УДК 546.66

ПОЛУЧЕНИЕ И СТРОЕНИЕ НОВЫХ ОРТОФОСФАТОВ $A_2R_{1.5}Ta_{0.5}(PO_4)_3$ (A = K, Rb; R = Ga, Gd, Dy, Ho, Er, Yb) СО СТРУКТУРОЙ МИНЕРАЛА ЛАНГБЕЙНИТА

© 2022 г. А. К. Корытцева^{1, *}, А. И. Орлова¹, С. В. Нагорнова¹, Н. А. Седова¹, А. И. Бескровный²

¹Нижегородский государственный университет им. Н.И. Лобачевского, Нижний Новгород, 603022 Россия ²Лаборатория им. И.М. Франка, Объединенный институт ядерных исследований,

ул. Жолио Кюри, 6, Дубна, Московская обл., 141980 Россия

**e-mail: koak@mail.ru* Поступила в редакцию 18.10.2021 г. После доработки 13.01.2022 г. Принята к публикации 14.01.2022 г.

Новые ортофосфаты состава $A_2R_{1.5}Ta_{0.5}(PO_4)_3$ (A = K, Rb; R = Ga, Gd, Dy, Ho, Er, Yb) получены путем твердофазного взаимодействия, охарактеризованы методами ИК-спектроскопии, рентгеновской дифракции. Установлено, что они кристаллизуются в структуре минерала лангбейнита (пр. гр. $P2_13$), параметр кубической элементарной ячейки возрастает с ростом ионного радиуса лантаноида. Методом порошковой дифракции нейтронов выполнено уточнение структуры $K_2Dy_{1.5}Ta_{0.5}(PO_4)_3$: катионы калия и диспрозия разупорядочены по каркасным позициям структуры. Полученные соединения представляют интерес в качестве кристаллических однофазных минералоподобных матриц для долговременной изоляции от биосферы опасных радионуклидов.

Ключевые слова: лангбейнит, галлий, тантал, лантаноиды, фосфаты, твердофазный синтез, рентгеновская дифракция, нейтронография, ИК-спектроскопия, кристаллическая структура DOI: 10.31857/S0002337X22040066

введение

Фосфаты со структурой природного минерала лангбейнита (природный аналог $K_2Mg_2(SO_4)_3$, кубическая сингония, пр. гр. Р2,3) образуют большое семейство природных аналогов [1, 2]. Эта структура обладает октаэдро-тетраэдрическим каркасом и объемными полостями в соответствии с кристаллохимической формулой (M1)⁽⁹⁾(M2)⁽⁶⁻¹²⁾[L₂⁽⁶⁾(PO₄)₃], где L и M – каркасные и некаркасные позиции соответственно, в которых могут размещаться катионы с к. ч. в соответствующих кислородных полиэдрах, равными 6 и 9 или 12 [3]. Система ортофосфатов такого строения характеризуется широким изоморфизмом катионов и анионов, благодаря которому возможно включение в состав этих соединений разных по природе катионов в степенях окисления от 1+ до 5+ с образованием твердых растворов. Интерес к таким фосфатам определяется их оптическими [4, 5], магнитными свойствами [6], высокой термической и химической стабильностью, способностью к иммобилизации опасных радионуклидов [7–9].

Информация об известных фосфатах, относящихся к структурному типу лангбейнита, представлена нами ранее в обзорах [10, 11]. Из нее следует, что такие изоструктурные фосфаты могут содержать катионы: Na, Rb, Cs, Tl; Mg, Ca, Sr, Ba, Pb, Mn, Co, Ni, Cu, Zn; Al, Ti(III), V, Cr, Ga, Y, Rh, In, La, Ln = Ce - Lu; Ti(IV), Zr, Hf, Nb, Ta [11]. Обращает на себя внимание тот факт, что в литературе мало сведений о фосфатах пятивалентных элементов. В частности, синтезированы и исследованы соединения вида $K_2R_0 {}_5C_1 {}_5(PO_4)_3$, где R = Al, Cr, Fe, Y, In; C = Nb, Ta [12, 13], а также твердые растворы $K_2 Tb_{1.5-x} Ta_{0.5} (PO_4)_3 : xEu^{3+}$ (x = 0.01, 0.03, 0.05, 0.07, 0.10) [14] и K₂Dy_{1.5 - x}Eu_xTa_{0.5}(PO₄)₃ (x = 0 - 1.5) [15]. Кроме научного интереса к структурно-химическим исследованиям фосфатов пятивалентных элементов, в частности тантала, имеется ряд практических задач, где результаты таких работ могут быть полезными. В связи с тем, что тантал используется в ядерно-энергетических системах в качестве материалов теплообменников, а оксид тантала используется в атомной технике для варки стекла, поглощающего у-излучение, возникают проблемы их утилизации - переработки совместно с другими опасными компонентами отходов в устойчивые химические формы. Такие отходы содержат, как правило, также и лантаноиды (продукты деления, поглотители нейтронов). Как показано в [10], роль кристаллических (керамических) матриц, пригодных для долговременного хранения и захоронения подобных отходов ядерных технологий, могут выполнять материалы со структурой лангбейнита.

