УДК 546.027'289546.05'06

ПОЛУЧЕНИЕ МОНОКРИСТАЛЛИЧЕСКОГО ИЗОТОПНО-ОБОГАЩЕННОГО ГЕРМАНИЯ-70 ГИДРИДНЫМ МЕТОДОМ

© 2022 г. В. А. Гавва^{1,} *, О. Ю. Трошин¹, С. А. Адамчик¹, А. Ю. Лашков¹, Н. В. Абросимов², А. М. Гибин¹, П. А. Отопкова¹, А. Ю. Созин¹, А. Д. Буланов¹

¹Институт химии высокочистых веществ им. Г.Г. Девятых Российской академии наук, ул. Тропинина, 49, Нижний Новгород, 603951 Россия ²Leibniz-Institut für Kristallzüchtung (IKZ), Max-Born-Straße, 2, Berlin, 12489 Germany

*e-mail: gavva@ihps-nnov.ru Поступила в редакцию 16.11.2021 г. После доработки 15.12.2021 г. Принята к публикации 17.12.2021 г.

Гидридным методом получен монокристаллический германий ⁷⁰Ge с высокой изотопной и химической чистотой. Разделение изотопов германия проводилось центробежным способом с использованием моногермана в качестве исходного летучего вещества. Изотопно-обогащенный поликристаллический ⁷⁰Ge получали путем пиролиза моногермана ⁷⁰GeH₄, очищенного методом низкотемпературной ректификации. Монокристаллический образец германия-70 выращивали методом Чохральского. Полученный материал имеет дырочный тип проводимости и обладает собственным электросопротивлением при комнатной температуре. Концентрация примесей химических элементов – менее 10^{-5} — 10^{-6} мас. %. Монокристалл ⁷⁰Ge содержит 99.926 ат. % основного изотопа и рекордно низкое содержание нечетного изотопа ⁷³Ge (0.00007 ат. %).

Ключевые слова: моногерман, германий, изотопы, очистка, термическое разложение, монокристалл

DOI: 10.31857/S0002337X22030058

введение

Высокочистые монокристаллы стабильных изотопов германия представляют интерес как объект фундаментальных исследований влияния средней атомной массы и изотопной разупорядоченности на физические свойства твердых тел [1, 2]. Практический интерес связан с исследованиями по разработке квантовых компьютеров [3]. Перспективным направлением в этой области является создание твердотельных квантовых вычислительных устройств. в которых единицей квантовой информации (кубитом) является состояние ядерного спина атома [4, 5]. Ансамбль кубитов получают путем внедрения атомов элементов с ненулевым ядерным спином в матрицу из монокристаллического кремния или германия. Одной из проблем при создании такого устройства является неконтролируемое взаимодействие кубитов с ядерными спинами атомов матрицы. Поэтому необходимо минимизировать содержание нечетных изотопов в материале матрицы. В ряду стабильных изотопов германия нечетным является изотоп ⁷³Ge. Представляет интерес разработка методов получения высокочистых монокристаллов германия с экстремально низким содержанием этого изотопа.

В настоящее время основным методом для разделения изотопов является центробежный. Обшепринятой практикой является использование фторидов элементов в качестве рабочего газа для центрифуг [6]. В [7] по фторидной технологии получены образцы 70 Ge и 74 Ge с содержанием основного изотопа ~96%. В [8] на этих образцах исследован изотопный эффект в параметре решетки германия. В [9] сообщается о получении образца ⁷⁰Ge фторидным методом с рекордным на тот момент содержанием основного изотопа 99.99% и исследовании его теплопроводности. На образцах изотопически чистых монокристаллов ⁷⁴Ge и ⁷⁰Ge, полученных с использованием центробежного метода разделения изотопов в Институте молекулярной физики РНЦ "Курчатовский институт", впервые зафиксировано снижение частоты максимума полосы решеточного ИК-поглощения при увеличении массового числа [10, 11]. Использование тетрахлорида германия в качестве рабочего вещества в центробежном методе возможно для крайнего (самого легкого) изотопа ⁷⁰Ge [12]. Несмотря на наличие у хлора двух стабильных изотопов — 35 Cl и 37 Cl, достигнута степень обогащения тетрахлорида германия изотопом германия-70 на уровне 99.9%. В [13] для ее повышения предложено перевести тетрахлорид в другое химическое соединение (тетрафторид, герман) и провести процесс повторного изотопного обогащения. В [14, 15] показано, что в качестве летучего соединения для разделения изотопов германия изначально может быть использован моногерман GeH₄. Применение гидридного метода позволило получить образцы изотопов 72 Ge, 73 Ge, 74 Ge и 76 Ge массой в несколько десятков грамм в виде монокристаллов с высокой степенью химической и изотопной чистоты [16].

