УДК 544.31

ТЕПЛОЕМКОСТЬ И ТЕРМИЧЕСКОЕ РАСШИРЕНИЕ ГАФНАТА ПРАЗЕОДИМА

© 2022 г. А. В. Гуськов^{1,} *, П. Г. Гагарин¹, В. Н. Гуськов¹, А. В. Хорошилов¹, К. С. Гавричев¹

¹Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук, Ленинский пр., 31, Москва, 119991 Россия *e-mail: a.gus@igic.ras.ru

> Поступила в редакцию 17.08.2021 г. После доработки 21.09.2021 г. Принята к публикации 22.09.2021 г.

Синтезирован порошкообразный гафнат празеодима $Pr_2Hf_2O_7$ со структурой пирохлора. С помощью РФА, СЭМ и химического анализа определены его молярная теплоемкость в интервале температур 315—1345 К и температурная зависимость параметра кристаллической решетки в области 298—1273 К.

Ключевые слова: гафнат празеодима, пирохлор, теплоемкость, термическое расширение **DOI:** 10.31857/S0002337X22010055

ВВЕДЕНИЕ

Соединения Ln₂Hf₂O₇ со структурой типа пирохлора (Fd3m) образуются при взаимодействии оксидов легких лантаноидов (Ln = La, Pr, Nd, Sm, Eu, Gd и Tb) и диоксида гафния. Существование этих соединений в ряду гафнатов лантаноидов ограничено соотношением ионных радиусов $r_{\rm Ln^{3+}}/r_{\rm Hf^{4+}}$ > 1.46, характерным для образования соединений со структурой пирохлора [1, 2]. Соединения имеют высокие температуры плавления или превращения в твердый раствор со структурой дефектного флюорита $Ln_2O_3 \cdot 2HfO_2$ (Fm3m) (2800-3050 К) и характеризуются отсутствием структурных превращений во всей области существования [3, 4], что подтверждает возможность их использования в качестве высокотемпературных материалов, например термобарьерных покрытий [5]. Однако для практического применения в дополнение к этим свойствам необходима информация о коррозионной стойкости по отношению к окружающей среде и контактирующим веществам, а также параметрах термического расширения. Что касается химической инертности веществ, то задача может быть решена, по крайней мере в первом приближении, термодинамическим моделированием [6]. Энтальпии образования большинства гафнатов Ln₂Hf₂O₇ приведены в работе [7], а термодинамические функции и термическое расширение – в работах [8-15]. Вместе с тем, высокотемпературный Pr₂Hf₂O₇ с этих позиций не изучен (известна только энтальпия образования -4148.9 Дж/моль [7]). Гафнат празеодима является единственным соединением в системе Pr_2O_3 -HfO₂ [3, 4]. $Pr_2Hf_2O_7$ кристаллизуется в структуре пирохлора и сохраняет эту структуру во всей температурной области существования. Авторы [16, 17] считают, что гафнат празеодима конгруэнтно плавится при температуре 2613 ± 30 K. тогда как в [4] полагают, что Pr₂Hf₂O₇ при температурах выше 2473 К претерпевает разупорядочение и превращение в твердый раствор дефектного флюорита (Fm3m). Физические свойства гафната празеодима при температурах 0.35-25 К изучены с точки зрения возможности образования квантовой системы спинового льда [18-21]. В работах [20, 21] вырашены образцы монокристаллического Pr₂Hf₂O₇ с параметрами кубической решетки 10.68411(2) и 10.6727(1) Å соответственно.

Целью настоящей работы является измерение молярной теплоемкости и термического расширения гафната празеодима со структурой пирохлора в областях температур 315—1345 и 298—1273 К соответственно.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Порошок гафната празеодима получали методом обратного осаждения. Исходными веществами являлись оксид празеодима Pr_6O_{11} (99.99 мас. %), диоксид гафния (99.99 мас. %) производства ООО "Ланхит", соляная кислота (35–38 мас. %, ОСЧ 20-4) и раствор аммиака (25–28 мас. % "ос. ч.") производства ООО "Химмед". Синтез, методы измерения термического расширения и теплоемкости подробно описаны в работах [12,

Рис. 1. Дифрактограмма гафната празеодима (пирохлор, a = 10.671(9) Å, $\lambda(CuK_{\alpha}) = 1.5418$ Å).

