УДК 548.52

ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА СКОРОСТЬ РОСТА НИТЕВИДНЫХ НАНОКРИСТАЛЛОВ ПОЛУПРОВОДНИКОВ

© 2022 г. В. А. Небольсин^{1, *}, В. А. Юрьев¹, Н. Свайкат¹, А. Ю. Воробъев¹, А. С. Самофалова¹

¹Воронежский государственный технический университет, Московский пр., 14, Воронеж, 394026 Россия *e-mail: vcmsao13@mail.ru

Поступила в редакцию 08.04.2022 г. После доработки 20.07.2022 г. Принята к публикации 09.08.2022 г.

Исследована зависимость скорости роста нитевидных нанокристаллов (ННК) от температуры. С учетом полученных экспериментальных данных и критического анализа современных представлений о влиянии температуры на кинетику роста ННК показано, что температурные зависимости скорости роста ННК можно предсказать термодинамическим путем, а лимитирующей стадией является кристаллизация на границе кристалл/жидкость.

Ключевые слова: нитевидные нанокристаллы, катализатор, рост, температура, кинетика, лимитирующая стадия

DOI: 10.31857/S0002337X22110124

введение

Несмотря на обилие работ и очевидный прогресс в исследованиях полупроводниковых нитевидных микро- и нанокристаллов (ННК), наблюдаемый в последние годы, механизм роста пар → жидкость \rightarrow кристалл (**ПЖК**), еще не до конца понят. В частности, ответ на вопрос о стадии, определяющей скорость процесса, является одним из основных в понимании ПЖК-механизма. Однако важные экспериментальные сведения о кинетике роста ННК остаются ограниченными и противоречивыми [1-7]. Известно, что скорость и механизм ПЖК-процесса сильно зависят от условий кристаллизации [2]. При этом температура (Т) является фактором, оказывающим наибольшее влияние на скорость роста ННК (v), с помощью которого можно судить и о механизме, и о его лимитирующей стадии. Но в данном важнейшем вопросе имеется много неясностей и разногласий [2, 6].

Цель настоящей работы — выяснить основные причины разногласий в вопросе влияния температуры на скорость роста ННК и показать, что ход зависимости v(T) определяется термодинамикой, а не кинетикой.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ННК Si получали кристаллизацией из газовой фазы в хлоридно-водородной системе с использованием в качестве катализаторов частиц Cu, Au, Ni, Pt и Cu–Al размером от 50 нм до 20 мкм [2, 8]. Температурный диапазон роста ННК составлял от 850 до 1100°С. Мольное отношение компонентов SiCl₄ : H₂ поддерживалось в интервале от 0.005 до 0.02. Ростовыми подложками служили пластины Si с ориентацией {111}. Скорость роста ННК определялась по методике "меток времени" [2]. Выращенные кристаллы исследовались методами растровой электронной и сканирующей зондовой микроскопии. Кинетические характеристики ННК Si, Ge, GaAs и др. также анализировались по данным [1–3, 6, 7, 9–11].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 представлены температурные зависимости скорости роста ННК Si, выращенных с участием различных металлов (М) в интервале температур от 1000 до 1100°С. Видно, что с увеличением *t* скорость роста ННК понижается. Снижение *v* наблюдается для разных типов М-катализаторов, разных диаметров ННК и для различных концентраций SiCl₄ в газовой фазе. В то же время с повышением *t* наблюдается усиление радиального роста ННК (рис. 2).

Убывающая температурная зависимость v (рис. 1) не характерна для роста ННК Si и Ge, получаемых при более низких t (<1000°C), для них с повышением t скорость экспоненциально увеличивается (рис. 3а), а энергия активации составля-

Рис. 1. Температурные зависимости скорости роста ННК Si со средним радиусом 500 нм; катализаторы: I - Al - Cu, 2 - Cu, 3 - Au, 4 - Pt.

ет для Si ~200 кДж/моль, для Ge ~130 кДж/моль [1]. В качестве лимитирующих стадий (среди кинетических) здесь можно предположить процессы адсорбции—десорбции и собственно поверхностные реакции [12].

