УДК 544.228

РАСПРЕДЕЛЕНИЕ ФАЗ И НАРУШЕНИЕ БЛИЖНЕГО ПОРЯДКА В НАНОСТРУКТУРАХ SmS@Y₂O₂S и Y₂O₂S@SmS ТИПА CORE-SHELL

© 2022 г. А. В. Сотников^{1, *}, В. В. Баковец¹, М. М. Сыроквашин¹, И. Ю. Филатова¹

¹Институт неорганической химии им. А.В. Николаева СО Российской академии наук, пр. Академика Лаврентьева, 3, Новосибирск, 630090 Россия

*e-mail: sotnikov@niic.nsc.ru Поступила в редакцию 12.05.2022 г. После доработки 13.08.2022 г. Принята к публикации 15.08.2022 г.

Исследован процесс получения керамики SmS@Y₂O₂S и Y₂O₂S@SmS с наноструктурой типа coreshell сульфидированием при T = 1123 К оксидов РЗЭ, полученных золь—гель-методом из исходных растворов нитратов металлов осаждением NH₄OH с последующим отжигом сульфидных фаз в индукционной печи при T = 1473 К. Методами РФА и СЭМ рассчитаны средние величины OKP, изучена морфология фаз в полученных образцах, а также проведен детальный анализ ближнего порядка сосуществующих наноструктур методами КРС-спектроскопии и РФЭС.

Ключевые слова: оксиды и сульфиды РЗЭ, золь-гель-синтез, нарушение ближнего порядка, морфология, core-shell, топологические реакции

DOI: 10.31857/S0002337X2210013X

ВВЕДЕНИЕ

Для решения проблемы, связанной с увеличением спроса на потребление электрической и механической энергий, необходимо разрабатывать термогенераторы на основе термоэлектрических материалов (ТЭМ), способных преобразовывать тепловую энергию в электрическую. Внедрение таких устройств, несомненно, позволит существенно экономить и утилизировать мировые потери тепловой энергии [1]. С другой стороны, использование ТЭМ поспособствует замене бензиновых и дизельных двигателей на гибридные моторы, что существенно сократит выбросы угарного газа в атмосферу и повысит энергетическую эффективность [2]. Таким образом, исследование новых и модифицирование уже известных ТЭМ являются актуальными проблемами [3]. Последние технические достижения дают надежду, что в ближайшем будущем термоэлектрические устройства смогут выиграть конкуренцию по эффективности и стоимости у традиционных электромеханических преобразователей энергии [4].

В последнее время большое внимание уделяется исследованию материалов на основе тугоплавких халькогенидов редкоземельных металлов (**P3M**) [5–9]. Среди них известны соединения на основе твердых растворов сульфидов P3M со структурой типа Th₃P₄. Например, в работе [10] показано, что введение в полуторный сульфид диспрозия γ-Dy₂S₃ ионов гадолиния Gd³⁺ позволяет существенно снизить коэффициент теплопроводности за счет дополнительного рассеяния тепла на деформациях решетки. Известна и недавняя работа [11], в которой продемонстрировано, что термоэлектрические параметры (S, р и к_{общ}) керамических образцов γ-Dy_{0.8}Yb_{0.2}S_{1.5 - у} обладают высоким коэффициентом Зеебека и низкими удельным электросопротивлением и коэффициентом теплопроводности. Это объясняется наличием высокой удельной площади границ кристаллитов, повышенной концентрацией дислокаций и деформационных напряжений вдоль полукогерентных границ кристаллитов, что приводит к ограничению движения фононов в направлении градиента температуры. При этом полученное максимальное значение параметра термоэлектрической добротности достигает значения ZT = 0.60 при 770 К для соединения γ -Dy_{0.8}Yb_{0.2}S_{1.481}.