В качестве объекта для получения монокристаллов германия с низким содержанием изотопа ⁷³Ge целесообразно использовать ⁷⁰Ge или ⁷⁶Ge, так как они имеют наибольшую разницу в атомной массе с изотопом ⁷³Ge и эффективнее разделяются в процессе центрифугирования. При этом содержание изотопа ⁷⁰Ge в природном германии почти в 3 раза выше, чем изотопа ⁷⁶Ge. Поэтому для работы был выбран изотоп ⁷⁰Ge. Наиболее перспективным методом получения ⁷⁰Ge с высокой степенью химической и изотопной чистоты с нашей точки зрения является гидридный.

Цель данной работы — получение высокочистого монокристаллического германия-70 с низким содержанием изотопа ⁷³Ge.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Общая схема процесса включала центробежное изотопное обогащение с использованием моногермана GeH₄ в качестве исходного летучего вещества, его глубокую очистку методом низкотемпературной ректификации, получение поликристаллического германия путем термического разложения моногермана, выращивание монокристалла.

Разделение изотопов германия проводилось в ОАО "ПО "Электрохимический завод" (г. Зеленогорск Красноярского края). Моногерман ⁷⁰GeH₄ был выделен центробежным методом из гидрида со смещенным изотопным составом, полученного ранее после выделения изотопов ⁷⁶Ge, ⁷⁴Ge, ⁷³Ge и ⁷²Ge из моногермана природного изотопного состава [17]. Определение изотопного состава моногерманов проводили методом масс-спектрометрии с индуктивно связанной плазмой (ИСП-МС) [18]. Состав и содержание молекулярных примесей в моногермане определяли хромато-масс-спектрометрическим (XMC) методом по методике, приведенной в [19].

После стадии разделения изотопов моногерман очищали от примесей методом низкотемпературной ректификации [20]. Глубокую очистку проводили в насадочной металлической колонне

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 58 № 3 2022

со средним кубом при температуре –85°С и давлении 1.5 абс. атм. Отбор фракций, обогащенных ниже- (легкая фракция) и вышекипящими (тяжелая фракция) примесями, осуществляли одновременно сверху и снизу колонны в дискретном режиме. Целевой продукт (ректификат) в конце процесса очистки выгружали из среднего питающего резервуара. Выход очищенного продукта составил ~80%.

Поликристаллический германий получали пиролизом моногермана, проводимым в кварцевом трубчатом реакторе при температуре 450°С [21]. Внутреннюю поверхность реактора предварительно покрывали слоем пиролитического углерода. После окончания процесса пиролиза температуру реактора повышали до 1000°С и сплавляли поликристалл и порошкообразный германий в компактный слиток. Выход германия на стадии термического разложения моногермана составил 96%.

Монокристаллический ⁷⁰Ge выращивали методом Чохральского в Институте роста кристаллов (г. Берлин, Германия) в установке с индукционным нагревом. Выращивание проводили в кристаллографическом направлении (100) с использованием тиглей из кварцевого стекла в атмосфере высокочистого аргона. Скорость выращивания составляла 1 мм/мин. Кристалл и тигель вращали в противоположных направлениях со скоростями 15 и 3 об./мин соответственно. В качестве затравки, при отсутствии затравки из германия-70, использовали полученный ранее монокристаллический германий-74 с содержанием основного изотопа более 99.92 ат. % (содержание 73 Ge – 0.062 ат. %). Выбор германия-74, а не германия естественного изотопного состава обусловлен стремлением минимизировать поступление в состав монокристалла ⁷⁰Ge изотопа ⁷³Ge. Для уменьшения изотопного разбавления из-за расплавления части затравки выращивание проводили в два этапа (рис. 1). Сначала из небольшого количества расплава моноизотопного германия-70 на затравку из германия-74 (1) наращивали первый монокристалл (2). При этом затравку удлинили примерно на 20 мм, нарастив на нее участок (3), обогащенный германием-70. Затем первый монокристалл отрезали от затравки, а обогащенную германием-70 часть затравки использовали для выращивания целевого монокристалла ⁷⁰Ge.