На рис. Зб приведены полученные в работе [6] зависимости v = f(t) для роста ННК Si различных радиусов. Видно, что v увеличивается с ростом t, достигает пиковых значений, а затем уменьшается. Энергия активации, определенная по кривой 1, составляет $E_a = 100$ кДж/моль. На рис. Зв показаны зависимости v = f(t) для ННК GaAs с r = 20 нм [6], полученные теоретически (кривая 1) в работе [10] и экспериментально (кривая 2) в работе [9]. Для нанопроволок GaAs при $t = 480^{\circ}$ С $E_a = 118$ кДж/моль. При этом скорость роста ННК GaAs полярными гранями (111)A и ($\overline{111}$)B различается в пять раз, а для граней {211} и {111} ННК Si $v_{\{211\}} \ge v_{\{111\}}$ [2].

Экспериментальные логарифмические зависимости скорости роста от обратной температуры для ННК GaAs, GaP и InAs, синтезированных методом газофазной эпитаксии с участием частиц Au с радиусом ~25 нм в интервале температур 350–525°С, приведены на рис. 3г [11]. При низких

Рис. 2. Зависимость скорости радиального (латерального) роста ННК Si от температуры процесса.

t (рис. 3г) кривые скорости роста ННК GaAs, GaP и InAs ассимптотически приближаются к предельным кривым, соответствующим типичной энергии активации E_a . Однако при повышении температуры, в области 470–475°C, для ННК GaAs, GaP и InAs наклон кривых существенно уменьшается, а *v* достигает максимума. При t > 450-475°C скорость роста ННК фактически убывает с температурой.

Для нескольких температур исследован характер удлинения ННК Si (l) с течением времени (рис. 4). Как видно из рис. 4, функция $l(\tau)$ является линейной с почти постоянным углом наклона.

Для объяснения наблюдающихся различий зависимостей v = f(t) проанализируем имеющиеся представления и модели. Считается, что для экспериментов по химическому паровому осаждению при больших размерах частиц катализатора (r > 1 мкм), высоких ростовых температурах (~1000°С для Si и ~700°С для GaAs) и, следовательно, очень малых длинах диффузионного пробега $\overline{\lambda}_a$ ($\overline{\lambda}_a \ll 1$ мкм) адсорбированных атомов (адатомов) характерен адсорбционно-контролируемый рост ННК, определяющий активационную природу зависимости v(t) [1, 2]. Картина роста таких нитей [5, 6] показывает, что их скорость лимитируется адсорбционно-десорбционными процессами на поверхности капли как результат прямых соударений атомов парового вещества с жидкой фазой [2]. Следовательно, длина ННК не может быть больше толщины осажденного слоя (l'), если нет десорбции. Но фактически это не так и $l/l' \approx 7-10$ [2].

Рис. 3. Логарифмические зависимости аксиальной скорости роста ННК Si и Ge, выращенных из SiH₄ и GeH₄ при давлении $p_{SiH_4} = p_{GeH_4} = 1.33 \times 10^3$ Па, от обратной температуры [1] (а); температурные зависимости скорости роста ННК Si для нанопроволок с радиусом r = 1 (1), 2 (2) и 25 нм (3) [7] (б); сравнение экспериментальной (2) и теоретической (1) температурных зависимостей скоростей роста нанопроволок GaAs [6, 9, 10] (черные кружки – экспериментальные данные [10], светлые кружки – результаты расчетов [9]) (в); температурные зависимости скорости роста ННК GaAs, GaP и InAs, полученных методом газофазной эпитаксии из металлорганических соединений [11] (г).

Появление новых современных источников кристаллизуемого материала позволило существенно снизить ростовые температуры и уменьшить диаметры ННК до 10–100 нм. Поэтому принимается, что прямое поступление атомов из газовой фазы в каплю пренебрежимо мало, а контроль роста ННК обеспечивают диффузионный и адсорбционно-десорбционный вклады с поверхности подложки и боковых стенок кристаллов [5, 6].

Так, для объяснения зависимости, показанной на рис. Зг, авторы [5, 11] прибегают к предполо-

Рис. 4. Зависимости удлинения ННК Si диаметром 0.8 мкм от времени выращивания при различных температурах; катализатор Ni.

жениям, что в высокотемпературной области (при t > 450-475°С на рис. 3г) средняя длина диффузионного пути адатомов на поверхности подложки $\overline{\lambda}_a$ лимитируется десорбцией, поэтому $\overline{\lambda}_a$ уменьшается. В области t < 450°С, где десорбция мала, уменьшение t приводит к возрастанию концентрации адатомов N_1^c кристаллизуемого материала на поверхности подложки. Из-за возрастающей N_1^c адатомы не успевают достигнуть движущейся вершины ННК, поскольку их захватывают растущие островки. Следовательно, при низких tвеличина $\overline{\lambda}_a$ лимитируется адсорбцией на поверхности подложки. Но давайте проанализируем эти процессы детально на примере роста ННК Si.