Целью данной работы является изучение возможности получения и строения фосфатов вида $A_2R_{1.5}Ta_{0.5}(PO_4)_3$ (A = K, Rb, Cs; R = Ga, Sm, Eu, Gd, Dy, Ho, Er, Yb, Lu).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных реагентов использовали KCl ("Вектон", 99.5%), RbCl ("Вектон", 99.5%), CsCl ("Вектон", 99.5%), NH₄H₂PO₄ ("Вектон", 99.8%), Та₂O₅ ("Вектон", 99.9%), Sm₂O₃ ("Ланхит", 99.99%), Eu₂O₃ ("Ланхит", 99.99%), Gd₂O₃ ("Ланхит", 99.99%), Dy(NO₃)₃ · 5H₂O (Merck, 99.9%), Ho(NO₃)₃ · 5H₂O (Merck, 99.9%), Er₂O₃ ("Ланхит", 99.99%), Yb₂O₃ ("Ланхит", 99.99%), Lu₂O₃ (Merck, 99.9%). Фосфаты получали твердофазным методом. Стехиометрические смеси исхолных реагентов тшательно лиспергировали и выдерживали при температуре 450°С в течение 3 ч. Полученные продукты повторно диспергировали в агатовой ступке и далее ступенчато отжигали при 600, 800, 880, 900°С в течение суток и при 970°С в течение 12 ч. В промежутках между стадиями диспергирование повторяли.

Исследование образцов методом рентгенофазового анализа выполняли на дифрактометре Shimadzu XRD-6000 в Cu K_{α} -фильтрованном излучении ($\lambda = 1.54048$ Å) при комнатной температуре в диапазоне углов отражения 20 от 10° до 50°, со скоростью записи 1 град/мин. Систематические ошибки за счет геометрических факторов были устранены внесением поправки. Фазовый состав идентифицировали с использованием базы данных PDF-2 [16].

ИК-спектры полученных соединений регистрировали на спектрофотометре SPECORD 75IR в диапазоне волновых чисел 1400–400 см⁻¹. Образцы для съемки представляли собой тонкодисперсные пленки, которые готовили путем нанесения суспензии образца в изопропиловом спирте на подложку KBr с последующим высушиванием.

Нейтронограммы порошков, помещенных в цилиндрические контейнеры диаметром 10 мм, регистрировали на времяпролетном дифрактометре ДРВ, установленном на импульсном реакторе ИБР-2 (Дубна, РФ) [17]. Съемку выполняли при комнатной температуре. Уточнение структуры методом Ритвельда проводили с использованием программы Mria [18].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Полученные соединения представляли собой поликристаллические порошки белого цвета для соединений галлия, гадолиния, диспрозия, иттербия; желтого цвета для соединений гольмия, розового цвета для соединений эрбия.

Данные ИК-спектроскопии свидетельствуют о принадлежности полученных соединений к классу ортофосфатов. На спектрах соединений (рис. 1) присутствуют все полосы поглощения, которые могут быть представлены в соответствии с теорией групп для фосфорного тетраэдра в кристаллической решетке с пр. гр. $P2_13$ (800– 1400 см⁻¹ – валентные колебания связи PO, 450– 650 см⁻¹ – деформационные колебания связи PO).