22]. Полученный в результате окончательного прокаливания при 1550 К (4 ч) образец, по данным химического анализа, имел состав $Pr_{1.94}Hf_2O_{6.97}$ (величина индекса при кислороде рассчитана исходя из соотношения оксидов металлов). Такое отклонение от стехиометрии, по нашим оценкам, не может внести существенной погрешности в величину теплоемкости [23]. Молярную массу рассчитывали из атомных масс [24], она составила M = 750.79112 г/моль.

Измерения молярной теплоемкости методом дифференциальной сканирующей калориметрии (ДСК) проводили в интервале 315—1345 К на приборе STA 449 F1 Jupiter (Netzsch). Методики измерений и сглаживания экспериментальных данных по температурной зависимости теплоемкости описаны в [25].

Термическое расширение изучали с помощью расчета параметра кубической решетки из дифрактограмм порошков, полученных при 298—1273 К с шагом 100 К на воздухе с помощью 20—0-рентгенов-

Рис. 2. Морфология поверхности образца гафната празеодима (пирохлор).

ского дифрактометра SHIMADZU XRD-600 с приставкой HA-1001 на фильтрованном Cu K_{α} -излучении [26].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Дифракционные исследования (рис. 1) показали, что синтезированный однофазный образец $Pr_2Hf_2O_7$ имеет кубическую структуру типа пирохлора с параметром решетки a = 10.671(9) Å, который удовлетворительно соответствует данным [21]. Оценка размера областей когерентного рассеяния по Дебаю—Шереру и результаты растровой электронной микроскопии (рис. 2) показали, что образец хорошо закристаллизован и не является наноразмерным, следовательно, вводить поправки на размерный фактор к полученным термодинамическим величинам не нужно.

Температурную зависимость молярной теплоемкости гафната празеодима измеряли методом ДСК в интервале температур 315—1345 К. Температурная зависимость теплоемкости представляет собой гладкую кривую, что свидетельствует об отсутствии структурных превращений в изученном интервале температур (рис. 3). Сглаживание экспериментальных данных проводили с помощью уравнения Майера—Келли [27], которое для $Pr_2Hf_2O_7$ имеет следующий вид:

$$C_{p,m}$$
 (Дж/(моль K)) =
= 272.8 + 0.0347198T - 4129441.4 T^{-2} , (1)
 $R^2 = 0.9996$.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 58 № 2 2022

Рис. 3. Температурная зависимость экспериментальной теплоемкости гафната празеодима (пирохлор) (I), расчет теплоемкости $Pr_2Hf_2O_7$ по Нейману–Коппу [29, 30] (2) и теплоемкость La₂Hf₂O₇ [8] (3).

На рис. 3 для сравнения с полученными данными приведен расчет молярной теплоемкости по правилу Неймана—Коппа из теплоемкостей простых оксидов: $Pr_2O_3(P3m1)$ [28] и HfO₂ (моноклинная структура) [29]. Как видно, несмотря на структурные различия исходных оксидов (гексагональная и моноклинная) и гафната празеодима (кубическая), модельная (кривая 2) и экспериментальная (кривая 1) теплоемкости совпадают во всем температурном интервале. На рис. 3 приведена температурная зависимость теплоемкости гафната лантана [8] (кривая 3). Видно, что теплоемкости $Pr_2Hf_2O_7$ и La₂Hf₂O₇ значительно отличаются. Это трудно объяснить только различием молярных масс гафнатов лантана и празеодима, которое со-

Таблица 1. Температурные зависимости параметра кристаллической решетки гафната празеодима (пирохлор), текущего (α_T) и относительного (α_{298}) коэффициентов линейного термического расширения и относительного линейного расширения (*TE*)

<i>Т</i> , К	a, Å	$\alpha_T \times 10^{-6}, \mathrm{K}^{-1}$	$\alpha_{298} \times 10^{-6}, \mathrm{K}^{-1}$	TE, %
298	10.680	7.36	7.36	0
473	10.692	8.17	8.18	0.11
573	10.703	8.64	8.65	0.22
672	10.710	9.10	9.12	0.28
773	10.721	9.56	9.60	0.38
873	10.733	10.02	10.07	0.50
973	10.745	10.48	10.54	0.61
1073	10.756	10.94	11.01	0.71
1173	10.767	11.39	11.48	0.81
1273	10.778	11.85	11.96	0.92

Рис. 4. Температурные зависимости параметров кристаллической решетки гафнатов лантана [8] (1), празеодима (настоящая работа) (2), неодима [9] (3), самария [10] (4), европия [11] (5), гадолиния [12] (6), тербия [13] (7).