Пусть растущие ННК Si находятся в атмосфере пара кристаллизуемого вещества при давлении p и температуре T. Тогда в соответствии с кинетической теорией газов первоначально на единицу площади поверхности ростовой подложки с нанокаплями М-катализатора в единицу времени осаждается $p/(2mkT)^{1/2}$ частиц массы m вещества (здесь k — постоянная Больцмана) [13]. Будем рассматривать адсорбцию лишь на подложке и боковых стенках ННК. Тогда концентрация адатомов равна

$$N_1^c \cong N_0 \exp(-E_{ads}/kT), \tag{1}$$

где N_0 — поверхностная плотность атомов (для (111) Si $N_0 = 7.84 \times 10^{18} \text{ м}^{-2}$), E_{ads} — энергия активации процесса адсорбции.

О том, что термоактивируемая адсорбция (1) не лимитирует рост ННК, свидетельствует зависимость скорости роста от их кристаллографической ориентации на одинаковых по ориентировке подложках [2], т. е. зависимость v от структуры растущей торцевой грани, а также интенсификация образования кристаллических слоев по двумерному механизму на подложке и боковых стенках кристаллов Si с ростом *t* в широком интервале температур: 500-1000°С [1] и 800-1100°С (рис. 2). При быстрой адсорбции концентрация адатомов на подложке и боковых стенках ННК возрастает, атомы захватываются растущей поверхностью и идет усиливающийся рост по механизму пар → кристалл (наблюдается экспоненциальная зависимость скорости радиального роста ННК от t), хотя ход зависимости v(t) для осевого роста ННК в этих температурных диапазонах неоднозначен (рис. 3).

Однако из положения адсорбции под влиянием тепловых колебаний адатом может покинуть поверхность со скоростью десорбции $\sim \exp(-E_{des}/kT)$, где E_{des} – энергия активации процесса десорбции при переходе адатома обратно в паровую фазу. Время жизни адатомов τ_a на поверхности ростовой подложки

$$1/\tau_a \cong v_a^c \exp\left(-E_{des}/kT\right),\tag{2}$$

где v_a^c — частота колебаний адатомов около положения равновесия (10¹²—10¹³ Гц). При равенстве потоков конденсирующихся атомов и атомов, покидающих подложку, выражение для концентра-

ции N_1^c на подложке будет иметь вид

$$N_{1}^{c} = p \left(\mathbf{v}_{a}^{c} \right)^{-1} \left(2\pi m k T \right)^{2} \exp \left(E_{des} / k T \right).$$
(3)

Поскольку в качестве ростовых подложек для роста ННК как правило используются пластины Si{111}, проведем оценку N_1^c и τ_a для грани (111) Si в контакте с собственным паром при $t = 927^{\circ}$ С и $p = 1.6 \times 10^{-5}$ Па. Принимая $m_{Si} = 4.76 \times 10^{-27}$ кг, $E_{des} = 231.8$ кДж/моль и $v_a^c \approx 10^{13}$ Гц, получим $N_1^c \approx \approx 3 \times 10^{16}$ м⁻². Так как поверхностная плотность атомов на грани Si (111) равна 1.54×10^{19} м⁻², то доля позиций, заполненных адатомами, составляет ~1.46 × 10⁻³. При понижении t до 727°С и постоянстве плотности потока доля заполненных мест увеличится до ~1.46 × 10⁻¹. Тогда длительность пребывания адатома на Si-поверхности τ_a составит ~0.06 с

при $t = 927^{\circ}$ С и ~6 с при $t = 727^{\circ}$ С. С дальнейшим понижением температуры τ_a возрастет еще больше.

Адатомы совершают тепловые колебания, которые приводят к перескокам в соседние положения адсорбции, это обеспечивает диффузию по поверхности подложки и, в конечном счете, переход атомов на боковые стенки ННК. Количество перескоков в единицу времени определяется эффективным коэффициентом поверхностной диффузии

$$D_a^c = a^2 v_a^c \exp\left(-U_a^c/kT\right),\tag{4}$$

где U_a^c — энергия активации диффузии, a — межатомное расстояние.