Изотопный и химический анализ монокристалла германия-70 проводили методом ИСП-МС. Для исследования электрофизических параметров использовали измерения удельного электросопротивления (УЭС) при комнатной температуре. Тип проводимости определяли методом термо-ЭДС.

Рис. 1. Выращивание первого монокристалла и формирование затравки из ⁷⁰Ge.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В табл. 1 представлены результаты определения изотопного состава исходного моногермана. моногермана после стадии разделения изотопов и поликристаллического германия-70, полученного пиролизом изотопно-обогащенного моногермана. Видно, что использование моногермана к качестве летучего вешества для центробежного разделения изотопов позволяет обогатить его изотопом ⁷⁰Ge до уровня более 99.99 ат. %. В процессе пиролиза моногермана изотопный состав продукта практически не изменяется. Однако при выращивании монокристалла произошло заметное разбавление основного изотопа изотопом ⁷⁴Ge, из которого сделана затравка. Выращивание кристалла в два этапа значительно уменьшает изотопное разбавление второго (целевого) кристалла. Результаты изотопного анализа монокристаллов представлены в табл. 2. Следует отметить рекордно низкое содержание в целевом монокристалле ⁷⁰Ge изотопа ⁷³Ge, облалающего ненулевым ялерным спином. Его содержание составляет 0.00007 ат. %.

Исследован примесный состав моногермана, обогащенного изотопом германия-70 после стадии центробежного разделения (образец 1), и после очистки методом ректификации (образец 2). Также были выделены и проанализированы фракции моногермана 70 GeH₄, в которых сконцентрированы ниже- (образец 3) и вышекипящие (образец 4) относительно моногермана примеси. Моногерман был охарактеризован по содержанию ряда примесей: оксиды углерода, углеводороды, хлор- и фторпроизводные углеводородов, спирты и эфиры, алкил- и полигерманы, серосодержащие вещества. Результаты анализа образцов ⁷⁰GeH₄ приведены в табл. 3.

Ректификация эффективно снижает содержание всех примесей. В очищенном продукте установлены примеси диоксида углерода, этана и дигермана, их концентрация не превышает 10⁻⁵— 10⁻⁶ мол. %. Наличие примеси этана обусловлено низким коэффициентом разделения жидкость—пар в системе моногерман—этан, который составляет 1.21. Содержание остальных примесей в очищенном моногермане ниже пределов их обнаружения.

Полученные пиролизом моногермана слитки германия после сплавления имели блочную кристаллическую структуру с размером зерна 1–3 мм. УЭС при комнатной температуре составляло ~40 Ом см. Слитки обладали дырочным типом проводимости. Выращенный целевой монокристалл изотопа ⁷⁰Ge имел диаметр от 15 до 20 мм и длину около 55 мм (рис. 2).

Вдоль боковой поверхности с использованием четырехзондового метода было измерено распределение УЭС по длине монокристалла. УЭС зависит от концентрации носителей заряда и их подвижности. В области комнатных температур подвижность носителей определяется их рассеянием на тепловых колебаниях кристаллической решетки, вклад структурных дефектов в рассеяние незначителен. Поэтому величина УЭС может быть

Изотоп	С, ат. %	Δ, ат. %	С, ат. %	Δ, ат. %	С, ат. %	Δ, ат. %
	^{mix} GeH ₄		70 GeH $_4$		поликристалл Ge-70	
70	55.613	0.389	99.99303	0.00012	99.99329	0.00006
72	20.476	0.320	0.00678	0.00009	0.00669	0.00005
73	6.817	0.100	0.00005	0.00003	0.00002	0.00001
74	17.010	0.140	0.00012	0.00005	0.00001	—
76	0.084	0.004	<0.00001	—	0.00001	—

Таблица 1. Результаты изотопного анализа моногермана и поликристаллического германия-70

Примечание. C – концентрация изотопа, Δ – неопределенность в измерении содержания изотопа.

Изотоп	С, ат. %	Δ, ат. %	С, ат. %	Δ, ат. %	
1301011	первый мог	нокристалл	целевой монокристалл		
70	99.55317	0.00200	99.92597	0.00040	
72	0.00706	0.00016	0.00669	0.00009	
73	0.00030	0.00003	0.00007	0.00002	
74	0.43945	0.00200	0.0672	0.0040	
76	0.00002	0.00001	<0.00001	_	

Таблица 2. Результаты изотопного анализа монокристаллов германия-70

Примечание. C – концентрация изотопа, Δ – неопределенность в измерении содержания изотопа.