ставляет ~0.3%, и уменьшением параметра кристаллической решетки $\Pr_2Hf_2O_7$ (a = 10.671(9) Å) по сравнению с $\text{La}_2Hf_2O_7$ (a = 10.772(1) Å), что должно привести к понижению теплоемкости гафната празеодима. Следует полагать, что увеличение теплоемкости гафната празеодима возникает за счет вклада аномалии Шоттки (C_{Sch}), которую можно рассчитать из спектроскопических данных либо оценить по разности теплоемкостей гафнатов празеодима и лантана [30]:

$$C_{Sch} \approx \Delta C_{p,m} = C_{p,m} (\Pr_2 \text{Hf}_2 \text{O}_7) - C_{p,m} (\text{La}_2 \text{Hf}_2 \text{O}_7), (2)$$

$$\Delta C_{p,m} (\mbox{Дж}/(\mbox{моль K})) =$$

$$= 23.9 + 0.00158694T - 309005.1T^{-2}, \qquad (3)$$

что составляет от ~21 (315 K) до ~26 (1345 K) Дж/(моль K).

Температурную зависимость термического расширения гафната празеодима изучали методом высокотемпературной рентгеновской дифрактометрии [15, 27]. Результаты расчетов параметра кубической ячейки пирохлора $Pr_2Hf_2O_7$ приведены в табл. 1. Температурная зависимость параметра решетки может быть описана уравнением

$$a(\text{\AA}) = 10.6576 +$$

+ 6.3725 × 10⁻⁵T + 2.5080 × 10⁻⁸T². (4)

Линейные коэффициенты термического расширения вычисляли с помощью следующих соотношений:

текущий $\alpha_T = (da_T/dT)/a_T$,

2022

относительный $\alpha_{298} = (da_T/dT)/a_{298}$,

линейное термическое расширение $TE(\%) = 100(a_T - a_{298})/a_{298}$.

Рассчитанные параметры термического расширения приведены в табл. 1. По данным дилатометрии, линейный относительный коэффициент термического расширения равен 9.13 × 10^{-6} K⁻¹ [4], что сравнимо с полученным значением 9.6 × × 10^{-6} K⁻¹ при средней температуре 773 K.

Температурная зависимость параметра кристаллической решетки гафната празеодима приведена на рис. 4 в сравнении с данными для гафнатов лантана, неодима, самария, европия, гадолиния и тербия (структура пирохлора) [8–13]. Температурные зависимости практически параллельны и близки к линейным, т.е. коэффициенты термического расширения всех представленных гафнатов приблизительно одинаковы и слабо зависят от температуры.

ЗАКЛЮЧЕНИЕ

Синтезированный обратным осаждением гафнат празеодима со структурой пирохлора охарактеризован методами рентгенофазового и химического анализа и электронной микроскопии.

Проведено измерение молярной теплоемкости методом ДСК в области температур 315–1345 К и показано, что теплоемкость содержит вклад аномалии Шоттки.

Зависимость параметра кристаллической решетки от температуры изучена методом высокотемпературной рентгеновской дифракции в интервале 298—1273 К, проведена оценка коэффициентов линейного термического расширения гафната празеодима.

БЛАГОДАРНОСТЬ

Работа выполнена при поддержке Российского научного фонда, грант № 18-13-00025, https://rscf.ru/en/project/18-13-00025.

Экспериментальные исследования высокотемпературной теплоемкости выполнены с использованием оборудования ЦКП ФМИ ИОНХ РАН.

Авторы благодарят А.А. Ашмарина за помощь в изучении термического расширения методом высокотемпературной рентгеновской дифракции.