Одним из основных путей достижения высоких значений термоэлектрической добротности (ZT) является уменьшение коэффициента теплопроводности (κ) и удельного сопротивления (ρ), с другой стороны, необходимо увеличивать коэффициент Зеебека (S) [12]. С этой точки зрения, перспективным направлением поиска представляется синтез керамических высокотемпературных композитов с наноструктурой типа ядро/оболочка (core-shell) на основе оксидов, оксосульфидов и сульфидов РЗМ. Эти композиты строятся по принципу гость-хозяин, в которых гость выполняет роль фононного стекла с низкой теплопроводностью, а хозяин, обладая полупроводниковым или металлическим типом проводимости, выполняет роль электронного кристалла. Причем в качестве хозяина выступают сульфидные фазы, а в качестве гостей – оксиды и оксосульфиды РЗМ [13]. Для понимания возможностей такой системы прежде всего необходимо отработать методику формирования наноструктур core-shell на основе оксидов, оксосульфидов и сульфидов РЗМ. В настоящей работе в качестве объектов исследования выбраны оксид и оксосульфид иттрия, а также моносульфид самария. Оксид иттрия имеет высокий коэффициент Зеебека, достаточно низкую теплопроводность, но высокое удельное сопротивление, проявляя свойства диэлектрика [14]. При этом образование фазы оксосульфида иттрия в виде граничной прослойки не должно значимо повлиять на величину параметра термоэлектрической добротности. В свою очередь моносульфид самария имеет достаточно высокую электропроводность, но низкую ЭДС [15]. Представляется, что сочетание таких особенностей компонентов может повысить термоэлектрическую добротность ZT композита в целом за счет контакта наноразмерных ядра и оболочки с низкими значениями коэффициента теплопроводности и удельного сопротивления соответственно.

Цель данной работы заключается в изучении морфологии фаз и ближнего порядка в объеме и на границах сосуществующих наноструктур SmS@Y₂O₂S и Y₂O₂S@SmS.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза наноструктурированных порошков композитов со структурой типа ядро/оболочка золь—гель-метод имеет ряд преимуществ, в т.ч. низкие температуры синтеза, простоту и доступность проведения эксперимента. В данной работе в качестве исходных твердых веществ использованы нитраты РЗЭ Sm(NO₃)₃·5H₂O и Y(NO₃)₃·5H₂O с содержанием основных компонентов не менее 99.9%, а также роданид аммония NH₄SCN (ГОСТ 27067-86) в роли сульфидирующего реагента.

Процесс получения порошков Sm(OH)₃@Y(OH)₃ и Y(OH)₃@Sm(OH)₃ с наноструктурой типа ядро/оболочка проводили с помощью золь-гельметода осаждением растворов нитратов P3M водным раствором аммиака по описанной в [13] методике. Далее гидроксиды P3M подвергали отжигу при $t = 700^{\circ}$ С для синтеза композитов Sm₂O₃@Y₂O₃ и Y₂O₃@Sm₂O₃ с наноструктурой типа ядро/оболочка с мольным соотношением металлов Sm : Y = 1 : 1.

Оксосульфиды и сульфиды РЗМ получали твердофазным синтезом с использованием порошков $Sm_2O_3@Y_2O_3$ и $Y_2O_3@Sm_2O_3$ и сульфидирующего реагента — паров роданида аммония, а также газаносителя аргона (скорость потока 7 л/ч). Процесс сульфидирования проводили при T = 1123 К в течение 6 ч. Полученные порошки сульфидов и оксосульфидов РЗМ смешивали с порошком металлического самария в стехиометрическом соотношении металлов 1 : 1, тщательно перемешивали и дополнительно отжигали в индукционной печи при T = 1473 К в атмосфере аргона ($v_{потока} = 7 \text{ л/ч}$). Далее порошки Y₂O₂S@SmS и SmS@Y₂O₂S спекали методом горячего прессования в вакууме при T = 1473 К в течение 2 ч. Одноосное давление при формировании плотной керамики составляло 70 МПа.

Фазовый состав полученных соединений определяли методом порошковой дифрактометрии. Рентгенофазовый анализ поликристаллов осуществлялся на дифрактометре Shimadzu XRD-7000 (Cu K_{α} -излучение, Ni-фильтр, диапазон 20 10°– 80°, шаг 0.03°, накопление 2 с).

Морфологию спрессованных порошков с наноструктурой типа ядро/оболочка изучали методом сканирующей электронной микроскопии (СЭМ) на приборе JEOL 6700F. Мольное соотношение элементов определяли с помощью энергодисперсионного анализа (ЭДА) на установке Hitachi TM3000 TableTop SEM с приставкой Bruker QUANTAX 70 EDS.

Для исследования изменений ближнего порядка кристаллической решетки проводили регистрацию спектров комбинационного рассеяния света (**KPC**) образцов на спектрометре LabRAM HR Evolution (Horiba) с возбуждением на 632 нм (He–Ne-лазер) с диаметром пятна ~1–2 мкм и мощностью 1 мВт.

