицы ZrO_2 в порошке серии 4 имеют белый цвет. После перемешивания наблюдается незначительное измельчение частиц оксида алюминия (рис. 1г). Результаты РФА (рис. 1д) показывают, что порошок полностью состоит из фазы α - Al_2O_3 (PDF 00-046-1212), а оксид циркония в порошке $Al_2O_3 + 10\%$ ZrO₂ (рис. 1д) является смесью моноклинной *m*-ZrO₂ (PDF 00-037-1484) (9.5%) и тетрагональной *t*-ZrO₂ (PDF 00-030-1089) (0.5%) фаз.

Зависимости $\rho/\rho_{th}(t)$ имеют обычный трехстадийный характер (рис. 2а). Стадия интенсивной усадки порошка Al₂O₃ начинается при $t = 1050-1100^{\circ}$ С, а заканчивается при $t \sim 1430-1450^{\circ}$ С. Плотность $\rho/\rho_{th} \sim 90\%$ достигается при $t \sim 1400^{\circ}$ С. При этой же температуре достигаются максимальные значения скорости усадки $S_{max} \sim 2 \times 10^{-2}$ мм/с (рис. 26, табл. 1).

Увеличение содержания ZrO_2 от 1.5 до 10% приводит к сдвигу кривой $\rho/\rho_{th}(t)$ в сторону бо́льших температур на ~100°С. Значение S_{max} в порошках с 5 и 10% ZrO_2 достигает (2.6–2.9) × 10⁻² мм/с (табл. 1). Таким образом, спекание порошков с добавкой ZrO_2 протекает более интенсивно и при более высоких температурах нагрева по сравнению с чистым Al_2O_3 .

Относительная плотность (ρ/ρ_{th}) керамических образцов практически не зависит от содер-

Рис. 1. Электронные микрофотографии порошков Al_2O_3 (а, б) и $Al_2O_3 + 10\%$ ZrO₂ (в, г); результаты РФА порошков Al_2O_3 (*l*), $Al_2O_3 + 10\%$ ZrO₂ (*2*) и керамики $Al_2O_3 + 10\%$ ZrO₂ (*3*) (д).

жания ZrO_2 и варьируется в интервале 98.7–99.3% (табл. 1). Увеличение содержания ZrO_2 приводит к снижению плотности на $\Delta\rho/\rho_{th} \sim 0.6-0.7\%$ (табл. 1)

и к уменьшению H_V от 22.3 до 19.9 ГПа. Обраазцы имеют УМЗ микроструктуру со средним размером зерна 0.4–0.6 мкм. В спеченных образцах ок-

Таблица 1. Свойства керамических образцов, полученных методом одностадийного ЭИПС в режиме непрерывного нагрева (режим I)

Серия	t_s , °C	<i>v_h</i> , °С/мин	$S_{\rm max} \times 10^2$, мм/с	<i>d</i> , мкм	$\rho/\rho_{th}, \%$	H_V , ГПа	$K_{\mathrm{I}c}$, МПа м ^{1/2}
1	1460	50	2.1	0.5	99.3	22.3	2.5
2	1460		2.5	0.4	98.7	22.9	2.9
3	1480		2.9	0.6	98.9	21.2	3.3
4	1480		2.6	0.5	98.6	19.9	3.1

Рис. 2. Температурные зависимости уплотнения порошков Al₂O₃–ZrO₂ в координатах $\rho/\rho_{th}-t$ (а) и ln($T\partial \varepsilon/\partial T$)– T_m/T (б).

сид циркония присутствует только в виде t-ZrO₂; интенсивность пиков m-ZrO₂ близка к интенсивности фона (рис. 1д).

В табл. 2 обобщены результаты исследований микроструктуры и механических свойств керамических образцов, спеченных по режиму II. Видно, что увеличение времени τ_s от 0 до 30 мин при $t_s = 1350^{\circ}$ С приводит к увеличению ρ/ρ_{th} оксида алюминия от 81.5 до 99.4%. Рост зерен в Al₂O₃ становится заметным только после достижения плотности $\rho/\rho_{th} = 84.5\%$ ($\tau_s = 7$ мин). Зависимость $H_V(\tau_s)$