СПИСОК ЛИТЕРАТУРЫ

- Subramanian M.A., Aravamudan G., Subba Rao G.V. Oxide Pyrochlores – a Review // Prog. Solid State Chem. 1983. V. 15. P. 55–143. https://doi.org/10.1016/0079-6786(83)90001-8
- Fuentes A.F., Montemayor S.M., Maczka M., Lang M., Ewing R.C., Amador U. A Critical Review of Existing Criteria for the Prediction of Pyrochlore Formation and Stability // Inorg. Chem. 2018. https://doi.org/10.1021/acs.inorgchem.8b01665
- 3. Andrievskaya E.R. Phase Equilibria in the Refractory Oxide Systems of Zirconia, Hafnia and Yttria with Ra-

re-Earth Oxides // J. Eur. Ceram. Soc. 2008. V. 28. P. 2363–2388.

https://doi.org/10.1016/jeurceramsoc.2008.01.009

- Arseniev P.A., Glushkova V.B., Evdokimov A.A. et al. Compounds of Rare-Earth Elements. Zirconates, Hafnates, Niobates, Tantalates, Antimonates. M.: Nauka, 1985. 261 p.
- Pan W., Phillpot S.R., Wan C., Chernatynskiy A., Qu Z. Low Thermal Conductivity Oxides // MRS Bull. 2012. V. 37. P. 917–922. https://doi.org/10.1557/mrs.2012.234
- Summers W.D., Poerschke D.L., Begley M.R., Levi C.G., Zok F.W. A Computational Modeling Framework for Reaction and Failure of Environmental Barrier Coatings under Silicate Deposits // J. Am. Ceram. Soc. 2020.

https://doi.org/10.1111/jace.17187

- Paputsky Y.N., Krjijanovskaya V.A., Glushkova V.B. Enthalpies of Formation of Hafnates and Zirconates RE (on Russian) // Izv. AN SSSR. Neorgan. Mater. 1974. V. 10. P. 1551–1552.
- Guskov A.V., Gagarin P.G., Guskov V.N., Khoroshilov A.V., Gavrichev K.S. Heat Capacity and Thermal Expansion of Lanthanium Hafnate // Russ. J. Inorg. Chem. 2021. V. 66. P. 1017–1020. https://doi.org/10.1134/S0036023621070056
- Guskov V.N., Gagarin P.G., Guskov A.V., Tyurin A.V., Khoroshilov A.V., Gavrichev K.S. Heat Capacity and Thermal Expansion of Neodimium Hafnate Ceramics // Ceram. Int. 2019. V. 43. P. 20733–20737. https://doi.org/10.1016/j.ceramint.2019.07.057
- Guskov A.V., Gagarin P.G., Guskov V.N., Khoroshilov A.V., Gavrichev K.S. Heat Capacity and Thermal Expansion of Samarium Hafnate // Inorg. Mater. 2021. V. 57. P. 1015–1019. https://doi.org/10.1134/S0020168521100046
- Guskov A.V., Gagarin P.G., Guskov V.N., Khoroshilov A.V., Gavrichev K.S. Thermal Expansion and Thermodynamic Function of Europian Hafnate at 298–1300 K // Russ. J. Inorg. Chem. 2021. V. 66. P. 1710–1713. https://doi.org/1034/S0036023621110085
- Guskov V.N., Tyurin A.V., Guskov A.V., Gagarin P.G., Khoroshilov A.V., Gavrichev K.S. Thermal Expansion and Thermodynamic Properties of Gadolinium Hafnate Ceramics // Ceram. Int. 2020. V. 46. P. 12822– 12827.

https://doi.org/10.1016/j.ceramint.2020.02.052

- Guskov A.V., Gagarin P.G., Guskov V.N., Khoroshilov A.V., Gavrichev K.S. Heat Capacity and Thermal Expansion of Tebium Hafnate // Inorg. Mater. 2021. V. 57. P. 710–713. https://doi.org/10.1134/S0020168521070074
- Kutty K.V.G., Rajagopalan S., Mathews C.K. et al. Thermal Expansion Behaviour of Some Oxide Pyrochlores // Mater. Res. Bull. 1994. V. 29. P. 759–766. https://doi.org/10.1016/0025-5408(94)90201-1
- Kutty K.V.G., Rajagolapan S., Asuvathraman R. Thermal Expansion Studies on Some Rare-Earth Pyrohafnates by High Temperature X-Ray Powder Diffractometry // Thermochim. Acta. 1990. V. 168. P. 205–209. https://doi.org/10.1016/0040-6031(90)80639-G