Рентгеновские фотоэлектронные спектры $(P\Phi \Theta C)$ были получены на спектрометре Specs с полусферическим анализатором PHOIBOS 150 с использованием мнохроматизированного AlK_a-излучения (hv = 1486.6 эВ). Шкала энергии связи $({ ilde E}_{{
m cB}})$ спектрометра была откалибрована по Au 4 $f_{7/2}$ $(E_{cB} = 84.0 \text{ эВ})$ и Cu $2p_{3/2}$ $(E_{cB} = 932.6 \text{ эB})$. Обработка спектров проводилась в программном пакете CasaXPS 2.3.15 Энергетическая привязка спектров осуществлялась по энергии связи углерода на поверхности C1 s_2 ($E_{cB} = 932.6$ эВ). Травление поверхности образцов проводили ионами аргона в течение 10 мин. Разложение спектров на компоненты осуществлялось с использованием функции Гаусса-Лоренца в соотношении 7 : 3, вычитание фона экспериментальных спектров - методом Ширли.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Химический состав и РФА. На рис. 1а представлены результаты РФА полученных композитов $Y_2O_2S@SmS$ и SmS@ Y_2O_2S . В образце $Y_2O_2S@SmS$ структура типа ядро представлена в виде фазы Y_2O_2S , на которой формируется поверхностный слой SmS – структура типа оболочка. По данным

Obonoyka

Рис. 1. РФА полученных композитов Y₂O₂S@SmS и SmS@Y₂O₂S (а) и изображение частицы с наноструктурой типа ядро/оболочка (б).

65

70

РФА, в образце $Y_2O_2S@SmS$ содержится небольшое количество (~1%) примесной фазы γ -Sm₃S₄. В образце SmS@Y₂O₂S слой, содержащий фазу Y₂O₂S, формируется на ядрах SmS (рис. 16).

25

15

20

30

35

40

45

20, град

50

55

60

1

С помощью известного соотношения Дебая-Шеррера [16], связывающего размеры кристаллитов с шириной дифракционных пиков на полувысоте, с использованием программного обеспечения X'Pert HighScore Plus проведена оценка области когерентного рассеяния (ОКР) исследуемых образцов. Оценку кристалличности синтезированных образцов проводили, используя средние значения $OKP_{cp} = \Sigma OKP_{_{ > KC\Pi}} / n_{P \Phi A}$, где $n_{P \Phi A} - чис$ ло рефлексов на дифрактограмме. Ввиду формирования сложной наноструктуры типа ядро/оболочка рассчитывали размеры кристаллитов, находящихся в ядре и в оболочке (табл. 1). Для этого были использованы параметры FWHM_{РФА} рефлексов, найденных отдельно для фаз Y2O2S и SmS в каждом из образцов.

Полученные величины OKP_{ср} демонстрируют, что в исследуемых образцах толщины оболочек меньше, чем размеры ядер. Так и должно быть из геометрических соображений, когда одно вещество находится в окружении другого при одинаковом соотношении молей.

СЭМ и ЭДА. На рис. 2 представлены результаты ЭДА (рис. 2a, 2б) и СЭМ (рис. 2в–2е) спрессованных порошков. Результаты, представленные на рис. 2д, 2е, подтвердили образование композита с наноструктурой типа ядро/оболочка. Найденные средние размеры полученных частиц в $Y_2O_2S@SmS - 270 \pm 14$ нм, в SmS@ $Y_2O_2S - 240 \pm 12$ нм.

Элементный состав исследованных образцов коррелирует с теоретической эталонной концентрацией атомов. Результаты ЭДА подтвердили соотношение атомов Y и Sm в продуктах синтеза $Y_2O_2S@SmS$ и SmS@Y2O2S (табл. 2). Погрешность определения составила ~1%.

КРС-спектроскопия. Для анализа изменений ближнего порядка использовали КРС-спектроскопию. На рис. 3 представлены КРС-спектры порошков $Y_2O_2S@SmS$ (образец I) и SmS@ Y_2O_2S (образец II).