На основании уравнений (2) и (4) вычислим длину свободного пробега адатома за время его пребывания τ_a на ростовой Si-подложке

$$\overline{\lambda}_a \approx \left(D_a^c \tau_a \right)^{1/2} = a \exp\left[\left(E_{des} - U_a^c \right) / 2kT \right].$$
(5)

Энергия активации диффузии для атомов Si на грани (111) составляет $U_a^c \approx 115$ кДж/моль, а $E_{des} =$ = 231 кДж/моль [13]. При $t = 727^{\circ}$ С среднее расстояние прохождения адатома за время нахождения его на грани (111) Si равно $\overline{\lambda}_a \approx 1.8 \times 10^3 a \approx 8.1 \times$ $\times 10^{-7}$ м (здесь $a \approx 0.45$ нм). Так как $E_{des} > U_a^c$, то $\overline{\lambda}_a$ зависит от соотношения E_{des}/kT и средняя длина диффузионного пробега адатомов $\overline{\lambda}_a$ должна существенно возрастать с уменьшением *t*. Следовательно, при десорбционном контроле процесса с понижением температуры скорость роста ННК должна экспоненциально возрастать, что противоречит экспериментальным данным (рис. 1 и 3).

Вероятность поступления адатомов из соседних мест адсорбции на площадку *a*² составляет $\sim N_1^c a^2 v_a^c \exp\left(-U_a^c/kT\right)$, в то время как вероятность поступления атомов из газовой атмосферы пропорциональна ~ $pa^2/(2\pi mkT)^{1/2}$. С учетом (2) соотношение этих вероятностей равно $\exp\left[\left(E_{des}-U_{a}^{c}\right)/2kT
ight]$. Если учесть, что $E_{des}\gg U_{a}^{c}$, то можно считать, что основная доля материала для заполнения мест адсорбции поступает за счет миграции атомов из соседних мест адсорбции, а не путем прямой конденсации из пара. Так, по оценкам [14], для грани Si (111) при t = 727°C отношение указанных выше вероятностей равно $\sim 4 \times 10^6$. Из этих оценок следует, что при осаждении Si из пара $\exp\left[\left(E_{des}-U_a^c\right)/2kT\right] \gg 1$. Таким образом, нуклеация на поверхности Si-подложки и ННК с ростом *t* не может уменьшать скорость роста.

и боковой поверхности ННК также не может контролировать скорость роста кристаллов, поскольку в условиях разреженной атмосферы и больших $\overline{\lambda}_a$ (~3–10 мкм), больших D_a^c и малых транспортных путей доставки питающего материала в силу малости размеров ННК (диаметр d ~ ~ 10-100 нм и длина *l* ~ 1 мкм) диффузия, наоборот, протекает очень быстро ($l < \overline{\lambda}_a$). Так, в случае роста ННК GaAs при $t = 580^{\circ}$ С $\overline{\lambda}_{a}$ атома Ga на поверхности GaAs $(\overline{111})$ В составляет ~6 мкм, а на боковой поверхности ННК GaAs {110} по расчетам – от 2–3 до 8–10 мкм [5]. Аналогично, при типичных длинах ННК Si *l* ~ 1 мкм и типичных коэффициентах поверхностной диффузии (для Si(111) при t = 727°C, по оценкам, $D_a^c \sim 10^{-11} \text{ м}^2/\text{с})$ скорость поверхностной диффузии составляет $v_{DS} \sim D_a^c / l \sim 10^{-5}$ м/с. Такой величины могли бы достигать в пределе скорости роста ННК Si при лимитировании процесса стадией поверхностной диффузии. Однако наблюдаемые скорости роста ННК (1-10 нм/с) на три-четыре порядка ниже полученных оценочных величин.

Однако поверхностная диффузия на подложке

Выводы о диффузионном режиме роста ННК также противоречат и наблюдаемым экспоненциальным, т.е. сильным, температурным зависимостям v = f(t) (типичный вид таких зависимостей показан рис. За), свидетельствующим об активационном характере процесса (E_a обычно составляет 40–200 кДж/моль). Но известно, что температурная зависимость диффузии слабая, степенная (с показателем степени не более 1.5–2), а энергия активация диффузии обычно не превышает 4–20 кДж/моль [2].