Таблица 3. Содержание примесей в различных образцах ⁷⁰GeH₄ по данным XMC-метода

Примесь	С, мол. %						
IIpmileeb	1	2	3	4			
CH ₄	$(4 \pm 1) \times 10^{-5}$	$< 2 \times 10^{-5}$	$(1.9 \pm 0.2) \times 10^{-4}$	$(4 \pm 1) \times 10^{-5}$			
C_2H_2	$(2.2 \pm 0.3) \times 10^{-4}$	$<2 \times 10^{-6}$	$(2.5 \pm 0.3) \times 10^{-3}$	$<2 \times 10^{-6}$			
C_2H_4	$(1.1 \pm 0.2) \times 10^{-3}$	$< 2 \times 10^{-6}$	$(1.5 \pm 0.2) \times 10^{-2}$	$(5 \pm 1) \times 10^{-6}$			
C ₂ H ₆		$(1.0 \pm 0.3) \times 10^{-5}$	$(1.3 \pm 0.2) \times 10^{-2}$	$(2.2 \pm 0.3) \times 10^{-5}$			
C ₃ H ₆	$(3.8 \pm 0.4) \times 10^{-4}$	$< 1 \times 10^{-6}$	$< 1 \times 10^{-6}$	$(5.3 \pm 0.7) \times 10^{-3}$			
C ₃ H ₈	$(5.2 \pm 0.6) \times 10^{-4}$	$< 1 \times 10^{-6}$	$<1 \times 10^{-6}$	$(7 \pm 1) \times 10^{-3}$			
$H - C_4 H_{10}$	$(2.5 \pm 0.3) \times 10^{-4}$	$< 2 \times 10^{-6}$	$<2 \times 10^{-6}$	$(4.0 \pm 0.8) \times 10^{-3}$			
изо-С ₄ Н ₁₀	$(2.0 \pm 0.3) \times 10^{-4}$	$< 2 \times 10^{-6}$	$<2 \times 10^{-6}$	$(2.8 \pm 0.3) \times 10^{-3}$			
Углеводороды C ₅ -C ₉	$(2.1 \pm 0.4) \times 10^{-4}$	$< 2 \times 10^{-6}$	$<2 \times 10^{-6}$	$(2.1 \pm 0.5) \times 10^{-3}$			
Хлор-, фтор-углеводороды	$(1.6 \pm 0.5) \times 10^{-4}$	$< 5 \times 10^{-7}$	$< 5 \times 10^{-7}$	$(2.7 \pm 0.8) \times 10^{-3}$			
Спирты, эфиры	$<1 \times 10^{-6}$	$<5 \times 10^{-4}$	$< 5 \times 10^{-4}$	$(1.6 \pm 0.3) \times 10^{-1}$			
С ₃ Н ₆ О (ацетон)	$(6\pm3)\times10^{-4}$	$< 1 \times 10^{-4}$	$< 1 \times 10^{-4}$	$(5\pm2)\times10^{-2}$			
Алкилгерманы	$< 1 \times 10^{-4}$	$< 4 \times 10^{-6}$	$< 4 \times 10^{-6}$	$(4.6 \pm 0.9) \times 10^{-4}$			
Полигерманы	$(3\pm1)\times10^{-5}$	$(4\pm2)\times10^{-6}$	$(2.0 \pm 0.7) \times 10^{-4}$	$(2.8 \pm 0.7) \times 10^{-3}$			
CO ₂ , CO	$(1.9 \pm 0.3) \times 10^{-1}$	$(6\pm1)\times10^{-6}$	1.0 ± 0.3	$(1.1 \pm 0.2) \times 10^{-3}$			
CS ₂ , COS	$(1.2 \pm 0.6) \times 10^{-3}$	$< 1 \times 10^{-5}$	$< 1 \times 10^{-5}$	$(1.0 \pm 0.3) \times 10^{-2}$			
N ₂ O	$(2.4 \pm 0.8) \times 10^{-4}$	$< 1 \times 10^{-6}$	$(3\pm1)\times10^{-3}$	$(4\pm2)\times10^{-6}$			

использована для оценки чистоты германия. Основная часть монокристалла имела УЭС при комнатной температуре не менее 50 Ом см, которое определялось преимущественно концентрацией собственных носителей заряда (2×10^{13} ат./см³). В начальной и средней частях кристалла наблюдался дырочный тип проводимости, что может быть связано с присутствием остаточных акцепторных электроактивных примесей (бор, алюминий). В хвостовой части кристалла тип проводимости изменялся на электронный, а УЭС уменьшалось до 22 Ом см, что соответствует концентрации донорной примеси 7×10^{13} ат./см³. Следует отметить, что достигнутый уровень содержания электроактивных примесей в монокристалле получен

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 58 № 3 2022

без использования дополнительной очистки исходного поликристалла методом зонной плавки. Основными структурными дефектами в монокристалле являются дислокации. Плотность дислокаций составила (0.5–1) × 10⁴ см⁻².

