УДК 546.32.654.42

СИСТЕМА КLa(SO₄)₂-SrSO₄ ПРИ ТЕМПЕРАТУРЕ ВЫШЕ 600°С

© 2022 г. Н. Н. Бушуев^{1,} *, А. Н. Егорова¹, И. И. Плотко¹

¹Российский химико-технологический университет им. Д.И. Менделеева, Миусская пл., 9, Москва, 125047 Россия *e-mail: nbushuev@muctr.ru Поступила в редакцию 23.03.2022 г. После доработки 13.09.2022 г.

Принята к публикации 13.09.2022 г.

Методами рентгенофазового и термогравиметрического анализов исследована система KLa(SO₄)₂–SrSO₄ при температуре выше 600°C. Установлено существование широкой области твердых растворов в интервале 0–70 мол. % KLa(SO₄)₂ на основе ромбической модификации β-SrSO₄ (пр.гр. *Pnma*). Определены параметры элементарных ячеек твердых растворов. Объемы элементарных ячеек *V* в указанном концентрационном интервале закономерно увеличиваются от 307.67(6) до 313.54(21) Å³. Твердые растворы образуются в результате гетеровалентного замещения двух ионов стронция на ионы калия и лантана и распадаются выше температуры 950°C с выделением оксидов SO₃, La₂O₃, сульфатов калия и стронция.

Ключевые слова: сульфат стронция, сульфаты калия-лантана, рентгенография, термография **DOI:** 10.31857/S0002337X22100050

ВВЕДЕНИЕ

В работе [1] установлено существование полугидрата сульфата стронция $SrSO_4 \cdot 0.5H_2O$, кристаллизующегося в гексагональной сингонии из водных растворов, с параметрами элементарной ячейки, близкими к параметрам известной гексагональной модификации полугидрата сульфата кальция $CaSO_4 \cdot 0.5H_2O$. Отмечалась неустойчивость модификации $SrSO_4 \cdot 0.5H_2O$, время существования которой не превышало 120 мин, затем происходила полная дегидратация с образованием ромбического безводного $SrSO_4$.

В работе [2] отмечалось, что сульфат стронция может использоваться в качестве абсорбента редкоземельных элементов (**P3Э**) в водных растворах при участии калия в результате гетеровалентного замещения $2Sr^{2+} \rightarrow K^+ + La^{3+}$. В результате этого замещения гексагональная модификация SrSO₄·0.5H₂O приобретает высокую устойчивость и может существовать практически неограниченное время как в водной среде, так и на воздухе. В исследованной в работе [2] системе KLa(SO₄)₂·H₂O– SrSO₄·0.5H₂O обнаружено существование широкой области твердых растворов на основе гексагональной модификации SrSO₄·0.5H₂O, термическая устойчивость которых ограничена 250°C.

В работе [3] система $KLa(SO_4)_2 \cdot H_2O - SrSO_4 \cdot 0.5H_2O$ исследована в температурном интервале 100–500°С. Показано, что в процессе нагревания

твердых растворов на основе гексагональной модификации $SrSO_4 \cdot 0.5H_2O$ происходит разрушение их структуры с образованием соединений аналогичного состава, но содержащих 0.1 моль H₂O. Соединение состава Sr_{0.5}K_{0.25}La_{0.25}SO₄·0.5H₂O обезвоживается до состава Sr_{0.5}K_{0.25}La_{0.25}SO₄·0.1H₂O с переходом гексагональной структуры SrSO₄·0.5H₂O в моноклинную SrSO₄·0.1H₂O. Определены параметры элементарных ячеек Sr_{0.5}K_{0.25}La_{0.25}SO₄·0.5H₂O и Sr_{0.5}K_{0.25}La_{0.25}SO₄·0.1H₂O. Область существования соединения $Sr_{0.5}K_{0.25}La_{0.25}SO_4 \cdot 0.1H_2O$ ограничена узким температурным интервалом 250-350°С. Дальнейшее нагревание сопровождается значительной аморфизацией, постепенным обезвоживанием и полной потерей кристаллогидратной воды при температуре 500°С. Было установлено, что на фоне аморфной фазы при 500-550°С появляется кристаллическая структура хорошо известной безводной ромбической модификации β-SrSO₄ (пр. гр. Рпта).

