УДК 544.032.2:549.678:544.723.212

МЕХАНОХИМИЧЕСКОЕ МОДИФИЦИРОВАНИЕ ЦЕОЛИТОВЫХ ПОРОД ПОЛИВИНИЛОВЫМ СПИРТОМ ДЛЯ ПОВЫШЕНИЯ ИХ НЕФТЕЕМКОСТИ

© 2022 г. О. Н. Дабижа^{1, *}, Т. В. Хамова¹, О. А. Шилова^{1, 2}

¹Институт химии силикатов им. И.В. Гребенщикова Российской академии наук, наб. Макарова, 2, Санкт-Петербург, 199034 Россия ²Санкт-Петербургский государственный электротехнический университет "ЛЭТИ", ул. Проф. Попова, 5, Санкт-Петербург, 197376 Россия *e-mail: dabiga 75@mail.ru Поступила в редакцию 28.05.2022 г.

После доработки 14.10.2022 г. Принята к публикации 17.10.2022 г.

Изучено влияние механоактивации и модификации поливиниловым спиртом (ПВС) цеолитовых – клиноптилолитовых и клиноптилолит-стильбитовых – пород на их состав, структуру и сорбционную нефтеемкость. Энергонапряженность вибрационного истирателя составляла 12 Вт/г; доза подведенной к веществу механической энергии – 2.16 кДж/г; отношение массы стальных размольных тел к массе образца – 32 : 1. Образцы изучены методами сканирующей электронной микроскопии, рентгенофазового анализа, инфракрасной спектроскопии, дифференциальной сканирующей калориметрии, термогравиметрии, низкотемпературной адсорбции азота. Найдено, что клиноптилолитовая породы, модифициованные 20 мас. % ПВС, имеют улучшенную на 15–18% нефтеемкость на твердой поверхности.

Ключевые слова: цеолиты, клиноптилолит, поливиниловый спирт, механоактивация, нефтесорбенты **DOI:** 10.31857/S0002337X22120065

введение

Цеолитовые (клиноптилолитовые) породы широко распространены в Забайкальском крае и известны как дешевые перспективные сорбенты [1-3] и молекулярные сита [4]. Модификация природных цеолитов может сделать их пригодными для сорбции анионов и органических соединений. С помощью адгезионного и полимеризационного способов клиноптилолитовые туфы модифицировали полипропиленом [5], полигексаметиленгуанидином [6], полиорганосилоксанами [7], хитозаном [8], полиэтиленимином [9], полипирролом [10], полианилином [11], лигноцеллюлозой, модифицированной силоксанами [12] и другими полимерами. Биоразлагаемый поливиниловый спирт (ПВС) $-[-CH_2-CH(OH)-]_n$ применяют в составе углеродных сорбентов [13]. Представляет интерес использовать этот полимер в качестве органического модификатора из-за возможности образования межмолекулярных связей между гидроксогруппами и силанольными группами ≡Si-OH клиноптилолита и повышением сродства неорганического материала к углеводородам.

Сорбционная нефтеемкость природных цеолитов – клиноптилолитов – составляет 0.19–0.22 [14], 0.47-0.65 [15], а синтетических цеолитов Na-P1 -1.24-1.40 г/г [14]. Механическая активация цеолитов приводит к количественному накоплению дефектов и искажений в кристаллической структуре и переводу их в микро- и нанодисперсное состояние [16], развитию мезопористости [3]. Активированным (в частности, аморфным) слоям свойственны аномально высокие химическая активность и сорбционная способность [3, 17]. Механическая деструкция полимеров приводит к росту новой поверхности, образованию свободных радикалов активных центров. Введение поверхностно-активного вещества в высокоэнергонапряженный измельчительный процесс будет способствовать, согласно П.А. Ребиндеру, усилению разрушения и нарастанию дефектности или пассивации поверхности и уменьшению структурных дефектов [18]. Однако направленное повышение дефектно-аморфного состояния путем механоактивации цеолитовых пород совместно с ПВС исследовано недостаточно.