Кроме того, наблюдаемые пиковые зависимости v = f(t) и $\ln v = f(1/T)$ с характерной ниспадающей ветвью при более высоких температурах (правые ветви кривых на рис. 3б, 3в и левая ветвь кривых на рис. 3г) не получается объяснить ни в рамках кинетической, включая адсорбционнодесорбционную, ни в рамках диффузионной моделей [1–11].

Вместе с тем, непонятна недооценка авторами многих моделей стадии встраивания атомов вещества в решетку ННК при столь низких температурах ростовых процессов (340–640°С). Учитывая эту стадию, характерный вид кривых $\ln v = f(1/T)$ можно было бы интерпретировать следующим образом.

Рассмотрим реакцию кристаллизации вещества A на границе жидкость (*L*)/кристалл (*S*), которая приводит к росту HHK: $A_L \Leftrightarrow A_S$, ($\Delta H \leq 0$), где ΔH – тепловой эффект (энтальпия) реакции

при постоянном давлении. При кристаллизации Si, Ge, GaAs и др. процесс характеризуется отрицательной теплотой реакции ($\Delta H < 0$, т.е. реакция экзотермическая, теплота выделяется). Несмотря на это, в начале температурного диапазона с повышением t скорость роста ННК быстро увеличивается (рис. 3). Данный факт наряду с экспоненциальной зависимостью v(T) в начальной температурной области (рис. За (прямые линии), Зб и Зв (левые ветви кривых) и рис. Зг (правые ветви)) и зависимостью скорости роста от ориентации ННК [2] служит сильным доводом в пользу кинетического режима роста с лимитирующей стадией встраивания вещества в решетку кристалла. Кроме того, из линейной функции $l = f(\tau)$ (рис. 4) следует, что $v = dl/d\tau = \text{const}$ и не зависит от концентрации кристаллизуемого вещества при t = const.Это возможно только для поверхностного процесса нулевого порядка по объемной концентрации реагента, поскольку порядок реакций в диффузионной области всегда первый. В этом случае состав капли вблизи границы кристалл/жидкость мало отличается от состава ННК и процесс не требует диффузии.

В кинетической области кривые скорости роста приближаются к кривым, соответствующим характерным для кристаллизации значениям E_a (>100 кДж/моль). Но при повышении t до 650–700°С (рис. 36) и 450–475°С (рис. 3в, 3г) наклон кривых уменьшается по мере того, как все более существенными становятся термодинамические факторы.

В области высоких *t* скорость роста ННК фактически убывает с ростом температуры (рис. 3б, 3в (правая ветвь кривых) и рис. 3г (левая ветвь)), поэтому кажется, что процесс перешел в диффузионный режим [5, 6]. На самом деле зависимость v = f(t), характеризующая процесс с $\Delta H < 0$, определяется термодинамическими причинами. С ростом *t* равновесие процесса кристаллизации смещается в сторону эндотермической реакции растворения кристаллического вещества и скорость роста ННК падает. При этом максимумам на кривых рис. 3б–3г соответствует *t*, при которой все факторы оказывают на *v* одинаковое влияние.

Очевидно, в исследованном интервале температур кинетический член $\exp(-E_a/RT)$, где R – газовая постоянная, не вносит заметного вклада в наблюдаемую скорость роста ННК, если она определяется термодинамикой, а не кинетикой процесса. Более того, большая величина энергии активации (100–200 кДж/моль) [6] не может служить признаком кинетического режима для десорбции, поскольку процесс десорбции эндотер-

мичен и $\Delta H > 0$. Убывающую зависимость v = f(t) (рис. 1) нельзя объяснить и снижением выхода Si, так как суммарная теплота реакции из смеси SiCl₄ + + H₂ положительна ($\Delta H > 0$, реакция эндотермическая) и с увеличением *t* скорость роста ННК должна возрастать.

Для того чтобы понять возможность влияния термодинамических факторов на рост ННК Si, рассмотрим реакцию на границе кристалл/газ

$$\operatorname{Si}_L \Leftrightarrow \operatorname{Si}_S, \ \Delta H < 0.$$
 (6)

Если предположить, что скорость роста ННК определяется объемной диффузией или реакцией на межфазной границе, то, упрощенно, выделим три стадии ПЖК-процесса вблизи равновесия: 1) диффузия Si в жидкой капле к растущей грани ННК; 2) встраивание атомов Si в решетку кристалла (6); 3) диффузия атомарного Si от торцевой грани ННК к поверхности капли.