Структура ромбической модификации β -SrSO₄ исследована и приведена в [4]. В работах [5–8] отмечена изоструктурность β -SrSO₄ и сульфатов BaSO₄, SnSO₄ и PbSO₄. В работе [9] исследована иерархическая структура синтезированного при комнатной температуре сульфата стронция, а эластичность его свойств изучена в работе [10] при повышенном давлении. Отмечено, что частичное гетеровалентное замещение двухзарядных ионов Sr^{2+} и SO_4^{2+} в структуре $SrSO_4$ на трехзарядные ионы Sm^{3+} и PO_4^{3-} приводит к фотолюминесценции [11]. Характер включения РЗЭ в структуру $SrSO_4$ представляет определенный научный интерес.

Целью настоящей работы является исследование системы $KLa(SO_4)_2$ -SrSO₄ при температуре 600-1200°С.

МЕТОДИКА И РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

Результаты [2, 3] позволили предположить, что после термической обработки образцов системы KLa(SO₄)₂·H₂O-SrSO₄·0.5H₂O при температуре выше 600°С возможно отделение аморфной фазы KLa(SO₄)₂ от ромбической модификации β-SrSO₄ в водных или слабокислых растворах вследствие большого различия их растворимости. С этой целью образцы твердого раствора состава (мол. %) 33.3KLa(SO₄)₂·H₂O + 66.6SrSO₄·0.5H₂O, полученные по методике [2, 3], подвергли отжигу при температурах 300 и 600°С. После отжига образцы были тщательно перетерты и подвергнуты длительной отмывке в 50-кратном растворе дистиллированной воды. Оставшийся осадок был отфильтрован и исследован на рентгеновском спектрометре EDX-7000 (Shimadzu Scientific Instruments, Kyoto, Japan). Сохранение количественного элементного состава образцов до и после водной отмывки свидетельствует о достаточной устойчивости структуры как кристаллогидратных, так и безводных модификаций.

С целью исследования природы включения атомов K и La в структуру ромбической безводной модификации SrSO₄ образцы системы KLa(SO₄)₂·H₂O–SrSO₄·0.5H₂O были отожжены при температуре выше 550°C [2], а именно при 600–800°C с более длительной выдержкой в течение 100 ч.

Рентгенографический анализ выполнен с использованием камеры-монохроматора G-670 фирмы HUBER (Cu K_{α_1} -излучение, шаг измерения 2 θ = 0.005°) и программного комплекса WinXPOW (version 2.20 2006 г.) фирмы STOE. Погрешность в определении параметров элементарных ячеек не более 0.002 Å.

Камера-монохроматор G-670 осуществляет регистрацию дифракционных линий по методу Гинье на визуализирующую изогнутую пластину (Imaging Plate-Detector: Scintillation Counter) одновременно по всем направлениям 20 от 10° до 90°. В качестве монохроматора в камере G-670 используется изогнутый германиевый монокристалл (Curved Germanium 111).

Термогравиметрический анализ проведен на синхронном термоанализаторе Netzsch STA 409 PC

со скоростью нагревания 5°С/мин до температуры 1300°С.

По результатам рентгенофазового анализа установлено, что все образцы системы $KLa(SO_4)_2$ —SrSO₄ в концентрационном интервале 0—70 мол. % $KLa(SO_4)_2$, отожженные при температуре 600°С, представляют собой однофазные твердые растворы на основе ромбического β -SrSO₄. В концентрационной области 70—100 мол. % $KLa(SO_4)_2$ образцы, отожженные при 600°С, содержат две фазы: твердый раствор на основе β -SrSO₄ и двойной сульфат $KLa(SO_4)_2$.

В табл. 1 приведены рентгенографические данные образца состава 33.3 мол. % $KLa(SO_4)_2 + 66.6$ мол. % $SrSO_4$, параметры элементарной ячейки составили: a = 8.4096 (16) Å, b = 5.3720 (12) Å, c = 6.8867(12) Å, V = 311.11 (13) Å³, пр. гр. *Рпта*. Надежность индицирования, в т. ч. первых 30 линий рентгенограммы, подтверждается критерием Смита–Снайдера *F*(30) = 47.6 при необходимом критерии *F*(30) > 15, среднее отклонение $2\theta_{эксп} - 2\theta_{расч}$ составляет 0.021°.