Цель данной работы — изучение влияния механоактивации и модификации ПВС клиноптилолитовых пород на их структуру и сорбционную нефтеемкость.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Природные цеолиты – клиноптилолит-стильбитовую (CpSt) и клиноптилолитовую (Cp) породы с содержанием цеолитов ~70 и 80% соответственно (Холинское и Шивыртуйское месторождения, Забайкальский край, Россия) и примесных минералов – микроклина (образец CpSt) и кварца (образцы CpSt, Cp) – предварительно измельчали валковой дробилкой до размеров частиц от 0.25 до 4.00 мм. По результатам ранее проведенных исследований [3], элементный состав (мас. %): Si (32.21), Al (6.48), Fe (0.56), Mg (0.12), Ca (1.29), Na (1.20), К (3.06), О (55.67) – образец СрSt и Si (27.14), Al (6.54), Fe (1.07), Mg (0.56), Ca (1.63), Na (0.73), К (1.63), O (60.70) – образец Ср; соотношение Si/Al > 4 свидетельствует о термической стабильности пород [19].

В качестве модификатора применяли ПВС (марка PVA 1799, Китай) со степенью полимеризации 1750 \pm 50 и степенью гидролиза более 90%. Время полного растворения 1 г ПВС в 100 см³ дистиллированной воды при 90°С без перемешивания равно 195 мин.

Органоминеральные сорбенты получали механоактивацией воздушно-сухой смеси цеолитовых пород: клиноптилолит-стильбитовой (CpSt) и клиноптилолитовой (Ср) с добавками 5, 10 и 20 мас. % ПВС – в вибрационном чашевом истирателе ИВЧ-3 в течение 3 мин. Энергонапряженность истирателя и удельная доза подведенной механической энергии равны 12 Вт/г и 2.16 кДж/г соответственно, навеска пробы – 50 г, отношение массы размольных тел (сталь XBГ) к массе образца — 32 : 1. Выбор времени механического воздействия обосновывается данными по механоактивации клиноптилолитовых пород, полученными авторами ранее [3], а также предотвращением слипания полимерных частиц вследствие разогрева размольных тел при температуре ≤50°С.

Морфологию поверхности изучали с помощью растрового электронного микроскопа (**PЭM**) JSM-6510LV·JEOL (Япония).

Рентгенограммы получали методом порошка на рентгеновском дифрактометре ДРОН-3.0 (Си K_{α} -излучение, Ni-фильтр, U = 25 кВ, I = 20 мА, $2\theta = 3^{\circ}-65^{\circ}$, шаг 0.05°). Относительную степень кристалличности ($k_{\text{отн}}$) клиноптилолита рассчитывали аналогично [3].

ИК-спектры записывали на инфракрасном фурье-спектрометре SHIMADZU FTIR-8400S в таблетках с KBr. Относительные интенсивности полос поглощения (ПП) вычисляли как отношение их длины до нулевой линии к длине ПП с мак-симальной интенсивностью при 1040–1050 см⁻¹.

Термический анализ образцов проводили на синхронном термоанализаторе STA 449F1 NETZSCH ($m = 15-21 \text{ мг}, t = 30-800^{\circ}\text{C}$, Pt-тигли, динамичная атмосфера аргона, скорость нагрева 20°С/мин, образец сравнения — пустой тигель). Потерю воды в температурном интервале от 50 до 150°С представляли реакцией дегидратации клиноптилолита

$$(Na,K)_6 Al_6Si_{30}O_{72} \cdot nH_2O =$$

= $(Na,K)_6 Al_6Si_{30}O_{72} + nH_2O.$

Кинетические кривые этого процесса вычисляли согласно методике, приведенной в работе [20].

Удельную поверхность образцов измеряли методом низкотемпературной адсорбции азота, используя модели Брунауера–Эммета–Теллера (БЭТ) и Ленгмюра, на установке Quantachrome NOVA 1200e. Вакуумирование проводили 17 ч при температуре 373 К. Распределение пор по размерам изучали по изотерме десорбции методом Баррета–Джойнера–Халенды (БДХ).

Истинную плотность определяли пикнометрическим методом (рабочая жидкость – керосин TC-1, $d_{20^{\circ}C} = 0.78 \text{ г/см}^3$), насыпную плотность и гигроскопическую влажность – гравиметрическим методом.

Электрокинетический потенциал измеряли при 298 К с помощью анализатора размеров частиц и дзета-потенциала NanoBrook 90 PlusZeta (Brookhaven Instruments Corporation, США). Суспензию 1 мг порошка в 30 см³ дистиллированной воды подвергали диспергированию в течение 15 мин с помощью ультразвуковой ванны Vilitek VBS-10H.

Нефтеемкость сорбента на твердой поверхности вычисляли после его помещения в сетку, погружения в нефть и выдержки в ней в течение 15 мин [3].

