УДК 539.199:541.64

ФРАГИЛЬНОСТЬ И МОДУЛИ УПРУГОСТИ ХАЛЬКОГЕНИДНЫХ СТЕКОЛ

© 2022 г. А. А. Машанов^{1, *}, М. В. Дармаев^{1, 2}

¹Бурятский государственный университет им. Доржи Банзарова, ул. Смолина, 24а, Улан-Удэ, 670000 Россия ²Институт физического материаловедения СО Российской академии наук, ул. Сахьяновой, 6, Улан-Удэ, 670047 Россия *e-mail: Mashanov@bsu.ru Поступила в редакцию 20.04.2022 г. После доработки 01.07.2022 г. Принята к публикации 06.07.2022 г.

Проведен расчет фрагильности двумя различными способами. Исследована корреляция между *m* и K/G, для системы As–S–Tl фрагильность линейно увеличивается, а для систем P–Se–Te, AsSe–TlSe и Sb–Ge–Se линейно уменьшается. Получена формула, связывающая фрагильность стекол с полосой температур δT_g .

Ключевые слова: фрагильность, модули упругости, коэффициент Пуассона, халькогенидные стекла **DOI:** 10.31857/S0002337X22110100

введение

Есть достаточно большая серия работ, посвященная классификации различных стекол на основе данных о т.н. фрагильности (хрупкости) *m*, которая представляет собой наклон кривой $\lg\eta - (T_g/T)$ при $T = T_g$, где η – коэффициент сдвиговой вязкости, T_g – температура стеклования жидкости [1–3]. Интерес к этой проблеме возрос в 2003–2006 годы после нахождения связи с параметром Грюнайзена и упругими постоянными стекол [4].

Фрагильность характеризует скорость уменьшения вязкости при повышении температуры и определяется тангенсом угла наклона кривой вязкости $\lg\eta - (T_g/T)$ вблизи температуры стеклования T_g (рис. 1) [1, 5]

$$m = \frac{\partial \lg \eta}{\partial (T_g/T)}\Big|_{T=T_g}.$$
 (1)

По значениям *т* можно классифицировать стекла. В первом приближении их делят на два больших класса: прочные и хрупкие. Это достаточно удобный способ классификации стекол, поскольку для них, как правило, известны экспериментальные данные о вязкости в области стеклования.

Настоящая работа посвящена определению фрагильности различными способами у халькогенидных стекол систем As–S–Tl, P–Se–Te, AsSe—TlSe и Sb—Ge—Se, а также исследованию взаимосвязи между фрагильностью *m*, упругими модулями стекол и коэффициентом Пуассона для данных стекол.

Экспериментальные данные о вязкости, модулях упругости и коэффициенте Пуассона взяты из электронной базы [6]; указанные халькогенидные стекла выбраны в связи с тем, что для них имеются экспериментальные данные о вязкости в достаточно широком диапазоне.

Цель работы — исследование взаимосвязи между фрагильностью (хрупкостью) *т* и соотношением модулей упругости *K*/*G* для халькогенидных стекол.

МЕТОДИКА ОПРЕДЕЛЕНИЯ ФРАГИЛЬНОСТИ

Для определения фрагильности строится график зависимости lg η от T_g/T (рис. 1) [7]. Следовательно, нужно иметь экспериментальные данные о вязкости $\eta(T)$ в области стеклования вплоть до $T = T_g$. Обычно за значение T_g принимают температуру T_{13} , соответствующую вязкости $\eta(T_g) = 10^{13}$ Пз, lg $\eta(T_g) = 13$.

В точке кривой $\lg \eta - (T_g/T)$, соответствующей абсциссе $x_2 = (T_g/T) = 1$, проводим касательную *AB*. Затем строим произвольный треугольник

Рис. 1. Схема определения фрагильности стекол.

Рис. 2. Определение фрагильности *m* для стекла Sb– Ge–Se с применением метода наименьших квадратов: Sb – 5, Ge – 15, Se – 80 мол. %.

АВС. Чем больше размер треугольника, тем точнее получится результат.

Отношение *BC/AC* равно фрагильности *m* – тангенсу угла наклона кривой $\lg \eta - (T_g/T)$ в точке $T_g/T = 1$ (рис. 1).

Отметим, что с использованием метода наименьших квадратов получается более точный результат и процесс определения фрагильности менее трудоемкий (рис. 2).