В исследованном диапазоне спектров наблюдаются: мода $A_1 - 186$ см⁻¹ образца I и 187 см⁻¹ образца II, а также набор мод E - 77, 96 см⁻¹ (I) и 82, 97 см⁻¹ (II), 138 см⁻¹ (I) и 139 см⁻¹ (II) и F_2 – набор широких полос в области частот 238–266 см⁻¹ (I) и 230–270 см⁻¹ (II). Значительная полуширина некоторых линий КРС позволяет принять статистическое распределение вакансий в полученных

Таблица 1. Рассчитанные величины ОКР_{ср} композитов с наноструктурой типа ядро/оболочка

Композит	ОКР _{ср} , нм			
Y ₂ O ₂ S@SmS	Y ₂ O ₂ S (ядро) 152 ± 8	SmS (оболочка) 72 ± 4		
SmS@Y ₂ O ₂ S	SmS (ядро) 127 ± 6	Y ₂ O ₂ S (оболочка) 90 ± 5		

2022

Рис. 2. ЭДА (a, б) и результаты СЭМ (в–е) полученных композитов $Y_2O_2S@SmS$ (a, в, д) и SmS@ Y_2O_2S (б, г, е).

соединениях [17]. Обнаруженные полосы можно приписать колебаниям определенных атомных групп. Согласно [18, 19], моды колебаний атомов металла лежат в области 70–110 см⁻¹, а атомов серы – 180–350 см⁻¹. Таким образом, движению катионов Sm³⁺ и Y³⁺соответствуют полосы 77, 96 см⁻¹ (I) и 82, 97 см⁻¹ (II), а движению анионов S²⁻ – 186, 200, 238–266 см⁻¹ (I) и 186, 202, 230–270 см⁻¹ (II). Основываясь на результатах работ [10, 11], полосы 96, 118 см⁻¹ (I) и 97, 119 см⁻¹ (II) следует отне-

Образец	Содержание элемента в образце, мас. %					
	Sm	Y	0	S		
Теоретический состав	35	42	8	15		
Y ₂ O ₂ S@SmS	35	42	7	16		
SmS@Y ₂ O ₂ S	34	42	8	16		

Таблица 2. Результаты ЭДА композитов Y₂O₂S@SmS и SmS@Y₂O₂S

Рис. 3. КРС-спектры полученных композитов $Y_2O_2S@SmS$ и SmS@ Y_2O_2S .

сти к суперпозиции колебаний Sm³⁺ и Y³⁺. Оставшиеся полосы 138 (I) и 139 (II) см⁻¹ относятся к движению катионов Y³⁺ в кристаллической решетке оксосульфида Y₂O₂S [20]. Отмечается заметное изменение соотношений интенсивностей полос для композитов I и II, что указывает на значительную разницу фононных спектров и, следовательно, ближнего порядка катионных подрешеток в образцах I и II. Более широкие полосы КРС и большая плотность состояний (наличие плеч и наложение полос) свидетельствуют об усложнении фононного спектра образца SmS@Y₂O₂S. Это в сочетании с большой кривизной базовой линии указывает на повышенную дефектность наноструктуры SmS@Y₂O₂S.

РФЭС O1s представляют собой суперпозицию двух линий, относящихся к двум различным типам атомов кислорода (рис. 4). Энергии связи представлены в табл. 3. Поскольку РФЭС является поверхностным методом и глубина анализа составляет ~10 нм, пик группы линий с энергией связи ~533.9 эВ (SmS@Y₂O₂S и Y₂O₂S@SmS) относится к атомам кислорода, адсорбированным на поверхности исследуемых образцов [21, 22] (см. вставку на рис. 4а). Пик O1s, находящийся в низкоэнергетической области, относится к атомам кислорода (связи У-О) в составе оксосульфида иттрия Y_2O_2S ($E_{cB}(O1s) = 531.6$ эВ) [23]. Ионное травление поверхности приводит к исчезновению Ols-линии, относящейся к поверхностным формам кислорода (рис. 4), и появлению в структуре спектра новой компоненты ($E_{cB}(O1s) \sim 529.6 \Rightarrow B$), соответствующей примесной фазе У2О3 [24-26].

В образце SmS@Y₂O₂S наблюдается большее содержание непросульфидированного Y₂O₃, чем в образце $Y_2O_2S@SmS$, что соответствует механизму топологической реакции, а именно, связано с разной скоростью сульфидирования оксидов РЗМ. В соответствии с данными [27] сульфидирование ряда оксидов Ln_2O_3 (Ln = La, Gd, Y) протекает быстрее чем У2О3. Тогда можно допустить, что скорость сульфидирования Sm₂O₃ также будет выше, чем У₂О₃, и тогда лимитированной стадией в рассматриваемом процессе будет образование фазы Y₂O₂S. Следовательно, ионы S²⁻ должны быстро диффундировать по границам кристаллитов и по анионным вакансиям к ядру Sm₂O₃ с образованием сульфидов Sm. Этот процесс в сочетании с противодиффузией О²⁻ будет поддерживать дефицит S²⁻ в оболочке Y₂O₃ и тем самым сохранять в ней повышенную концентрацию этого оксида. При этом становится очевидным, что РФА не отражает полного набора фаз в наночастицах типа core-shell.