Водопоглощение порошков определяли по относительному увеличению массы за вычетом холостой пробы. Погрешность рассчитывали как среднеквадратичное отклонение при доверительной вероятности $\alpha = 0.90$.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На РЭМ-изображениях (рис. 1) механоактивированных цеолитовых пород (CpSt и Cp) наблюдаются высокодисперсные частицы и включения квазисферических агрегатов [3], а на изображениях органоминеральных образцов – агрегаты частиц микронных размеров сферической (CpSt-P₅, Cp-P₅) и пластинчатой (CpSt-P₁₀, Cp-P₁₀) форм. Микроструктуры клиноптилолит-стильбитовой и клиноптилолитовой пород с содержанием ПВС 20 мас. % (CpSt-P₂₀, Cp-P₂₀) представляют собой темную однородную матрицу со светлыми рыхлыми агрегатами частиц неправильной пластинчатой формы, образованными за счет введения органиче-

Образец	Порода	Фазовый состав, %				Оценка относительной степени кристалличности (<i>k</i> _{отн}) клиноптилолита		
		С	S	М	Q	$\Sigma I/I_0$	k _{oth}	
CpSt	Клиноптилолит- стильбитовая	45	22	24	9	676.47 + 234.2 + 423.31 = 1333.98	1.00	
CpSt-P ₅		41	27	24	8	1000+247.27+208.20 = 1455.47	1.09	
CpSt-P ₁₀		42	11	33	14	1000 + 215.72 + 382.03 = 1597.75	1.20	
CpSt-P ₂₀		43	38	19	0	1000 + 171.48 + 390.58 = 1562.06	1.17	
Ср	Клиноптилолитовая	82	0	0	18	1000 + 205.79 + 419.64 = 1625.43	1.00	
Cp-P ₅		83	0	0	17	1000+316.47+558.44=1874.91	1.15	
Cp-P ₁₀		87	0	0	13	1000 + 317.00 + 405.06 = 1722.06	1.06	
Cp-P ₂₀		83	0	0	17	1000 + 0 + 221.04 = 1221.04	0.75	

Таблица 1. Фазовый состав и относительная степень кристалличности цеолитовых (клиноптилолитовых) пород и органоминеральных образцов

Примечание. С – клиноптилолит, S – стильбит, М – микроклин, Q – кварц.

ского модификатора, хаотично распределенными по поверхности.

Слабые интенсивности и наличие гало на рентгеновских дифрактограммах механоактивированных образцов в области $2\theta = 10^{\circ} - 40^{\circ}$ (рис. 2) указывают на структурное несовершенство минералов и наличие рентгеноаморфной фазы. В наибольшей степени эта область выражена на дифрактограммах модифицированных 10 и 20 мас. % ПВС клиноптилолитовых пород (Cp-P₁₀, Cp-P₂₀, CpSt-P₁₀, CpSt-P₂₀). Заметное уширение рентгеновских линий в области $2\theta = 18^{\circ} - 25^{\circ}$ указывает на присутствие в составе образцов CpSt-P₂₀ и Cp-P₂₀ ультрадисперсных кристаллитов. В органомодифицированных образцах изменяются соотношения минеральных фаз, и относительная степень кристалличности клиноптилолита выше, чем у образцов CpSt и Cp, за исключением Cp-P₂₀ (табл. 1).

В ИК-спектрах модифицированных ПВС образцов Ср-Р₅, Ср-Р₁₀, Ср-Р₂₀ регистрируется смещение максимумов ПП валентных колебаний ОН-групп слабосвязанных молекул воды с 3619 ло 3628 см⁻¹ [4] и уменышение их относительной интенсивности в 2.2 раза (рис. 3) по сравнению с клиноптилолитовой породой (Ср). Увеличение степени разделения и снижение относительной интенсивности наиболее чувствительных к механическому воздействию [3] ПП антисимметричных валентных колебаний Si-O-Si от 0.80 до 0.47 наряду со смещением от 1204 до 1196 см⁻¹ (Ср и Ср-Р₂₀) указывают на некоторое упорядочение колебательных движений. Отмечаются сдвиги ПП, относящихся к колебаниям Si-OH-групп, при 880 до 849 и симметричных валентных колебаний Al(Si)-O₄ при 723 до 731 см⁻¹ (ИК-спектры образцов Ср и Ср-Р₂₀). Низкочастотный сдвиг, увеличение относительной интенсивности в 1.4 раза и уширение ПП валентных колебаний ОН-групп свидетельствуют о повышении прочности межмолекулярных водородных связей в структуре образца CpSt-P₅. В спектрах образцов CpSt-P₁₀ и CpSt-P₂₀ имеют место снижение относительной интенсивности ПП при 3621 см⁻¹, обусловленной колебаниями ОН-групп в Si-OH (Al), всего на 3 и 6%, сдвиг ПП Si-OH-групп от 870 до 866 и 858 см⁻¹ соответственно. Выявлены низкочастотный слвиг от 1163 до 1155 см⁻¹ и снижение относительной интенсивности от 0.73 до 0.69 ПП антисимметричных валентных колебаний связей Si-O-Si. Изменения в ИК-спектрах органоминеральных образцов - "красное" и "голубое" смещения характеристических ПП – обусловлены адсорбцией ПВС на активных центрах клиноптилолита и квантово-размерным эффектом соответственно.