ФРАГИЛЬНОСТЬ И МОДУЛИ УПРУГОСТИ СТЕКОЛ

Одним из интересных результатов, полученных по фрагильности стекол, является установление связи *m* с модулями упругости. Новиков и Соколов [4] установили, что в первом приближении между фрагильностью m и отношением модуля объемного сжатия K к модулю сдвига G наблюдается линейная корреляция

$$m \approx 29 \left(\frac{K}{G} - 0.41\right). \tag{2}$$

Из теории упругости известно, что отношение K/G является функцией коэффициента Пуассона μ

$$\frac{K}{G} = \frac{2}{3} \left(\frac{1+\mu}{1-2\mu} \right).$$
(3)

Из соотношений (2) и (3) следует, что фрагильность является функцией коэффициента Пуассона.

В работе [4] отмечена важная роль коэффициента Пуассона в динамике сетки стекол. Фрагильность является характеристикой температурной зависимости вязкости стекла вблизи температуры стеклования. В свою очередь вязкость тесно связана со временем релаксации структуры стекла. Отсюда следует, что структурная релаксация зависит от упругих свойств, в частности, от коэффициента Пуассона.

Известно, что чем сильнее выражен ангармонизм колебаний решетки, тем легче протекает процесс релаксации структуры стекла. Отсюда понятно, почему фрагильность связана с ангармонизмом [3, 4].

На рис. 3 и 4 построены зависимости фрагильности m от отношения модулей упругости K/G. Для системы As—S—Tl наблюдается положительный наклон прямой, связанный с увеличением коэффициента Пуассона, для систем P—Se—Te, AsSe—TlSe и Sb—Ge—Se наблюдается отрицательный наклон прямых, объясняемый, в большей степени, уменьшением коэффициента Пуассона.

Полученные нами прямые *m*-*K*/*G* для стекол описываются следующими эмпирическими уравнениями:

As-S-TI: m = 9.9 K/G + 0.10, P-Se-Te: m = -20.6 K/G + 89.3, AsSe-TISe: m = -18.4 K/G + 82.4, Sb-Ge-Se: m = -14 K/G + 63.8.

Следует отметить, что формула (2) практически не выполняется для исследованных халькогенидных составов. В некоторых случаях зависимость m от отношения K/G оказывается достаточно сложной и не всегда описывается линейной корреляцией.

Рис. 3. Зависимость фрагильности *m* от отношения модулей упругости (K/G) для стекол As–S–Tl (использованы данные справочника [6]).

Рис. 4. Зависимости фрагильности m от отношения модулей упругости (K/G) для стекол P–Se–Te, Sb–Ge–Se, AsSe–TlSe (использованы данные справочника [6]).

ФРАГИЛЬНОСТЬ И КОЭФФИЦИЕНТ ПУАССОНА

Фрагильность имеет следующую взаимосвязь с долей флуктуационного объема, замороженной при температуре стеклования $f_g = (V_f/V)T_g$ [7]

$$m = \frac{\lg(1/f_g)}{f_g}.$$
 (4)

Флуктуационный объем жидкостей и аморфных сред V_f обусловлен предельными смещениями возбужденных кинетических единиц из равновесных положений [8]

$$V_f = \left(\pi r^2 \Delta r_{\max}\right) N_e,\tag{5}$$

где N_e — число возбужденных кинетических единиц, πr^2 — площадь сечения частицы. Критическое смещение кинетической единицы Δr_{max} , соответствующее максимуму силы межатомного притяжения (предельной деформации межатомной связи Δr_{max}), оказывается функцией параметра Грюнайзена γ_L [9, 10]

$$\frac{\Delta r_{\max}}{r_0} = \frac{1}{6\gamma_L},\tag{6}$$

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 58 № 11 2022

Рис. 5. Зависимости фрагильности *m* от функции коэффициента Пуассона для стекол P–Se–Te, Sb–Ge–Se (использованы данные справочника [6]).

что обусловлено проявлением нелинейности силы межатомного (межмолекулярного) притяжения при значительном смещении возбужденной частицы из равновесного положения. Из соотношений (5) и (6) видно, что флуктуационный объем V_f и, следовательно, его доля f_g зависят от ангармонизма колебаний межатомных связей [11].