Для оценки химической чистоты монокристалла ⁷⁰Ge был проведен его масс-спектрометрический анализ. Содержание анализируемых примесей не превышало предела обнаружения масс-спектрометрического метода анализа (10^{-5} — 10^{-6} мас. %). Исключение составляет примесь кремния, содержание которой в кристаллах составило 2×10^{-5} мас. %. Источником этой приме-

Рис. 2. Целевой монокристалл германия-70.

си является кварцевое стекло, из которого изготовлен тигель для выращивания кристаллов.

Результаты работы подтвердили перспективность гидридного метода для получения изотопов германия с высокой изотопной и химической чистотой. Использование моногермана в качестве исходного летучего вещества для центробежного разделения изотопов позволяет извлекать из него требуемый изотоп германия-70 со степенью обогащения более 99.99 ат. %. Ректификация эффективно отделяет моногерман от примесей. Процесс пиролиза очищенного моногермана позволяет получать поликристаллический германий с УЭС, близким к собственному. Гидридный метод характеризуется высоким выходом целевого продукта.

В полученном образце изотопа ⁷⁰Ge достигнуто рекордно низкое содержание изотопа ⁷³Ge, обладающего ненулевым ядерным спином. Это открывает возможности для использования таких образцов в качестве материала матрицы квантовых вычислительных устройств, использующих состояние ядерного спина в качестве кубита.

ЗАКЛЮЧЕНИЕ

Реализована гидридная схема получения высокочистых монокристаллов изотопа германия-70 с использованием моногермана в качестве исходного летучего вещества. Получен монокристалл ⁷⁰Ge с содержанием основного изотопа на уровне 99.926 ат. %, изотопа ⁷³Ge – 0.00007 ат. %. Содержание примесей других элементов – менее $10^{-5}-10^{-6}$ мас. %. УЭС основной части монокристалла определяется собственными носителями заряда и составляет не менее 50 Ом см.

БЛАГОДАРНОСТЬ

Работа выполнена по теме № 0095-2019-0008 Государственной программы Проведение фундаментальных научных исследований (Выполнение фундаментальных исследований (ГП14)).

Авторы благодарят А.М. Потапова и О.Ю. Чернову за помощь в проведении анализа предоставленных образцов моногермана и германия на содержание изотопных и химических примесей.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Cardona M., Thewalt M.L.W.* Isotope Effects on the Optical Spectra of Semiconductors // Rev. Mod. Phys. 2005. V. 77. № 4. P. 1173–1224.
- Inyushkin A.V., Taldenkov A.N., Ozhogin V.I., Itoh K.M., Haller E.E. Isotope Effect on the Phonon-Drag Component of the Thermoelectric Power of Germanium // Phys. Rev. B. 2003. V. 68. 153203. P. 1–4.
- 3. *Валиев К.А.* Квантовые компьютеры и квантовые вычисления // Успехи физ. наук. 2005. Т. 175. № 1. С. 1–39.
- 4. *Kane B.E.* A Silicon-Based Nuclear Spin Quantum Computer // Nature.1998. V. 393. P. 133–137.
- Jock R.M., Tyryshkin A.M., Beeman J.W., Haller E.E., Itoh K.M., Lyon S.A. Electron Spin Coherence of Shallow Donors in Natural and Isotopically Enriched Germanium // Phys. Rev. Lett. 2015. V. 115. P. 247601.
- Афанасьев В.Г., Водолазских В.В., Гаврилов П.М., Журин В.А., Калашников А.Л., Колесников А.И., Короткевич В.М. Способ разделения изотопов: Патент № 2331463 РФ. Опубл. 20.08.2008.
- Itoh K., Hansen W.L., Haller E.E., Farmer J.W., Ozhogin V.I., Rudnev A., Tikhomirov A. High Purity Isotopically Enriched ⁷⁰Ge and ⁷⁴Ge Single Crystals: Isotope Separation, Growth, and Properties // J. Mater. Res. 1993. V. 8. №. 6. P. 1341–1347.
- Hu M.Y., Sinn H., Alatas A., Sturhahn W., Alp E.E., Wille H.-C., Shvyd'ko Yu.V., Sutter J.P., Bandaru J., Haller E.E., Ozhogin V.I., Rodriguez S., Colella R., Kartheuser E., Villeret M. A. Effect of Isotopic Compo-

sition on the Lattice Parameter of Germanium Measured by X-ray Backscattering // Phys. Rev. B. 2003. V. 67. P. 113306.