Первый эндотермический эффект ниже 200°С на ДСК-кривых (рис. 4) соответствует удалению физически поглощенной и слабосвязанной воды с поверхности зерен, из макро- и мезопор [21]. ДСК-кривые органоминеральных образцов (CpSt-P₅, CpSt-P₁₀, CpSt-P₂₀, Cp-P₅, Cp-P₂₀, Cp-P₂₀) также имеют эндотермические эффекты при температурах 235–239 и 332–393°С, отвечающих плавлению и деструкции макромолекул ПВС соответственно. С повышением содержания ПВС в образцах увеличивается количество эндоэффектов в области 300–400°С. Экзотермические эффекты при 479 и 495°С объясняются выгоранием полимера.

Потеря массы у всех органоминеральных образцов при 300°С, за исключением образца Cp-P₅, меньше на величину около 3% по сравнению с немодифицированными клиноптилолитами (рис. 5). Увеличение их общей потери массы при 800° С

Рис. 1. РЭМ-изображения цеолитовых пород, механоактивированных без и совместно с модификатором ПВС: CpSt – клиноптилолит-стильбитовая порода, Cp – клиноптилолитовая порода; индексы 5, 10, 20 соответствуют массовому со-держанию ПВС в образцах.

Рис. 2. Дифрактограммы образцов цеолитовых пород, механоактивированных без и совместно с модификатором ПВС: CpSt – клиноптилолит-стильбитовая порода, Cp – клиноптилолитовая порода; индексы 5, 10, 20 соответствуют массовому содержанию в образцах ПВС; C – клиноптилолит, S – стильбит, М – микроклин, Q – кварц.

(табл. 2) обусловлено в т.ч. процессами дегидрирования и отщеплением метана от коксового остатка. В температурном интервале от 50 до 150°С реакция дегидратации клиноптилолитов с большей достоверностью ($R^2 \ge \sim 0.96$) описывается кинетическими уравнениями второго порядка (табл. 2). Обнаружено, что у всех модифицированных ПВС образцов, кроме Ср-Р₁₀ и Ср-Р₂₀, по сравнению с механоактивированными без полимера (CpSt, Ср) процесс дегидратации, как правило, характеризуется более низкими значениями кажущейся энергии активации. Такие величины энергии активации процесса дегидратации характерны как для хемосорбции (CpSt, CpSt-P₁₀, CpSt-P₂₀, Ср-Р₁₀, Ср-Р₂₀), так и для физической адсорбции (CpSt-P₅, Cp, Cp-P₅), что можно отобразить схематически (рис. 6).

Установлено, что ζ-потенциал механоактивированных и модифицированных образцов клиноптилолита имеет отрицательное значение (рис. 7). Понижение значения дзета-потенциала модифицированного 5 мас. % ПВС клиноптилолита (Ср-Р₅) на 15% свидетельствует о росте агрегативной устойчивости суспензии и повышении электрофоретической подвижности частиц. Однако для образца CpSt-P₅ с наиболее сильной адсорбцией ПВС на клиноптилолите, напротив, регистрируется увеличение ζ-потенциала на 31%. При увеличении содержания органического модификатора в образцах (CpSt-P₁₀, CpSt-P₂₀, Cp-P₁₀, Cp-P₂₀) наблюдается увеличение ζ-потенциала. Это объясняется осаждением в суспензии агрегатов органоминеральных частиц микронных размеров.

Рис. 3. ИК-спектры образцов цеолитовых пород, механоактивированных без и совместно с модификатором ПВС: CpSt – клиноптилолит-стильбитовая порода, Cp – клиноптилолитовая порода; индексы 5, 10, 20 соответствуют массовому содержанию в образцах ПВС.