В табл. 2 приведены параметры элементарных ячеек образцов системы $KLa(SO_4)_2$ —SrSO₄ различного состава. На рис. 1 приведены зависимости параметров и объема элементарных ячеек от состава образцов.

На рис. 1 прослеживается закономерный рост параметров и объема элементарных ячеек образцов с увеличением содержания иона K⁺ (имеющего больший размер (1.35 Å) по сравнению с ионом замещаемого Sr²⁺ (1.20 Å) [12]). Все образцы твердого раствора разлагаются при температуре 950–960°С, соответствующей разложению KLa(SO₄)₂, с выделением газообразного SO₃ и образованием K₅La(SO₄)₄ и La₂O₃.

На рис. 2 приведены результаты термического анализа при нагревании двойного сульфата KLa(SO₄)₂. Эндотермический эффект при температуре 404°С соответствует либо возможному полиморфному превращению, либо потере остаточного количества кристаллогидратной воды структурой KLa(SO₄)₂·xH₂O. Второй эндотермический эффект при температуре 950–960°С соответствует, как уже отмечалось, разложению KLa(SO₄)₂ и образованию K₅La(SO₄)₄. Третий эндотермический эффект при температуре 1050–1060°С соответствует разложению K₅La(SO₄)₄ с дальнейшим выделением оксидов SO₃, La₂O₃ и сульфата K₂SO₄.

На кривых нагревания всех твердых растворов системы $KLa(SO_4)_2$ —SrSO₄ присутствуют три эндотермических эффекта. При температуре 950°С происходит разложение $KLa(SO_4)_2$. При температуре 1050°С наблюдается разложение $K_5La(SO_4)_4$. При температуре 1230°С протекает полиморфное превращение ромбической модификации SrSO₄ в

I	. I I		4/2	,
d, Å	20 pacy	$\Delta(2\theta_{3KC\Pi}-2\theta_{pacy})$	I, %	h k l
4.236	20.962	0.0104	9.79	011
4.199	21.123	0.0366	3.55	200
3.784	23.506	0.0055	29.50	111
3.587	24.802	0.0166	1.18	201
3.443	25.864	0.0077	24.55	0 0 2
3.311	26.916	0.0071	82.63	210
3.186	27.990	0.0129	51.73	102
2.985	29.931	-0.0004	100.00	211
2.741	32.660	0.0017	63.95	112
2.687	33.338	-0.0025	49.28	020
2.597	34.535	-0.0057	6.57	301
2.402	37.477	-0.0457	4.40	121
2.388	37.674	-0.0174	18.98	212
2.264	39.803	-0.0049	17.17	220
2.215	40.728	0.0008	6.05	103
2.174	41.527	-0.0048	10.28	302
2.151	41.995	-0.0062	31.29	221
2.054	44.072	-0.0086	54.03	122
2.048	44.219	-0.0096	56.93	113
2.012	44.967	0.0656	85.96	401
1.9573	46.362	0.0087	19.33	410
1.8916	48.081	-0.0007	1.34	222
1.8665	48.760	0.0104	7.02	321
1.7757	51.433	0.0023	26.21	303
1.7328	52.793	0.0143	4.11	031
1.7218	53.179	-0.0064	4.33	004
1.7092	53.611	-0.0197	1.10	123
1.6979	53.992	-0.0140	3.40	131
1.6865	54.372	0.0023	18.56	104
1.6478	55.768	-0.0091	9.34	230
1.6346	56.289	-0.0382	2.79	501
1.6102	57.121	0.0586	23.46	223
1.6035	57.390	0.0522	15.07	510
1.5943	57.851	-0.0471	2.37	204
1.5618	59.078	0.0436	16.35	511
1.5507	59.612	-0.0217	1.39	403
1.5275	60.595	-0.0077	2.60	214
1.5108	61.322	0.0049	1.24	502

-0.0024

-0.0038

-0.0061

0.0160

0.0064

Таблица 1. Рентгенографические характеристики образца состава 33.3 мол. % KLa(SO₄)₂ + 66.6 мол. % SrSO₄