РФЭС S2s композита $Y_2O_2S@SmS$ представляют собой суперпозицию двух линий с энергией связи ~227 и ~225.5 эВ, которые относятся к атомам серы в составе моносульфида самария SmS и оксосульфида иттрия Y_2O_2S соответственно [23]. В случае образца SmS@Y_2O_2S S2s-спектр содержит одну линию, относящуюся к атомам серы в составе Y_2O_2S (рис. 5). После процедуры ионного травления в S2s-спектрах наблюдаются две линии с E_{cB} ~228 и ~225.5 эВ, которые относятся к SmS и Y_2O_2S соответственно (вставка на рис. 5). В силу

Рис. 4. O1s-спектры $Y_2O_2S@SmS$ (a) и SmS@ Y_2O_2S (б); на вставке спектры после травления аргоном.

описанной выше кинетики процесса для образца $Y_2O_2S@SmS$ оболочка прекурсора Sm_2O_3 будет быстро сульфидироваться до SmS и даже частично образовывать фазу Sm_3S_4 , которая и обнаружена методом РФА (рис. 1). Наблюдаемые изменения ширин на полувысоте обнаруженных полос S2s в РФЭС коррелируют с рассчитанными ранее средними величинами OKP_{cp} (табл. 1): чем выше значение FWHM_{РФЭС}, тем меньше размер частиц [28]. Также необходимо отметить, что обнаруженные изменения в РФЭС после ионного травления Ar⁺ подтверждают строение наночастиц типа ядро/оболочка: например, в образце SmS@Y₂O₂S формируется оболочка Y₂O₂S на поверхности ядра SmS.

 $Sm3d_{5/2}$ -спектры представляют собой суперпозицию двух линий (рис. 6). Для сульфида самария SmS известно, что атомы самария находятся в двух зарядовых состояниях: Sm^{2+} и Sm^{3+} [15]. Таким образом, группа линий, лежащая в высокоэнергетической области, относится к Sm^{3+} , а группа линий, расположенная в низкоэнергетической области – к Sm^{2+} [21, 29, 30].

В результате реакции сульфидирования образца $Y_2O_2S@SmS$ образуется большее количество моносульфида SmS, что также соответствует механизму топологической реакции. При этом очевидно, что РФА не отражает полностью фазовый состав соединений Sm.

На Ү3*р*-спектрах до травления присутствуют две компоненты, соответствующие спин-орби-

Образец –	<i>Е</i> _{св} , эВ				EHWM - B
	O1s	Y3 <i>p</i> _{3/2}	Sm3 <i>d</i> _{5/2}	S2s	1 П түүмүрфэс, эр
Y ₂ O ₂ S@SmS	531.6 533.8	300.8	1082.0 1084.3	225.2 227.1	2.9 2.4
Y ₂ O ₂ S@SmS после травления	529.5 531.6	300.5 303.1	1081.8 1084.0	225.5 228.0	3.4 3.6
SmS@Y ₂ O ₂ S	531.6 533.9	300.6	1082.7 1085.0	225.4	3.8
SmS@Y ₂ O ₂ S после травления	529.6 531.6	300.5 303.3	1082.7 1085.2	225.7 228.2	3.5 3.2

Таблица 3. Энергии связей элементов в РФЭС композитов Y₂O₂S@SmS и SmS@Y₂O₂S и значения ширин на полувысоте наблюдаемых пиков

Рис. 5. S2s-спектры $Y_2O_2S@SmS$ (а) и SmS@ Y_2O_2S (б); на вставке спектры после травления аргоном.

Рис. 6. Sm $3d_{5/2}$ -спектры Y₂O₂S@SmS (a) и SmS@Y₂O₂S (б); на вставке спектры после травления аргоном.