Рис. 4. ДСК-кривые образцов цеолитовых пород, механоактивированных без и совместно с модификатором ПВС: CpSt – клиноптилолит-стильбитовая порода, Cp – клиноптилолитовая порода; индексы 5, 10, 20 соответствуют массовому содержанию в образцах ПВС.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 58 № 12 2022

Рис. 5. Потери массы образцов цеолитовых пород, механоактивированных без и совместно с модификатором ПВС, при нагревании: CpSt – клиноптилолит-стильбитовая порода, Cp – клиноптилолитовая порода; индексы 5, 10, 20 соответствуют массовому содержанию в образцах ПВС.

Величина удельной поверхности по БЭТ модифицированных ПВС клиноптилолитовых пород уменьшилась на 17–31% по сравнению с таковой для образцов CpSt и Cp (табл. 3). Количество адсорбционных центров для молекул азота уменьшается вследствие адсорбции макромолекул полимера. При модификации обеих пород 10 и 20 мас. % ПВС удельный объем пор уменьшился, а при мо-

Таблица 2. Влияние содержания органического модификатора ПВС (ω) в цеолитовых (клиноптилолитовых) породах на температуру эндоэффекта ($t_{эндо}$, °C), потерю массы (Δm), кажущуюся энергию активации (E_a) реакции дегидратации и значения достоверности аппроксимации (R^2) по сравнению с механоактивированными породами без модификатора

Образец	Порода	ω, мас. %	<i>t</i> _{эндо} , °С	$\Delta m, \%$		R^2	<i>Е</i> _а , кДж/моль	R^2	<i>Е</i> _а , кДж/моль
				300°C	800°C	$f(\alpha) = 1 - \alpha$		$f(\alpha) = (1-\alpha)^2$	
CpSt	Клиноптило- лит-стильби- товая	0	172	5.6	7.7	0.9169	45.73	0.9389	49.47
CpSt-P ₅		5	175	5.5	12.3	0.9911	16.07	0.9862	18.05
CpSt-P ₁₀		10	174	5.4	14.7	0.9481	41.55	0.9567	43.09
CpSt-P ₂₀		20	172	5.6	21.3	0.9506	40.06	0.9562	41.02
Ср	Клиноптило- литовая	0	195	7.0	11.2	0.9709	34.67	0.9803	36.87
Cp-P ₅		5	192	7.6	14.9	0.9896	23.85	0.9948	25.80
Cp-P ₁₀		10	196	6.9	17.8	0.9697	40.73	0.9751	41.95
Cp-P ₂₀		20	191	6.8	24.9	0.7920	_	0.7945	_

Примечание. α – степень превращения вещества, f(α) – формально-кинетическая функция; "–" – данные не приведены в связи с низкой степенью достоверности.

дификации 5 мас. % ПВС увеличился в 1.8 и 1.4 раза (органоминеральные сорбенты CpSt-P₅, Cp-P₅ соответственно).

Распределение диаметров пор (рис. 8) имеет тенденцию к сосредоточению в диапазоне 4 (CpSt, CpSt-P₁₀, CpSt-P₂₀) и 2 нм (Cp, Cp-P₁₀, Cp-P₂₀). Изотермы адсорбции всех исследуемых образцов близки ко II типу, но наличие гистерезиса позволяет отнести их к IV типу, т.е. к мезопористым материалам (рис. 9). В то же время, схождение ветвей адсорбции и десорбции ниже величины относительного значения давления 0.4 в случае образцов CpSt, CpSt-P₁₀, CpSt-P₂₀, Cp-P₁₀ и Cp-P₂₀ явно свидетельствует о значительном количестве микропор. Гистерезис для всех образцов можно отнести к типу H3 согласно IUPAC, что указывает на поры щелевидной формы и плоскопараллельные частицы материала.

Увеличение содержания ПВС в составе сорбента от 5 до 20 мас. % также приводит к снижению насыпной и истинной плотностей на вели-

Рис. 6. Модель адсорбции ПВС на поверхности клиноптилолита: *a* – физическая адсорбция, *b* – хемосорбция, I – силанольная группа на твердой поверхности клиноптилолита, II – фрагмент макромолекулы ПВС; III – органоминеральный комплекс с межмолекулярной водородной связью, IV – органоминеральный комплекс с ковалентной связью.

Рис. 7. Зависимость дзета-потенциала от содержания ПВС в образцах: CpSt — клиноптилолит-стильбитовая порода, Cp — клиноптилолитовая порода.