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 58 № 2 2022

- Shevchenko A.V., Lopato L.M., Zaitseva Z.A. Interaction of HfO₂ with Lanthana, Praseodimia and Neodimia at High Temperatures // Izv. AN SSSR. Neorg. Mater. 1984. V. 20. P. 1530.
- Portnoi K.I., Timofeeva N.I., Salibelov S.E., Romanovich I.V. Synthesis and Study of Properties of Complex Oxygen-Containing Compounds of REE and Hafnium // Izv. AN SSSR. Neorg. Mater. 1970. V. 6. P. 91.
- Anand V.K., Opherden L., Xu J. et al. Physical Properties of the Candidate Qyantum Spin-Ace System Pr₂Hf₂O₇ // Phys. Rev. B. 2016. V. 94. 144415. https://doi.org/10.1103/PhysRevB.94.144415
- Sibile R., Lhotel E., Hatnean M.C. et al. Candidate Quantum Spin Ice in the Pyrochlore Pr₂Hf₂O₇ // Phys. Rev. B. 2016. V. 94. 024436. https://doi.org/10.1103/PhysRevB.94.024436
- 20. *Hatnean M.C., Sibile R., Lees M.R. et al.* Single Crystal Growth, Structure and Magnetic Properties of Pr₂Hf₂O₇ Pyrochlore // J. Phys.: Condens. Matter. 2017. V. 29. 075902 (9 P.).

https://doi.org/10.1088/1361-648X/29/7/075902

- Anand V.K., Islam A. T.M.N., Samartzis A. et al. Optimization of Single Crystal Growth of Candidate Quantum Spin-Ace Pr₂Hf₂O₇ by Optical Floating-Zone Method // J. Cryst. Growth. 2018. V. 498. P. 124. https://doi.org/10.1016/J.jcrysgro.2018.06.011
- Gagarin P.G., Tyurin A.V., Guskov V.N., Nikiforova G.E., Gavrichev K.S., Shlyakhtina A.V. Thermodynamic Properties of Dy₂O₃·2ZrO₂ and Ho₂O₃·2ZrO₂ in the Range 10–340 K // Inorg. Mater. 2017. V. 53. P. 86–92. https://doi.org/10.1134/S002016851701006X
- Gagarin P.G., Guskov A.V., Guskov V.N. et al. Dysprosium Orthotantalate Ceramics: Thermal Expansion and Heat Capacity // Ceram. Int. 2021. V. 47. P. 2892–

2896.

https://doi.org/10.1016/j.ceramint.2020.09072

- 24. Wieser M.E. Atomic Weights of the Elements 2005 (IUPAC Technical Report) // Pure Appl. Chem. 2006. V. 78. P. 2051–2066. https://doi.org/10.1351/pac200678112051
- Ryumin M.A., Nikiforova G.E., Tyurin A.V. et al. Heat Capacity and Thermodynamic Functions of La₂Sn₂O₇ // Inorg. Mater. 2020. V. 56. P. 102–109. https://doi.org/10.1134/S00201685200101148
- Kolomiets T.Yu., Tel'nova G.B., Ashmarin A.A., Chelpanov V.I., Solntsev K.A. Synthesis and Sintering of Submicron Nd:YAG Particles Preparated from Carbonate Precursor // Inorg. Mater. 2017. V. 53. P. 874– 882.

https://doi.org/10.1134/S0020168517080076

- 27. *Maier C.G., Kelley K.K.* An Equation for Representation of High Temperature Heat Content Data // J. Am. Chem. Soc. 1932. V. 54. P. 3243–3246. https://doi.org/10.1021/ja01347a029
- Konings R.J.M., Beneš O., Kovács O.A., Manara D., Sedmidubský D., Gorokhov L.N., Iorish V.S., Yungman V., Shenyavskaya E., Osina E. The Thermodynamic Properties of the f-Elements and Their Compounds. Part 2. The Lanthanide and Actinide Oxides // J. Phys. Chem. Ref. Data. 2014. V. 43. № 1. P. 013101. https://doi.org/10.1063/1.4825256
- 29. *Pankratz L.B.* Thermodynamic Properties of Elements and Oxides // U.S. Bur. Mines Bull. 1982. V. 672. P. 188.
- Westrum E.F. Lattice and Schottky Contributions to the Morphology of Lanthanide Heat Capacities // J. Chem. Thermodyn. 1983. V. 15. P. 305. https://doi.org/10.1016/0021-9614(83)90060-5