Скорость первой стадии можно выразить как перенос массы вещества

$$V_{D1} = k_{D1} \left(C_{surf} - C_L \right),$$
 (7)

где v_{D1} – скорость диффузии атомов Si к растущей поверхности, k_{D1} – коэффициент массопереноса Si, C_{surf} и C_L – концентрации кристаллизуемого вещества вблизи поверхности капли и на границе с кристаллом.

Скорость обратимой реакции кристаллизации (6) *v*_{*k*} выразим как

$$v_k = k_{k\,dir} C_L - k_{k\,back} C_S,\tag{8}$$

где $k_{k \, dir}$ и $k_{k \, back}$ — константы скорости прямой и обратной реакции, C_S — равновесная концентрация атомов на границе с кристаллом.

Скорость диффузии атомарного Si от торцевой грани ННК выразится как

$$v_{D2} = k_{D2}C_S.$$
 (9)

При записи выражения (9) предполагалось, что изначально жидкая фаза содержит равновесную концентрацию Si и, следовательно, $C_L = C_S$.

Если рост ННК проходит в стационарном режиме, то скорости всех звеньев равны: $v_{D1} = v_{D2} = v_k = v$, где v – наблюдаемая скорость роста ННК. Из уравнений (7)–(9) получаем соотношение для скорости роста ННК

$$V = \left[k_{k \ dir}^{-1} + k_{D1}^{-1} + k_{k \ back} \left(k_{D2} k_{k \ dir}\right)^{-1}\right] C_{surf}.$$
 (10)

Выражение в скобках показывает, что обратная величина константы скорости роста ННК равна сумме обратных значений констант скоростей стадий процесса. Реакция (6) — реакция первого порядка, поэтому можно записать цией. Поэтому скорость диффузионного процесса в первом приближении можно принять

 $K = k_{k\,dir} k_{k\,back}^{-1},$

 $k_{D1} = k_{D2} = k_D,$

 $v = \left[k_{k \, dir}^{-1} + k_D^{-1} \left(1 + K^{-1} \right) \right] C_{surf}.$

 $k_{k,dir} = A \exp(-E_a/RT).$

и (9) должны быть одинаковы, т.е.

описать уравнением Аррениуса

где К – константа равновесия реакции кристал-

лизации. Коэффициенты диффузии k_{D1} и k_{D2} в (7)

где k_D – коэффициент массопереноса. Подставляя (11) и (12) в (10), получим

Константа k_{k dir} возрастает с температурой по

экспоненциальной зависимости, которую можно

$$k_D = bT^{3/2},$$
 (15)

где *b* — коэффициент пропорциональности. Температурная зависимость константы *K* определяется интегральным выражением Вант-Гоффа

$$K = m \exp(-\Delta H/RT), \tag{16}$$

где *m* – некоторая постоянная. Подставляя (14), (15) и (16) в (13), получаем

$$v = \left(\left(A \exp\left(-\frac{\Delta E_a}{RT}\right) \right)^{-1} + b^{-1}T^{2/3} \left(1 + m \exp\left(-\frac{\Delta H}{RT}\right) \right)^{-1} \right) C_{surf}.$$
(17)

Из выражения (17) следует, что при $C_{surf} = \text{const}$ и низких Т решающее влияние на скорость роста ННК оказывает первое слагаемое и процесс подчиняется кинетическим закономерностям. В этой области функция $\ln v = f(1/T)$ носит линейный характер (рис. За, левая ветвь кривых на рис. 36, 3в и правая ветвь кривых на рис. 3г). Но с ростом Т для реакции кристаллизации с относительно высокими значениями (по модулю) $\Delta H < 0$ зависимость v(T) будет определяться третьим слагаемым в (17) и подчиняться термодинамическим закономерностям (рис. 1, рис. 36, 3в (правая ветвь кривых) и рис. Зг (левая ветвь)). Для ростовых систем с $\Delta H \ge 0$ и T выше максимальных наблюдаемая скорость роста ННК $v \sim T^{3/2}$.

Таким образом, можно констатировать, что причины, лежащие в основе различий представлений о влиянии *T* на скорость роста ННК, заключаются в превалирующей роли термодинамического фактора экзотермической реакции кристаллизации, а не кинетики процесса роста.