коррелирует с зависимостью $\rho/\rho_{th}(\tau_s)$. Увеличение ρ/ρ_{th} от 81.5 до 96.6% (при увеличении τ_s от 0 до 11 мин) приводит к повышению H_V от 9.6 до 20.6 ГПа. Увеличение времени τ_s от 11 до 15 мин приводит к плавному повышению ρ/ρ_{th} от 96.6 до 97.9% и *H_V* от 20.6 до 21.4 ГПа. Дальнейшее увеличение τ_s до 30 мин приводит к повышению ρ/ρ_{th} до 99.4%, при этом твердость керамики не изменяется. Мы предполагаем, что постоянство величины H_V при повышении τ_s до 30 мин обусловлено ростом зерен: как видно из табл. 2 и рис. За, 36, 30-минутная выдержка приводит к увеличению размера зерна от 0.2 до 0.5 мкм. Максимум твердости достигается при концентрации добавки 1.5% и составляет 22.2 ГПа, в то время как по данным [10] твердость достигает максимального значения при добавке 5% и составляет 18.5 ГПа. Увеличение концентрации оксида циркония приводит к снижению твердости керамики, что согласуется с данными [10, 11]. Некоторые зерна Al₂O₃ после 30-минутной выдержки при $t = 1350^{\circ}$ С достигают размера 1-1.5 мкм (рис. 3б). В связи с этим в дальнейших экспериментах с образцами Al₂O₃-ZrO₂ время изотермической выдержки ограничивали равным $\tau_s = 4$ мин.

Анализ данных показывает, что 4-минутная выдержка приводит к повышению ρ/ρ_{th} керамики при d = const. В образцах серий 3 и 4 выдержка $\tau_s = 4$ мин при $t = 1380^{\circ}\text{C}$ позволяет достичь значений $\rho/\rho_{th} \sim 99.5$ и 99.8% соответственно. Твердость и трещиностойкость керамик достаточно велики (табл. 2); трещины от углов отпечатков индентора распространяются преимущественно по границам зерен (рис. 4).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Для анализа кинетики ЭИПС используем модель Янга-Катлера [12], которая описывает процесс неизотермического спекания сферических частиц в условиях одновременного протекания процессов объемной и зернограничной диффузии, а также пластической деформации. В соответствии с [12], угол наклона температурной зависимости относительной усадки (ε) в координатах ln($T\partial\varepsilon/\partial T$)- T_m/T соответствует эффективной энергии активации спекания mQ_s , где $T_m = 2326$ K – температура плавления Al₂O₃, m – коэффициент, зависящий от доминирующего механизма спекания (m = 1/3 для случая зернограничной диффузии, m = 1/2 для объемной диффузии, m = 1 для вязкого течения материала (ползучести)).

Для начальных стадий ЭИПС субмикронных порошков величина коэффициента m = 1/3 [13,

БОЛДИН и др.

Серия	$t_s, ^{\circ}\mathrm{C}$	τ_s , мин	<i>d</i> , мкм	$\rho/\rho_{th}, \%$	H_V , ГПа	$K_{\rm Ic}$, МПа м ^{1/2}
	1350	0	0.2	81.5	9.7	2.9
		1	0.2	84.2	11.3	2.7
		2	0.2	85.4	11.8	2.6
		3	0.2	90.5	16.1	2.6
1		5	0.2	94.1	18.0	2.1
		7	0.3	94.5	18.6	2.9
		11	0.4	96.6	20.6	2.5
		15	0.4	97.9	21.4	2.4
		30	0.5	99.4	21.2	2.7
	1380	1	0.2	90.2	16.6	2.7
2		2	0.2	95.6	20.4	2.4
2		3	0.3	99.1	21.7	2.3
		4	0.3	99.2	22.2	2.3
	1410	1	0.6	92.2	15.2	3.5
2		2	0.6	98.9	21.4	2.4
3		3	0.6	99.1	21.3	2.5
		4	0.6	99.5	21.8	2.6
	1410	1	0.5	97.9	20.4	2.7
4		2	0.5	99.3	20.7	2.8
4		3	0.5	99.8	20.7	2.9
		4	0.5	99.8	20.5	3.3

Таблица 2. Свойства керамических образцов, полученных методом двухстадийного ЭИПС (режим II)

14]. Анализ представленных на рис. 26 данных показывает, что энергия активации ЭИПС порошков Al₂O₃ близка к энергии зернограничной диффузии кислорода в оксиде алюминия ($Q_b \sim 380$ кДж/моль [15] ~ 19.7 kT_m). Этот вывод хорошо соответствует данным [16] о том, что процессы спекания и ползучести оксида алюминия контролируются диффузией ионов кислорода по границам зерен Al₂O₃. Увеличение содержания ZrO₂ до 10% приводит к повышению Q_{s1} до ~30 kT_m (580 кДж/моль). Это, по нашему мнению, свидетельствует о том, что частицы ZrO₂ снижают интенсивность спекания УМЗ-керамики за счет затруднения проскальзывания частиц Al₂O₃ друг относительно друга (см. [14]).