тальному расщеплению Y3p-уровня ($3p_{1/2}$ и $3p_{3/2}$). В табл. 3 представлены энергии связи для $Y3p_{3/2}$ линии. Ионное травление приводит к частичному разрушению оболочки частиц и появлению в низкоэнергетической области дополнительных компонент в Y3p-спектрах (рис. 7), относящихся к примесной фазе Y_2O_3 . Из анализа этих спектров также следует, что наночастицы после сульфидирования содержат примесную фазу оксида иттрия.

Анализ РФЭС показал, что фазовый состав композитов с наноструктурой типа core-shell сложнее, чем показывает РФА, и наночастицы содержат следующий набор фаз: основные фазы – Y_2O_2S , SmS и фазы на уровне примесей – Y_2O_3 , Sm₂O₂S и Sm₃S₄.

Рис. 7. Y3p-спектры Y₂O₂S@SmS (a) и SmS@Y₂O₂S (б); на вставке спектры после травления аргоном.

Вместе с тем, морфология наночастиц и расположение основных фаз соответствуют поставленной задаче синтеза соге-shell-материалов. Из полученных результатов следует, что для достижения необходимого оптимального соотношения основных фаз SmS и Y_2O_3 нужно использовать в качестве прекурсора композит $Sm_2O_3@Y_2O_3$. Однако требуется снижать время сульфидирования исходных оксидов до получения необходимого соотношения основных фаз SmS и Y_2O_3 (размеров оболочки и ядра) таким образом, чтобы содержание этих основных фаз было соизмеримо и обе фазы регистрировались на дифрактограммах.

ЗАКЛЮЧЕНИЕ

Изучены закономерности изменения дефектности ближнего порядка кристаллических решеток в композитах SmS@Y₂O₂S и Y₂O₂S@SmS с наноструктурой типа ядро/оболочка. В соответствии с результатами проведенного исследования методами РФА, СЭМ, КРС-спектроскопии и РФЭС установлено, что образец SmS@Y₂O₂S, в котором на поверхности ядра SmS формируется тонкая оболочка Y₂O₂S, характеризуется большей дефектностью по сравнению с Y₂O₂S@SmS. Это в конечном счете должно обеспечить пониженный коэффициент теплопроводности синтезированного материала.

Для получения перспективного ТЭМ с наноструктурой типа ядро/оболочка требуется определить минимальное и достаточное время сульфидирования прекурсора Sm₂O₃@Y₂O₃ с повышенным содержанием фазы Y_2O_3 . Это в свою очередь позволит значительно увеличить коэффициент Зеебека при сохранении оптимальных величин удельного сопротивления и коэффициента теплопроводности и получить материал, соответствующий концепции "фононное стекло — электронный кристалл".

БЛАГОДАРНОСТЬ

Исследование выполнено при финансовой поддержке в рамках научного проекта Президента РФ № МК-3688.2021.1.3.

Авторы статьи благодарят Т.Д. Пивоварову за помощь в синтезе гидроксидов самария и иттрия и Б.А. Колесова за помощь в интерпретации результатов.

Авторы благодарят Министерство науки и высшего образования Российской Федерации (проект № 121031700315-2).

СПИСОК ЛИТЕРАТУРЫ

 Pourkiaei S.M., Ahmadi M.H., Sadeghzadeh M., Moosavi S., Pourfayaz F., Chen L., Yazdi M.A.-P., Kumar R. Thermoelectric Cooler and Thermoelectric Generator Devices: A Review of Present and Potential Applications, Modeling and Materials // Energy. 2019. V. 186. P. 115849.

https://doi.org/10.1016/j.energy.2019.07.179

 Cao Q., Luan W., Wang T. Performance Enhancement of Heat Pipes Assisted Thermoelectric Generator for Automobile Exhaust Heat Recovery // App. Therm. Eng. 2017. V. 130. P. 1472–1479. https://doi.org/10.1016/j.applthermaleng.2017.09.134

- Alsalama M.M., Hamoudi H., Abdala A., Ghouri Z.K., Youssef K.M. Enhancement of Thermoelectric Properties of Layered Chalcogenide Materials // Rev. Adv. Mater. Sci. 2020. V. 59. P. 371–398. https://doi.org/10.1515/rams-2020-0023
- 4. *Snyder G.J.* Application of the Compatibility Factor to the Design of Segmented and Cascaded Thermoelectric Generators // Appl. Phys. Lett. 2004. V. 84. P. 2436–2438.