22.16

7.32

4.35

10.13

2.48

323

512

024

124

314

1.4814

1.4546

1.4495

1.4280

1.4149

62.685

63.976

64.230

65.294

65.984

СИСТЕМА KLa(SO₄)₂-SrSO₄

KLa(SO ₄) ₂ , мол. %	a, Å	b, Å	c, Å	$V, Å^3$
67	8.4271(25)	5.3932(15)	6.8987(19)	313.54(21)
54	8.4243(12)	5.3788(9)	6.8919(10)	312.29(11)
43	8.4210(12)	5.3791(8)	6.8914(9)	312.16((10)
33	8.4096(16)	5.3720(12)	6.8867(12)	311.11(13)
25	8.3974(10)	5.3697(6)	6.8839(8)	310.41(8)
18	8.3926(7)	5.3647(4)	6.8814(6)	309.83(6)
11	8.3810(8)	5.3604(4)	6.8773(6)	308.97(6)
5	8.3735(8)	5.3570(4)	6.8768(6)	308.48(6)
0	8.3637(8)	5.3530(4)	6.8721(6)	307.67(6)

Таблица 2. Параметры и объем элементарных ячеек твердых растворов системы KLa(SO₄)₂-SrSO₄

высокотемпературную высокосимметричную гексагональную модификацию. Указанное полиморфное превращение инициирует разложение сульфата стронция, сопровождающееся дальнейшим выделением газообразного оксида серы. ра начинается при температуре 950°C и сопровождается образованием $K_5 La(SO_4)_4$ по схеме

$$5\text{KLa}(\text{SO}_4)_2 + 5\text{SrSO}_4 \rightarrow \text{K}_5\text{La}(\text{SO}_4)_4 + 6\text{SO}_3 + 2\text{La}_2\text{O}_3 + 5\text{SrSO}_4.$$

На рис. 3 приведены результаты термического анализа образца состава 33.3 мол. % KLa(SO₄)₂ + + 66.6 мол. % SrSO₄. Разложение твердого раство-

Отмеченная потеря массы 7.84% на кривой нагревания практически совпадает с расчетным количеством выделившегося оксида серы.

Рис. 1. Зависимости параметров и объема элементарных ячеек твердых растворов KLa(SO₄)₂–SrSO₄ от состава.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 58 № 11 2022

БУШУЕВ и др.

Рис. 3. Результаты термического анализа твердого раствора состава 33.3 мол. % KLa(SO₄)₂ + 66.6 мол. % SrSO₄.

Исследуемая система $KLa(SO_4)_2$ —SrSO₄ может рассматриваться как бинарная только ниже 950°С (температуры разложения $KLa(SO_4)_2$). В указанной бинарной системе $KLa(SO_4)_2$ —SrSO₄ в отли-

чие от ранее исследованной системы $KLa(SO_4)_2$ – CaSO₄ [13] существует широкая область твердых растворов. Отделение сульфатных соединений P3Э от сульфата стронция может быть реализовано не только в результате различия их растворимости, но и в результате гетерогенной конверсии растворимых сульфатных соединений РЗЭ в оксалаты с последующей их кристаллизацией из азотнокислых растворов [14–16].

ЗАКЛЮЧЕНИЕ

По итогам работы можно сделать вывод о высокой абсорбционной способности ромбической модификации β -SrSO₄ (пр. гр. *Pnma*) к ионам La³⁺ в присутствии ионов калия вследствие гетеровалентного замещения по схеме 2Sr²⁺ \rightarrow K⁺ + La³⁺. Десорбция РЗЭ из структуры сульфата стронция затруднена из-за образования твердых растворов замещения.

Извлечение РЗЭ из твердых растворов системы $KLa(SO_4)_2$ —SrSO₄ возможно только при температуре их разложения 950°С с последующим отделением хорошо растворимых сульфатов калия и лантана, а также частично образовавшейся высокодисперсной фазы La_2O_3 в слабокислых растворах.

Полученные результаты могут быть полезными при разработке процессов выделения соединений La с использованием ромбического β-SrSO₄, имеющего меньшую растворимость по сравнению с сульфатом кальция.