В свою очередь параметр Грюнайзена стеклообразных твердых тел оказывается функцией коэффициента Пуассона [10, 12, 13]

$$\gamma_L \cong \frac{2}{3} \left(\frac{1+\mu}{1-2\mu} \right). \tag{7}$$

Из соотношений (4)—(7) следует, что в первом приближении фрагильность должна быть пропорциональна параметру Грюнайзена и определяться функцией коэффициента Пуассона $\gamma_L(\mu)$

$$m \approx \frac{2}{3} \left(\frac{1+\mu}{1-2\mu} \right). \tag{8}$$

Исследованные в настоящей работе халькогенидные составы приближенно подчиняются корреляции (8) (рис. 5).

Интересно отметить, что нет физических оснований для существования универсальных корреляций между фрагильностью и коэффициентом Пуассона. Такие корреляции могут наблюдаться лишь для определенных групп стекол с взаимосвязанными структурами [5].

ФРАГИЛЬНОСТЬ И ТЕМПЕРАТУРНАЯ ПОЛОСА δT_g

Взаимосвязь скорости охлаждения q и времени структурной релаксации τ_g выражается общим соотношением — уравнением стеклования

$$q\tau_g = \delta T_g, \tag{9}$$

которое определяет появление стеклообразного состояния при температуре T_g в процессе охлаждения.

Величина δT_g принимается равной интервалу температур, в котором вязкость $\eta(T)$ меняется на порядок – от 10¹³ до 10¹² Па с [14],

$$\delta T_g = T_{12} - T_{13}, \tag{10}$$

где T_{12} и T_{13} – температуры, соответствующие $\lg \eta = 12$ и $\lg \eta = 13$.

Легко убедиться, что подстановка в (1) уравнения Вильямса—Ландела—Ферри для зависимости $\eta(T)$ позволяет прийти к соотношению

$$m = \frac{C_1 T_g}{C_2}.$$
 (11)

С учетом $\delta T_g = C_2/C_1$ для стекол одного класса вытекает следующее соотношение для определения фрагильности

$$n = \frac{T_g}{\delta T_g}.$$
 (12)

Расчет *m* по этой формуле находится в удовлетворительном согласии с непосредственным определением фрагильности по формуле (1) (см. табл. 1).

Состав, мол. %			t_g , °C	μ	т	<i>т</i> по формуле (12)
As	S	Tl				
40.00	60.00	_	172	0.306	17.43	15.34
36.90	57.93	5.17	134	0.309	22.45	18.50
33.90	55.93	10.17	128	0.311	29.21	22.91
32.26	54 84	12.90	120	0.317	26.00	21.24
31.06	54.04	14.91	115	0.324	27.81	20.97
28.17	52.11	19.72	107	0.337	26.34	22.35
25.00	50.00	25.00	94	0.344	28.95	22.94
Р	Se	Те	-			
10.00	90.00	_	55	0.320	47 89	46.86
9.00	81.01	9 99	75	0.313	40.83	53 54
8.00	72.00	20.00	75	0.310	46.35	46 40
7.00	63.03	29.00	73	0.301	48.03	49 29
6.00	53.99	40.01	72	0.297	48 78	46.00
20.00	80.00	_	65	0.314	48 78	39.76
18.02	72.07	9 91	77	0.320	38.29	35.00
16.02	64.00	20.00	93	0.307	42.08	52.00
14 01	56.02	29.97	95	0.295	42.34	56.62
12.00	48.02	39.98	90	0.293	45 74	38.21
28.57	71.43	_	78	0.318	33.86	41 29
25.64	64 10	10.26	84	0.313	37.49	34.00
22.88	57 21	19.20	92	0.299	37.19	45.63
20.00	50.00	30.00	93	0.301	40.72	52.29
17.15	42.88	39.97	76	0.301	48 39	43.63
40.00	60.00	_	87	0.322	30.93	34 29
35.97	53.96	10.07	88	0.322	31 44	27.77
31.95	47.92	20.13	80	0.325	40.33	35.30
Sb	Ge	Se		01020		
10	5	85	78	0.320	34.88	18 64
10	10	80	118	0.311	31.52	36.83
5	15	80	135	0.318	27.71	33 71
15	10	75	130	0.296	31.65	38.25
10	15	75	149	0.305	30.63	34 64
20	10	70	151	0.295	33.07	43.18
15	15	70	172	0.297	30.99	35.93
20	15	65	216	0.292	33.30	41.38
10	25	65	305	0.291	31.96	35.56
16	20	64	275	0.286	35.07	42.57
22	15	63	247	0.280	41.21	62.78
25	15	60	228	0.284	37.76	42.00
20	20	60	244	0.286	35.90	40.43
15	25	60	250	0.283	37.31	39.27
10	30	60	284	0.288	33.00	38.31
AsSe	TlSe	—		1		
100.00	_		162	0.310	35.11	39.55
90.00	10.00		136	0.300	38.58	45.44
80.00	20.00		134	0.320	38.54	50.88
66.60	33.40		121	0.320	37.29	39.40
40.00	60.00		69	0.310	51.28	57.00