https://doi.org/10.1063/1.1689396

- Zhu T., He R., Gong S., Xie T., Gorai P., Nielsch K., Grossman J.C. Charting Lattice Thermal Conductivity for Inorganic Crystals and Discovering Rare Earth Chalcogenides for Thermoelectrics // Energy Environ. Sci. 2021. V. 14. P. 3559–3566. https://doi.org/10.1039/D1EE00442E
- Sotnikov A.V., Jood P., Ohta M. Enhancing the Thermoelectric Properties of Misfit Layered Sulfides (MS)_{1,2+q}(NbS₂)_n (M = Gd and Dy) through Structural Evolution and Compositional Tuning // ACS Omega. 2020. V. 5. P. 13006–13013. https://doi.org/10.1021/acsomega.0c00908
- 7. Sotnikov A.V., Bakovets V.V., Korotaev E.V., Trubina S.V., Zaikovskii V.I. Short- and Long-Range Disorders in Misfit Layered Compounds $(MS)_{1.2 + q}NbS_2$ with the Solid Solution Subsystem $(MS) = (Gd_xDy_{1 - x}S) //$ Mater. Res. Bull. 2020. V. 131. P. 110963. https://doi.org/10.1016/j.materresbull.2020.110963
- Сотников А.В., Баковец В.В., Агажанов А.Ш., Станкус С.В., Пищур Д.П., Соколов В.В. Влияние морфологических дефектов на теплофизические свойства γ-Gd₂S₃ // Физика твердого тела. 2018. Т. 60. № 3. С. 482–489. https://doi.org/10.21883/FTT.2018.03.45548.137
- Syrokvashin M.M., Korotaev E.V., Kryuchkova N.A., Zvereva V.V., Filatova I.Yu., Kalinkin A.V. Surface and Bulk Charge Distribution in Manganese Sulfide Doped with Lanthanide Ions // Appl. Surf. Sci. 2019. V. 492. P. 209–218. https://doi.org/10.1016/j.apsusc.2019.05.237
- Сотников А.В., Баковец В.В., Онта М., Агажанов А.Ш., Станкус С.В. Морфология и термоэлектрические свойства керамики твердых растворов γ-Gd_xDy_{1 - x}S_{1.5 - y} // Физика твердого тела. 2020. Т. 62. № 4. С. 537-546. https://doi.org/10.21883/FTT.2020.04.49116.627
- Sotnikov A.V., Syrokvashin M.M., Bakovets V.V., Filatova I.Yu., Korotaev E.V., Agazhanov A.Sh., Samoshkin D.A. Figure Ofmerit Enhancement in Thermoelectric Materials Based on γ-Ln_{0.8}Yb_{0.2}S_{1.5 y} (Ln = Gd, Dy) Solid Solutions // J. Am. Ceram. Soc. 2021. V. 105. P. 2813–2822. https://doi.org/10.1111/jace.18292
- 12. Snyder G.J., Toberer E.S. Complex Thermoelectric Materials // Nat. Mater. 2008. V. 7. P. 105–114. https://doi.org/10.1038/nmat2090
- Сотников А.В., Баковец В.В., Плюснин П.Е. Кинетика термического разложения гидроксидов Y и Sm и соединения Sm(OH)₃@Y(OH)₃ с наноструктурой ядро-оболочка // Журн. общ. химии. 2021. Т. 91. № 7. С. 1108–1119. https://doi.org/10.31857/S0044460X21070155

14. *Rowe D.M.* CRC Handbook of Thermoelectrics. Boca Raton: CRC, 1995. 720 p.