Рис. 8. Распределение пор по размерам в образцах цеолитовых пород, механоактивированных без и совместно с модификатором ПВС: CpSt — клиноптилолит-стильбитовая порода, Cp — клиноптилолитовая порода, индексы 5, 10, 20 соответствуют массовому содержанию в образцах ПВС.

Образец	Порода			$S_{ m yg},{ m M}^2/{ m \Gamma}$	<i>V</i> , см ³ /г	<i>d</i> , нм	<i>V</i> , см ³ /г	<i>d</i> , нм	
		БЭТ	БЭТ Ленгмюр БДХ (адс. ветвь) БДХ (дес. ветвь)		адсорбция		десорбция		
CpSt		34.6	68.4	8.4 38.1 66.6		0.16	4.6	0.17	4.3
CpSt-P ₅	Клиноптилолит- стильбитовая	28.7	42.2	25.4	37.4	0.29	9.0	0.29	3.9
CpSt-P ₁₀		26.2	37.6	22.3	46.8	0.15	6.9	0.15	3.9
CpSt-P ₂₀		23.7	37.7	22.2	33.8	0.13	7.1	0.13	4.3
Ср		28.8	52.5	35.0	39.4	0.12	2.6	0.12	2.2
Cp-P ₅	Клиноптилолито-	23.4	38.4	21.1	28.5	0.17	10.6	0.17	1.9
Cp-P ₁₀	вая	-	22.7	16.1	37.4	0.13	7.1	0.14	2.1
Cp-P ₂₀		-	21.4	14.0	33.4	0.10	7.0	0.10	1.5

Таблица 3. Текстурные свойства цеолитовых (клиноптилолитовых) пород, механоактивированных без и с органическим модификатором ПВС, определенные методом низкотемпературной адсорбции азота

Примечание. "—" – данные не приведены в связи с низкой степенью достоверности; V – удельный объем пор, d – диаметр пор.

Рис. 9. Изотермы адсорбции–десорбции азота для цеолитовых пород, механоактивированных без и совместно с модификатором ПВС: CpSt – клиноптилолит-стильбитовая порода, Cp – клиноптилолитовая порода; индексы 5, 10, 20 соответствуют массовому содержанию в образцах ПВС.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 58 № 12 2022

	=		-	=	-		
Образец	Порода	ω, мас. %	d_b , г/см ³	d_t , г/см ³	W, %	SC, г/г	В, г/г
			физ	ические свой	сорбционные свойства		
CpSt	Клиноптилолит- стильбитовая	0	0.70 ± 0.01	2.20 ± 0.04	4.88 ± 0.03	1.30 ± 0.03	0.39 ± 0.02
CpSt-P ₅		5	0.55 ± 0.01	1.87 ± 0.03	6.05 ± 0.04	1.42 ± 0.04	0.59 ± 0.03
CpSt-P ₁₀		10	0.51 ± 0.07	1.85 ± 0.03	6.20 ± 0.09	1.41 ± 0.04	0.84 ± 0.06
CpSt-P ₂₀		20	0.39 ± 0.03	1.73 ± 0.03	6.06 ± 0.04	1.49 ± 0.02	1.46 ± 0.05
Ср	Клиноптилоли- товая	0	0.68 ± 0.01	2.04 ± 0.03	6.71 ± 0.05	1.31 ± 0.04	0.56 ± 0.03
Cp-P ₅		5	0.52 ± 0.01	1.90 ± 0.01	6.58 ± 0.09	1.37 ± 0.01	0.94 ± 0.06
Cp-P ₁₀		10	0.48 ± 0.02	1.79 ± 0.04	6.44 ± 0.04	1.45 ± 0.03	0.95 ± 0.03
Cp-P ₂₀		20	0.39 ± 0.02	1.78 ± 0.04	6.13 ± 0.09	1.55 ± 0.02	1.16 ± 0.08

Таблица 4. Влияние содержания ПВС (ω) в цеолитовых (клиноптилолитовых) породах на физические и сорбционные свойства по сравнению с механоактивированными породами без органического модификатора

Примечание: d_b – насыпная плотность, d_t – истинная плотность, W – гигроскопическая влажность, SC – нефтеемкость, B – водопоглощение.

чины 26–30 и 6.6–7.0% соответственно (табл. 4). При этом гигроскопическая влажность образцов на основе клиноптилолитовой породы (CpSt-P₅, CpSt-P₂₀) уменьшается на 7%, а для клиноптилолит-стильбитовой породы (Cp-P₅, Cp-P₂₀) практически не изменяется.