Таблица 1. Расчет фрагильности стекол As-S-Tl, P-Se-Te, Sb-Ge-Se, AsSe-TlSe

ЗАКЛЮЧЕНИЕ

Анализ полученной взаимосвязи между *т* и *K/G* показывает, что фрагильность у исследуемых стекол системы As–S–Tl линейно растет, а у систем P–Se–Te, AsSe–TlSe и Sb–Ge–Se линейно уменьшается. В первом приближении фрагильность должна быть пропорциональна функции коэффициента Пуассона $\gamma_L(\mu) \approx 2(1 + \mu)/3(1 - 2\mu)$. Из исследованных халькогенидных стекол этой закономерности подчиняются стекла систем P–Se–Te и Sb–Ge–Se. Полученные результаты согласуются с представлением Немилова [5] о том, что корреляции между *т* и μ могут наблюдаться лишь для определенных групп стекол.

БЛАГОДАРНОСТЬ

Работа выполнена при финансовой поддержке ФГБОУ ВО "Бурятский государственный университет имени Доржи Банзарова", грант № 22-06-0502.

СПИСОК ЛИТЕРАТУРЫ

- 1. Angell C.A. Perspective on the Glass Transition // J. Phys. Chem. Solids. 1988. V. 49. № 8. P. 836–871.
- Novikov V.N. Vibration Anharmonicity and Fast Relaxation in the Region of Glass Transition // Phys. Rev. B. 1998. V. 58. P. 8367–8378.
- Sokolov A.P., Rossler E., Kisliuk A., Quitman D. Dynamics of Strong and Fragile Glassformers: Differences // Phys. Rev. Lett. 1993. V. 71. P. 2062–2065.
- Novikov V.N., Sokolov A.P. Poisson's Ratio and the Fragility of Glass-Forming Liquids // Nature. 2004. V. 431. P. 961–963.

- Nemilov S.V. Structural Aspect of Possible Interrelation between Fragility (Length) of Glass Forming Melts and Poisson's Ratio of Glasses // J. Non-Cryst. Solids. 2007. V. 353. P. 4613–4632.
- 6. MDL ® SciGlass 7.8 Institute of Theoretical Chemistry, Shrewsbury, MA, 2012.
- Сандитов Д.С., Машанов А.А., Сандитов Б.Д., Мантатов В.В. Фрагильность и ангармонизм колебаний решетки свинцовосиликатных и натриевоборатных стекол // Физика и химия стекла. 2008. Т. 34. № 4. С. 512–517.
- 8. Сыдыков Б.С., Сандитов Д.С. Критерий плавления Линдемана и переход стекло-жидкость // Вестн. Бурятского гос. ун-та. Химия. Физика. 2014. Вып. 3. С. 126–130.
- Мантатов В.В. Модельная концепция в исследовании физических свойств неупорядоченных структур // Вестн. Бурятского гос. ун-та. Химия. Физика. 2022. Вып. 1. С. 3–17.
- Сандитов Б.Д., Мантатов В.В. Нелинейность силы межмолекулярного взаимодействия в некристаллических твердых телах. Улан-Удэ: Изд-во Бурятского гос. ун-та, 2001. 96 с.
- Аграфонов Ю.В., Сандитов Д.С., Цыдыпов Ш.Б. Физика классических неупорядоченных систем. Улан-Удэ: Изд-во Бурятского гос. ун-та, 2000. 234 с.
- 12. Сандитов Д.С. Коэффициент поперечной деформации и структурно-чувствительные свойства стеклообразных материалов // Деформация и разрушение материалов. 2015. № 9. С. 2–16.
- Сандитов Д.С., Дармаев М.В. Упругие модули и параметр Грюнайзена стеклообразных твердых тел // Физика и химия стекла. 2022. Т. 48. № 1. С. 27–33.
- 14. *Nemilov S.V.* Maxwell Equation and Classical Theories of Glass Transition as a Basis for Direct Calculation of Viscosity at Glass Transition Temperature // Glass Phys. Chem. 2013. V. 39. № 6. P. 609–623.