- Голубков А.В., Казаний М.М., Каминский В.В., Соколов В.В., Соловьев С.М., Трушникова Л.Н. Термоэлектрические свойства SmS_x (x = 0.8–1.5) // Неорган. материалы. 2003. Т. 39. № 12. С. 1448–1454. https://doi.org/10.1023/B:INMA.0000008909.13771.f3
- Patterson A.L. The Sherrer Formuls for X-ray Patrticle Size Determination // Phys. Rev. 1939. V. 56. P. 978. https://doi.org/10.1103/PhysRev.56.978
- Колесов Б.А., Камарзин А.А., Соколов В.В. КР спектры и структурные особенности вакансионных кристаллов γ-Ln₂S₃// Журн. структур. химии. 1997. Т. 38. № 4. С. 655–661. https://doi.org/10.1007/BF02762735
- Kolesov B.A., Vasil'eva I.G. Raman Spectra and Structural Features of the Rare Earth Disulfides // J. Struct. Chem. 1992. V. 33 P. 60–65. https://doi.org/10.1007/BF00746930
- Knight D.S., White W.B. Raman spectroscopic Study of the Rare Earth Sesquisulfides // Spectrochim. Acta, Part. A. 1990. V. 46. P. 381–387. https://doi.org/10.1016/0584-8539(90)80109-C
- Yuan G., Li M., Yu M., Tian C., Wang G., Fu H. In situ Synthesis, Enhanced Luminescence and Application in Dye Sensitized Solar Cells of Y₂O₃/Y₂O₂S:Eu³⁺ Nanocomposites by Reduction of Y₂O₃:Eu³⁺ // Sci. Rep. 2016. V. 6. P. 37133. https://doi.org/10.1038/srep37133
- 21. NIST Standard Reference Database. 20, Version 4.1. n.d.
- Rajumon M.K., Prabhakaran K., Rao C.N.R. Adsorption of Oxygen on (100), (110) and (111) Surfaces of Ag, Cu and Ni: an Electron Spectroscopic Study // Surf. Sci. Lett. 1990. V. 233. P. 237–242. https://doi.org/10.1016/0039-6028(90)90169-9
- Dolo J.J., Dejene F.B., Swart H.C. Characterization and XPS Information of Commercially Y₂O₂S:Eu³⁺ Powder Phosphor // 57th Ann. Conf. of the SAIP. 2012. P. 46–51. https://doi.org/10.1016/S0254-0584(02)00097-4
- Mariscal-Becerra L., Vazquez-Arreguin R., Balderas U., Carmona-Tellez S., Sanchez H.M., Falcony C. Luminescent Characteristics of Layered Yttrium Oxide Nano-Phosphors Doped with Europium // J. Appl. Phys. 2017. V. 121. P. 125111. https://doi.org/10.1063/1.4979209
- 25. Mai L., Boysen N., Subasi E., Arcos T., Rogalla D., Grundmeier G., Bock C., Lu H.-L., Devi A. Water Assisted Atomic Layer Deposition of Yttrium Oxide Using tris(N,N'-diisopropyl-2-dimethylamido-guanidinato) yttrium(III): Process Development, Film Characterization and Functional Properties // RSC Adv. 2018. V. 8. P. 4987. https://doi.org/10.1039/C7RA13417G
- 26. Basavegowda N., Mishra K., Thombal R.S., Kaliraj K., Lee Y.R. Sonochemical Green Synthesis of Yttrium Oxide (Y₂O₃) Nanoparticles as a Novel Heterogeneous Catalyst for the Construction of Biologically Interesting 1,3-Thiazolidin-4-ones // Catal. Lett. 2017. V. 147. P. 2630–2639.

https://doi.org/10.1007/s10562-017-2168-4

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 58 № 10 2022

СОТНИКОВ и др.

- Bakovets V.V., Sotnikov A.V., Korolkov I.V. Kinetics of Phase Formation in the Ln–O–S (Ln = La, Gd, Y) Systems during Oxide Sulfidation in Ammonium Thiocyanate Vapor // J. Am. Ceram. Soc. 2017. V. 100. P. 1320–1329. https://doi.org/10.1111/jace.14692
- Reiche R., Thielsch R., Oswald S., Wetzig K. XPS Studies and Factor Analysis of PbS Nanocrystal-Doped SiO₂ Thin Film // J. Electron Spectrosc. Relat. Phenom. 1999. V. 104. P. 161–171. https://doi.org/10.1016/S0368-2048(98)00326-0
- Anupriya J., Rajakumaran R., Chen S.M., Senthilkumar T. Samarium Tungstate Anchored on Graphitic Carbon Nitride Composite: A Novel Electrocatalyst for the Ultra-Selective Electrocatalytic Detection of 8-hydroxy-5-nitroquinoline in River Water and Biological Samples // Colloids. Surf., A. 2022. V. 632. P. 127820. https://doi.org/10.1016/j.colsurfa.2021.127820
- Brunckova H., Kanuchova M., Kolev H., Mudra E., Medvecky L. XPS Characterization of SmNbO₄ and SmTaO₄ Precursors Prepared by Sol-Gel Method // Appl. Surf. Sci. 2018. V. 473. P. 1–5. https://doi.org/10.1016/j.apsusc.2018.12.143

1150