Нефтеемкость и водопоглощение исследуемых органоминеральных сорбентов повышаются симбатно с содержанием ПВС (табл. 4). Образцы CpSt, Cp, CpSt-P₅ обладают водопоглощением до 59%, а самым влагоемким оказался сорбент CpSt-P₂₀. Сорбционная емкость образцов CpSt-P₂₀ и Cp-P₂₀ по отношению к нефти соизмерима с таковой для синтетических цеолитов [14] и повышается на 15 и 18% по сравнению с CpSt и Cp, а по отношению к воде – в 3.7 и 2.1 раза соответственно.

ЗАКЛЮЧЕНИЕ

Установлено влияние трехминутной механохимической активации на воздухе в вибрационном истирателе, что соответствует подведенной дозе механической энергии 2.16 кДж/г, в присутствии 5-20 мас. % ПВС на структуру, физические и нефтесорбционные свойства природных цеолитов клиноптилолит-стильбитовой и клиноптилолитовой пород. Увеличение содержания ПВС в образцах сопровождается формированием коллоидных полимерных и органоминеральных частиц пластинчатой и сферической форм, увеличением количества аморфной фазы, квантоворазмерным эффектом. Смещение полос поглощения валентных колебаний ОН-групп и Si-O-Si-связей, Si-OH- или Si-O(H)-Al-групп свидетельствует об адсорбции полимера на силанольных группах клиноптилолита.

Обнаружено снижение истинной плотности и площади удельной поверхности органоминеральных сорбентов при модификации ПВС на величины до 21 и 30% соответственно. Удельный объем пор уменьшается на величину до 17–19% при содержании 10 и 20% ПВС.

Для удаления нефти с твердых поверхностей можно рекомендовать клиноптилолитовые породы, модифицированные 20 мас. % ПВС, у которых высокое водопоглощение, но величина нефтеемкости улучшена на 15–18% по сравнению с чисто минеральными немодифицированными клиноптилолитовыми породами.

БЛАГОДАРНОСТЬ

Авторы благодарят Т.В. Дербеневу за участие в проведении экспериментальных исследований.

Исследование проводили в соответствии с темой НИР ГЗ ИХС РАН 0081-2022-0006.

СПИСОК ЛИТЕРАТУРЫ

- Kalbuadi D.N., Goenadi D.H., Santi L.P., Nurtjahja L.R., Miner J. The Potential Use of Natural Clinoptilolite Zeolite for Crude Oil Spill Removal from Sea Water // Mater. Charact. Eng. 2019. V. 7. P. 446–453. https://doi.org/10.4236/jmmce.2019.76031
- Demirkiran A.R., Fullen M.A., Williams C.D. Comparative Analysis of the Physicochemical and Oil Adsorption Characteristics of Clinoptilolites from Turkey and the USA // Oxid. Commun. 2016. V. 39. № 1-II. P. 787– 807.
- 3. Дабижа О.Н., Дербенева Т.В., Хамова Т.В., Шилова О.А. Механическая активация клиноптилолитов как регулятор их сорбционной активности // Неорган. материалы. 2021 Т. 57 № 4. С. 419–428. https://doi.org/10.31857/S0002337X21040035