Отметим, что энергия активации ЭИПС низка по сравнению с энергией активации свободного спекания крупнозернистых порошков Al_2O_3 -(5– 95)% ZrO₂ (~700 ± 100 кДж/моль), а также с энергией активации спекания крупнозернистого Al_2O_3 (440 ± 45 кДж/моль) [16]. Наблюдаемое снижение энергии активации ЭИПС обусловлено, по нашему мнению, малым размером зерна в УМЗ-керамике (см. [3]), а также положительным влиянием приложенного давления на ускорение спекания [1, 2, 7].

Проанализируем уплотнение порошков Al_2O_3 -ZrO₂ на стадии изотермического спекания керамики с пониженной начальной плотностью ($\rho_0/\rho_{th} \sim 90\%$). Зависимость плотности от времени τ_s может быть описана простым феноменологическим уравнением [7]:

$$\rho(\tau_s) = \rho_0(\tau_0) + K \ln(\tau_s/\tau_0), \qquad (1)$$

где K — численный коэффициент. Как видно из рис. 5, углы наклона линий ρ —ln(τ) для порошков Al₂O₃ и Al₂O₃ + 1.5% ZrO₂ близки друг к другу ($K \sim 0.05-0.06$). Величина коэффициента K для порошков с 10% ZrO₂ оказывается в 2–3 раза меньше, чем для чистого Al₂O₃ (рис. 5). Таким образом, увеличение содержания ZrO₂ приводит к уменьшению интенсивности уплотнения оксида алюминия при спекании по режиму II.

Уплотнение порошкового материала на финальной стадии спекания может быть описано

Рис. 3. РЭМ-изображения образцов, изготовленных из порошков серии 1 (a, б), 2 (в, г) и 4 (д, е); $\tau_s = 0$ (a, в, д), 4 (г, е) и 30 мин (б).

как процесс пластической деформации пористого материала с помощью уравнения [12]

$$\dot{\varepsilon} = A \left(\Phi \frac{\sigma}{G} \right)^2 \left(\frac{G\Omega}{kT} \right) \left(\frac{b}{d} \right)^2 \frac{D_b \delta}{b^3}, \tag{2}$$

где $A = 10^3$ – постоянная, G = 126 ГПа – модуль сдвига Al_2O_3 [15], $\delta = 2b$ – ширина границы зерна, b – вектор Бюргерса, $\Phi = 1/(1-f_v)$ – коэффициент, учитывающий влияние пористости, $f_v = 1 - \rho/\rho_{th}$ – объемная доля пор, D_b – коэффициент зернограничной диффузии. В соответствии с [7], угол наклона зависимости ρ -ln(τ) пропорционален скорости деформации пористой керамики ($\dot{\epsilon}$). Следовательно, увеличение содержания ZrO₂ приводит к уменьшению скорости деформации $\dot{\epsilon}$ оксида алюминия. Доминирующим механизмом деформации при ЭИПС УМЗ-керамики является ползучесть по Коблу [13] или зернограничное проскальзывание [14]. Таким образом, увеличение объемной доли частиц ZrO₂ препятствует развитию процессов зернограничной деформации.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 58 № 10 2022

Рис. 4. Характер распространения трещины в керамике $Al_2O_3 + 10\%$ ZrO₂, полученной методом двухстадийного ЭИПС ($\tau_s = 4$ мин).

Полученный результат означает, что наиболее эффективным процесс двухстадийного ЭИПС может быть в случае керамики с малой объемной долей частиц ZrO_2 . Это позволит обеспечить стабилизацию УМЗ-микроструктуры за счет эффекта Зинера [17], но не приведет к сильному замед-

Рис. 5. Зависимости ρ -ln(τ) для порошков оксида алюминия с различным содержанием ZrO₂.

лению процессов зернограничной деформации, отвечающих за уплотнение керамики на стадии изотермической выдержки.

ЗАКЛЮЧЕНИЕ

Предложен двухстадийный способ спекания керамики на основе оксида алюминия, заключающийся в высокоскоростном нагреве субмикронных порошков под давлением до температуры t_{90} , соответствующей 90%-ной плотности керамики, и изотермической выдержке при этой температуре. Новый способ спекания позволяет обеспечивать одновременно высокую плотность, малый размер зерна и хорошие механические свойства оксида алюминия и керамики Al_2O_3 – ZrO_2 .

Малые (до 10%) добавки частиц ZrO_2 приводят к увеличению энергии активации спекания субмикронных порошков Al_2O_3 на стадии высокоскоростного нагрева, а также к уменьшению скорости роста зерен и скорости зернограничной деформации при изотермической выдержке.