- Asen-Palmer M., Bartkowski K., Gmelin E., Cardona M., Zhernov A.P., Inyushkin A.V., Taldenkov A.N., Ozhogin V.I., Itoh K.M., Haller E.E. Thermal Conductivity of Germanium Crystals with Different Isotopic Composition // Phys. Rev. B. 1997. V. 56. № 15. P. 9431– 9447.
- Каплунов И.А., Рогалин В.Е., Гавалян М.Ю. Влияние примесного и изотопического состава монокристаллического германия на оптическое пропускание в области 520–1000 см⁻¹ // Оптика и спектроскопия. 2015. Т. 118. № 2. С. 254–260.
- Рогалин В.Е., Ценина И.С., Каплунов И.А. Исследование влияния изотопической чистоты на оптические свойства германия // Научно-технические ведомости СПбГПУ. 2013. № 4-1(183). С. 352–358.
- 12. Тихомиров А.В. Способ приготовления компонент для получения оптических и полупроводниковых материалов: Патент № 2152349 РФ. Опубл. 10.07.2000.
- Артюхов А.А., Григорьев Г.Ю., Кравец Я.М., Курочкин А.В., Тихомиров А.В. Способ получения германия для полупроводниковых материалов: Патент № 2270715 РФ. Опубл. 27.02.2006. Б.И. № 6.
- Арефьев Д.Г., Буланов А.Д., Васин С.А. Способ разделения изотопов: Патент РФ № 2412747. Опубл. 27.02.2011. Б.И. № 6.
- Арефьев Д.Г., Васин С.А., Долгов С.Г., Зырянов С.М., Луцкий В.А., Скорынин Г.М., Тимофеев М.Г., Шарин Г.А., Филимонов С.В., Буланов А.Д., Чурбанов М.Ф. О применении моногермана для разделения изо-

топов германия на газовых центрифугах // Персп. материалы. 2010. № 8. С. 19–24.

- Churbanov M.F., Gavva V.A., Bulanov A.D., Abrosimov N.V., Kozyrev E.A., Andryushchenko I.A., Lipskii V.A., Adamchik S.A., Troshin O.Yu., Lashkov A.Yu., Gusev A.V. Production of Germanium Stable Isotopes Single Crystals // Cryst. Res. Technol. 2017. V. 52. № 4. P. 1700026(6).
- Чурбанов М.Ф., Буланов А.Д., Гавва В.А., Козырев Е.А., Андрющенко И.А., Липский В.А., Зырянов С.М. Способ получения разновидностей элементарного германия с высокой изотопной и химической чистотой: Патент № 2641126 РФ. Опубл. 16.01.2018. Б.И. № 2.
- Потапов А.М., Курганова А.Е., Буланов А.Д., Трошин О.Ю., Зырянов С.М. Изотопный анализ моногерманов ⁷²GeH₄, ⁷³GeH₄, ⁷⁴GeH₄ и ⁷⁶GeH₄ методом масс-спектрометрии высокого разрешения с индуктивно связанной плазмой (МС-ИСП) // Журн. аналит. химии. 2016. Т. 71. № 7. С. 698–706.
- Созин А.Ю., Буланов А.Д., Чурбанов М.Ф., Чернова О.Ю., Сорочкина Т.Г., Нуштаева Л.Б. Примесный состав высокочистых изотопно-обогащенных моносилана и моногермана // Неорган. материалы. 2017. Т. 53. № 1. С. 3–10.
- Адамчик С.А., Буланов А.Д., Сенников П.Г., Чурбанов М.Ф., Созин А.Ю., Чернова О.Ю., Кошелева И.А., Трошин О.Ю. Глубокая очистка GeH₄, обогащенного ⁷⁶Ge методом ректификации // Неорган. материалы. 2011. Т. 47. № 7. С. 777–779.
- 21. Липский В.А., Гавва В.А., Буланов А.Д. Получение изотопно-обогащенного поликристаллического германия пиролизом моногермана // Неорган. материалы. 2020. Т. 56. № 3. С. 235–240.