- 4. *Брек Д*. Цеолитовые молекулярные сита; пер. с англ. Клячко А.Л. и др. М.: Мир, 1976. 784 с.
- Motsa M.M., Mamba B.B., Thwala J.M., Msagati T.A.M. Preparation, Characterization, and Application of Polypropylene–Clinoptilolite Composites for the Selective Adsorption of Lead from Aqueous Media // J. Colloid Interface Sci. 2011. V. 359. № 1. P. 210–219. https://doi.org/10.1016/j.jcis.2011.02.067
- Nikashina V.A., Gembitskii P.A., Kats E.M., Boksha L.F., Galuzinskaya A.K. Organomineral Sorbents Based on Clinoptilolite-Containing Tuffs // Russ. Chem. Bull. 1994. V. 43. P. 1462–1465. https://doi.org/10.1007/BF00697126
- 7. Шапкин Н.П., Ермак И.М., Разов В.И., Давыдова В.Н., Хальченко И.Г., Шкуратов А.Л. Получение органомодифицированных алюмосиликатов для очистки биологических растворов // Журн. неорган. химии. 2014. Т. 59. № 6. С. 766–771. https://doi.org/10.7868/S0044457X14060191
- Zhao Y., Zhao X., Deng J., He C. Utilization of Chitosan–Clinoptilolite Composite for the Removal of Radiocobalt from Aqueous Solution: Kinetics and Thermodynamics // J. Radioanal. Nucl. Chem. 2016. V. 308. P. 701–709. https://doi.org/10.1007/s10967-015-4475-9
- 9. Кац Э.М., Никашина В.А., Бычкова Я.В. Кинетика сорбции тяжелых металлов из поверхностной воды на природном и модифицированном полиэтиленимином клиноптитолите Холинского месторождения // Сорб. и хром. процессы. 2016. Т. 16. № 1. С. 36–43.
- Olad A., Ahmadi S., Rashidzadeh A. Removal of Nickel (II) from Aqueous Solutions with Polypyrrole Modified Clinoptilolite: Kinetic and Isotherm Studies // Desalination Water Treat. 2013. V. 51. P. 7172–7180. https://doi.org/10.1080/19443994.2013.771285
- Olad A., Khatamian M., Naseri B. Removal of Toxic Hexavalent Chromium by Polyaniline Modified Clinoptilolite Nanoparticles // J. Iran. Chem. Soc. 2011. V. 8. P. S141–S151. https://doi.org/10.1007/BF03254291
- Vala R.M.K., Tichagwa L., Pasch H., Dikio E.D. Solid State NMR Characterization and Adsorption Properties of Lignocellulose-Clinoptilolite Composites Prepared with Siloxanes Coupling Agents // S. Afr. J. Chem. 2015. V. 68. P. 143–152. https://doi.org/10.17159/379-4350/2015/B68A21

- Xu Zh., Jiang X., Zhou H., Li J. Preparation of Magnetic Hydrophobic Polyvinyl Alcohol (PVA)–Cellulose Nanofiber (CNF) Aerogels as Effective Oil Absorbents // Cellulose. 2018. V. 25. P. 1217–1227. https://doi.org/10.1007/s10570-017-1619-9
- Bandura L., Franus M., Panek R., Woszuk A., Franus W. Characterization of Zeolites and Their Use as Adsorbents of Petroleum Substances // Przem. Chem. 2015. V. 94. № 3. P. 323–327. https://doi.org/10.15199/62.2015.3.11
- Muir B., Bajda T. Organically Modified Zeolites in Petroleum Compounds Spill Cleanup Production, Efficiency, Utilization // Fuel Process. Technol. 2016. V. 149. P. 153–162. https://doi.org/10.1016/i.fuproc.2016.04.010
- 16. Amir Ch., Hossein K., Mohammad K. Experimental Design Optimized Ball Milling of Natural Clinoptilolite Zeolite for Production of Nano Powders // Powder Technol. 2010. V. 203. № 2. P. 389–396. https://doi.org/10.1016/j.powtec.2010.05.034
- Nikashina V.A., Streletsky A.N., Kolbanev I.V., Meshkova I.N., Grinev V.G., Serova I.B., Yusupov T.S., Shumskaya L.G. Properties of Mechanically Activated Natural Clinoptilolite and Chabazite // Clay Miner. 2011. V. 46. P. 329–337. https://doi.org/10.1180/claymin.2011.046.2.329
- Юсупов Т.С., Уракаев Ф.Х., Исупов В.П. Прогноз структурно-химических изменений минералов при механических воздействиях в процессах измельчения // ФТПРПИ. 2015. № 5. С. 161–168.
- Cruciani G. Zeolites upon Heating: Factors Governing Their Thermal Stability and Structural Changes // J. Phys. Chem. Solids. 2006. V. 67. № 9–10. P. 1973– 1994.

https://doi.org/10.1016/j.jpcs.2006.05.057

- 20. Ратько А.И., Иванец А.И., Кулак А.И., Морозов Е.А., Сахар И.О. Термическое разложение природного доломита // Неорган. материалы. 2011. Т. 47. № 12. С. 1502–1507.
- Sternik D., Majdan M., Deryło-Marczewska A., Żukociński G., Gładysz-Płaska A., Gun'Ko V.M., Mikhalovsky S.V. Influence of Basic Red 1 dye Adsorption on Thermal Stability of Na-Clinoptilolite and Na-Bentonite // J. Therm. Anal. Calorim. 2011. V. 103. № 2. P. 607–615. https://doi.org/10.1007/s10973-010-1014-3