СПИСОК ЛИТЕРАТУРЫ

- Satoshi Takahashi, Masanobu Seki, Katsumi Setoyama. Formation of SrSO₄:0.5H₂O in an SrSO₄-H₂O System and Its Solid Solution in a CaSO₄-SrSO₄-H₂O // Bull. Chem. Soc. Jpn. 1993. V. 66. P. 2219–2224. https://doi.org/10.1246/bcsj.66.2219
- Бушуев Н.Н., Тюльбенджян Г.С., Великодный Ю.А., Егорова А.Н., Шаталова Т.Б. Исследование системы KLa(SO₄)₂·H₂O-SrSO₄·0.5H₂O // Журн. неорган. химии. 2021. Т. 66. № 3. С. 382–388. https://doi.org/10.31857/S0044457X21030041
- 3. *Бушуев Н.Н., Плотко И.И., Шаталова Т.Б.* Исследование системы KLa(SO₄)₂·H₂O-SrSO₄·O.5H₂O в температурном интервале 100-500°С // Хим. промышленность сегодня. 2021. № 3. С. 56-59.
- Inorganic Structure Database Crystal ICSD (date 85810 structure SrSO₄).
- 5. *Antao S.M.* The Crystal Structure of Sulfate SnSO₄ and Comparison with Isostructural SrSO₄, PbSO₄ and

BaSO₄ // Powder Diffraction. 2012. V. 27. № 3. P. 179– 183.

https://doi.org/10.1017/S0885715612000450

- 6. Antao S.M. The Structural Trends for Celestite (SrSO₄), Anglesite (PbSO₄) and Barite (BaSO₄) Conformation of Expected Varuitions within the SO₄ Groups // Am. Mineral. 2012. V. 97. № 4. P. 661–665. https://doi.org/10.2138/am.2012.3905
- James R.W., Wood W.A. The Structures of Barytes, Celestine and Anglesite // Proc. R. Soc. London, A. 1925. V. 109. P. 598–620.
- Miyke M., Minato J., Morikaw M., Hvai S. Crystal Structures and Sulpate Force Constants of Barite, Celestite and Anglesite // Am. Mineral. 1978. V. 63. № 5– 6. P. 506–510.
- Wen-Show Wang, Liang Zhen, Cheng-Yan Xu, Wen-Zhu Shao. Synthesis and Formation Process of SrSO₄ Sisul-Like Hierarehical Structures at Room Temperature // CrystEngComm. 2011. V. 13. № 2. P. 620–625. https://doi.org/10.1039/C0CE00062K
- Xuaqian Kuang, Jingui Xu, Doneyu Zhao, Dawei Fan, Xiaodony Li, Wenge Zhow, Hongsen Xie. The High-Pressure Elastic Properties of Celestine and the High-Pressure Behavier of Barit-Type Sulphates // High Temp.-High Pressures. 2017. V. 46. P. 481-495.
- 11. Jiayuc Sun., Buangchao San, Bing Xuc, Dianping Cui. Sinthesis and Formation Process of SrSO₄: Sm³⁺-Phospers with Herarchical Structures and Its Electron Trapping Luminescence Properties // J. Alloys Compd. 2017. V. 574. № 10. P. 560–564.
- Shannon R.D., Prewitt C.T. Effective Ionic Radii in Oxides and Fluorides // Acta Crystallogr., Sect. B. 1969. V. 25. P. 925–946. https://doi.org/10.1107/S0567740869003220
- Бушуев Н.Н., Егорова А.Н., Тюльбенджян Г.С. Система KLa(SO₄)₂-CaSO₄ // Неорган. материалы. 2021. Т. 57. № 2. С. 150–153. https://doi.org/10.1134/S0020168521020047
- Бушуев Н.Н., Зинин Д.С. Особенности термического разложения оксалатов кальция и РЗЭ // Журн. неорган. химии. 2016. Т. 61. № 2. С. 173–179. https://doi.org/10.7868/S0044457X16020033
- 15. *Бушуев Н.Н., Зинин Д.С.* Гетерогенная конверсия сульфатного концентрата РЗЭ в оксалатную форму // Хим. промышленность сегодня. 2015. № 4. С. 6–15.
- 16. Зинин Д.С., Бушуев Н.Н. Раздельная кристаллизация оксалатов лантаноидов и кальция из азотнокислых растворов // Журн. неорган. химии. 2018. Т. 63. № 9. С. 1189–1194. https://doi.org/10.1134/S0044457X18090222