БЛАГОДАРНОСТЬ

Работа выполнена при поддержке РНФ (грант № 20-73-10113).

Исследование методом ПЭМ выполнено на оборудовании ЦКП "Материаловедение и металлургия" НИТУ "МИСИС" (проект Минобрнауки России № 075-15-2021-696).

СПИСОК ЛИТЕРАТУРЫ

- 1. Шевченко В.Я., Баринов С.М. Техническая керамика. М.: Наука, 1993. С. 192.
- Ruys A.J. Alumina Ceramics: Biomedical and Clinical Applications // United Kingdom: Woodhead, 2019. P. 541.
- 3. *Yeh T.-S., Sacks M.D.* Effect of Particle Size Distribution on the Sintering of Alumina // J. Am. Ceram. Soc. 1988. V. 71. № 12. P. 484–487. https://doi.org/10.1111/j.1151-2916.1988.tb05812.x
- 4. *Tokita M.* Progress of Spark Plasma Sintering (SPS) Method, Systems, Ceramics Application and Industrialization // Ceramics. 2021. V. 4. № 2. P. 160–198. https://doi.org/10.3390/ceramics4020014
- Green D.J. Critical Microstructures for Microcracking in Al₂O₃-ZrO₂ Composites // J. Am. Ceram. Soc. 1982. V. 65. №. 12. P. 610-614. https://doi.org/10.1111/j.1151-2916.1982.tb09939.x
- Chen I.W., Wang X.H. Sintering Dense Nanocrystalline Ceramics without Final-Stage Grain Growth // Nature. 2000. V. 404. P. 168–171. https://doi.org/10.1038/35004548
- Rahaman M.N. Ceramic Processing and Sintering. N.Y.: Marcel Dekker, 2003. P. 876. https://doi.org/10.1201/9781315274126
- Krell A., Pippel E., Woltersdorf J. On Crack-Propagation-Related Phenomena in Al₂O₃ + ZrO₂ and Al₂O₃ Sintered in Air and Hydrogen // Philos. Mag. A. 1986. V. 53. № 1. P. 11–16. https://doi.org/10.1080/01418618608242803
- Чувильдеев В.Н., Болдин М.С., Дятлова Я.Г., Румянцев В.И., Орданьян С.С. Сравнительное исследование горячего прессования и искрового плазменного спекания порошков Al₂O₃-ZrO₂-Ti(C,N) // Не-

орган. материалы. 2015. Т. 51. № 10. С. 1128–1134. https://doi.org/10.7868/S0002337X15090031

- Naglieri V., Palmero P., Montanaro L., Chevalier J. Elaboration of Alumina-Zirconia Composites: Role of the Zirconia Content on the Microstructure and Mechanical Properties // Materials. 2013. V.6. P. 2090–2102. https://doi.org/10.3390/ma6052090
- Zmak I., Coric D., Mandic V., Curkovic L. Hardness and Indentation Fracture Toughness of Slip Cast Alumina and Alumina-Zirconia Ceramics // Materials. 2020. V. 13. P. 122. https://doi.org/10.3390/ma13010122
- 12. Young W.S., Cutler I.B. Initial Sintering with Constant Rates of Heating // J. Am. Ceram. Soc. 1970. V. 53. № 12. P. 659–663.

https://doi.org/10.1111/j.1151-2916.1970.tb12036.x

- 13. Nanda A.K., Watabe M., Kurokawa K. The Sintering Kinetics of Ultrafine Tungsten Carbide Powders // Ceram. Int. 2011. V. 37. № 7. P. 2643–2654. https://doi.org/10.1016/j.ceramint.2011.04.011
- Boldin M.S., Popov A.A., Lantsev E.A., Nokhrin A.V., Chuvil'deev V.N. Investigation of the Densification Behavior of Alumina During Spark Plasma Sintering // Materials. 2022. V. 15. P. 19. https://doi.org/10.3390/ma15062167
- Фрост Г.Дж., Эшби М.Ф. Карты механизмов деформации. Челябинск: Металлургия, 1989. С. 328.
- Wang J., Raj R. Activation Energy for the Sintering of Two-Phase Alumina/Zirconia Ceramics // J. Am. Ceram. Soc. 1991. V. 74. № 8. P. 1959–1963. https://doi.org/10.1111/j.1151-2916.1991.tb07815.x
- Fan D., Chen L.-Q., Chen S.-P. Numerical Simulation of Zener Pinning with Growing Second-Phase Particles // J. Am. Ceram. Soc. 1998. V. 81. № 3. P. 526–532. https://doi.org/10.1111/j.1151-2916.1998.tb02370.x