ЗАКЛЮЧЕНИЕ

Показано, что недооценка влияния термодинамических факторов является основной причиной, определяющей различия результатов изучения влияния T на скорость роста ННК и противоречивые выводы о лимитирующей стадии ПЖК-процесса. Для обратимых процессов кристаллизации ННК Si, Ge, GaAs и др., у которых теплота реакции отрицательна ($\Delta H < 0$), в области низких Tпреобладает кинетический режим с лимитирующей стадией кристаллизации на границе кристалл/жидкость. При повышении T ход зависимости v(T) определяется термодинамическими, а не кинетическими причинами. Интенсифицировать рост ННК в экзотермическом процессе можно, понижая температуру и давление.

БЛАГОДАРНОСТЬ

Исследование выполнено за счет гранта Российского научного фонда № 22-22-00449, https://rscf.ru/project/22-22-00449/.

СПИСОК ЛИТЕРАТУРЫ

- Bootsma G.A., Gassen H.J. A Quantitative Study on the Growth of Silicon Whiskers from Silane and Germanium Whiskers From Germane // J. Cryst. Growth. 1971. V. 10. P. 223–234.
- 2. Гиваргизов Е.И. Рост нитевидных и пластинчатых кристаллов из пара. М.: Наука, 1977. 304 с.
- Weyher J. Some Notes of the Growth Kinetics and Morphology of VLS Si Crystals Grown with Pt and Au as Liquid-Forming Agents // J. Cryst. Growth. 1978. V. 43. P. 235–244.
- Lew K.K., Redwing J.M. Growth Characteristics of Silicon Nanowires Synthesized by VLS Growth in Nanoporous Al Templates // J. Cryst. Growth. 2003. V. 254. № 1–2. P. 14–22.
- Дубровский В.Г., Сибирев Н.В., Сурис Р.А., Цырлин Г.Э., Устинов В.М., Tchernycheva М., Harmand J.C. О роли поверхностной диффузии адатомов при формировании нанометровых НК // ФТП. 2006. Т. 40. Вып. 9. С. 1103–1110.
- Noor Mohammad S. General Theoretical Model for the Vapor-Phase Growth and Growth Rate of Semiconductor Nanowires // J. Vac. Sci. Technol. B. 2010. V. 28. № 2. P. 329–352.
- 7. *Thombare S.V., Marshall A.F., McIntyre P.C.* Kinetics of Ge NW Growth by the Vapor-Solid-Solid Mechanism with a Ni-Based Catalyst // APL Mater. 2013. V. 1. P. 061101.
- Небольсин В.А., Щетинин А.А., Даринский Б.М., Попов Е.Е. Кинетика роста НК Si в реакторе с горячими стенками // Изв. вузов. Физика. 1995. Т. 38. № 10. С. 22–27.

(11)

(12)

(13)

(14)

- Dick K., Deppert K., Karlsson L., Wallenberg L.R., Samuelson L., Seifert W. A New Understanding of Au-Assisted Growth of III–V Semiconductor Nanowires // Adv. Funct. Mater. 2005. V. 15. № 10. P. 1603–1610.
- 10. Soci C., Bao X.-Y., Aplin D. P. R., Wang D. A Systematic Study on the Growth of GaAs NWs by MOCV Deposition // Nano Lett. 2008. V. 8. № 12. P. 4275–4282.
- 11. Seifert W., Borgstrom M., Deppert K., Dick K.A., Johansson J., Larsson M.W., Martensson T., Skold N., Svensson C.P., Wacaser B.A., Wallenberg L.R., Samuelson L.

Growth of One-Dimensional Nanostructures in MOVPE // J. Cryst. Growth. 2004. V. 272. P. 211–220.

- Glas F., Dubrovskii V.G. Energetics and Kinetics of Monolayer Formation in Vapor-Liquid-Solid Nanowire Growth // Phys. Rev. Mater. 2020. V. 4. P. 083401.
- Современная кристаллография в 4-х томах. Т. 3: Образование кристаллов / Под ред. Чернова А.А. и др. М.: Наука, 1980. 407 с.
- 14. *Крапухин В.В., Соколов И.А., Кузнецов Г.Д.* Физикохимические основы технологии полупроводниковых материалов. М.: Металлургия, 1982. 352 с.

1286