Данные РФА показали образование однофазных продуктов $A_2R_{1.5}Ta_{0.5}(PO_4)_3$, где A = K, Rb; R = Ga, Gd, Dy, Ho, Er, Yb. На рис. 2 в качестве примера представлены рентгенограммы некоторых синтезированных фосфатов. Для всех полученных продуктов положение и относительная интенсивность дифракционных максимумов на рентгенограммах были идентичны.

По результатам выполненного аналитического индицирования с использованием аналога K₂GdZr(PO₄)₃ [19] все продукты характеризовались кубической сингонией и относились к структурному типу лангбейнита (пр. гр. P2₁3). Кристаллографические параметры представлены в табл. 1. Видно, что параметр кубической элементарной ячейки возрастает с увеличением ионного радиуса лантаноида (к. ч. = 6), взятого по системе радиусов Шеннона [20]. Это согласуется с данными [8] по цирконийсодержащим фосфатам со структурой лангбейнита $K_2LnZr(PO_4)_3$ (Ln = Ce-Yb, Y). При этом параметр а для танталсодержащих фосфатов K₂Ln_{1.5}Ta_{0.5}(PO₄)₃ выше (табл. 1), чем для их циркониевых аналогов K₂LnZr(PO₄)₃ для всех производных калия (рис. 3), т. к. у первых доля более крупного катиона лантаноида в расчете на одну формульную единицу выше, чем у вторых. Если сравнивать Ln-содержащие фосфаты структурного типа лангбейнита с Ln-содержащими фосфатами структурных типов монацита и ксенотима [21], то у всех элементарная ячейка увеличивается с ростом радиуса лантаноида. Рассматривая эти каркасные структуры как построенные из полиэдров, связанных по вершинам (лангбейниты) и ребрам (монациты), можно заметить, что они достаточно легко расширяются при заселении LnO_x -полиэдров с к. ч. = 6 и к. ч. = 9 более крупными катионами.

Установленная температура синтеза однофазных продуктов составила 800° С для производных калия и 900° С для производных рубидия (табл. 1). Недавно описанный в [15] порошкообразный фосфат $K_2 Dy_{1.5} Ta_{0.5} (PO_4)_3$ был получен твердофазной реакцией при 950° С. Мы полагаем, что использование нами низкотемпературной орторомбической модификации оксида тантала повлияло на кинетику твердофазного взаимодействия и привело к снижению температуры синтеза вещества на 150°С.

В образцах с Sm, Eu и Lu для A = K, Rb присутствовали фазы соответствующих простых фосфатов самария, европия и лютеция в соизмеримых с целевыми фазами количествах, причем фазовая картина сохранялась и при температуре 970°С. Сs-содержащие кристаллические соединения Cs₂Sm_{1.5}Ta_{0.5}(PO₄)₃ и Cs₂Eu_{1.5}Ta_{0.5}(PO₄)₃ получить не удалось. Вероятно, это связано с тем, что цезий улетучивался при температуре реакции, приводя к нарушению стехиометрии и невозможности образования соединения заданного состава. Таким образом, в состав полученных соединений входят только лантаноиды иттриевой группы, поскольку обладают меньшими ионными радиусами по сравнению с представителями цериевой группы [20]. При этом содержание лантаноидов в расчете на формульную единицу составляет 34-35 мас. % в случае производных калия и 30-32 мас. % для производных рубидия.

С применением метода Ритвельда по данным порошковой нейтронографии было выполнено уточнение структуры (табл. 2) фосфата K₂Dy_{1.5}Ta_{0.5}(PO₄)₃. На рис. 4 представлена нейтронограмма указанного фосфата. Рассчитанные позиционные и тепловые параметры для фосфата $K_2Dy_{15}Ta_{05}(PO_4)_3$ приведены в табл. 3, а значения межатомных расстояний и валентных углов фосфата K₂Dy_{1.5}Ta_{0.5}(PO₄)₃ – в табл. 4. В качестве стартовой модели для уточнения структурных характеристик K₂Dy₁₅Ta₀₅(PO₄)₃ были использованы данные для $K_2 Pr Zr(PO_4)_3$ [8]. При обработке спектра допускалась возможность перемешивания атомов Dy и Ta по двум М-позициям каркаса с учетом того, что сумма заселенностей каждого из них равна единице. Фрагмент структуры представлен на рис. 5.

Согласно полученным данным, Dy и Ta занимают позиции каркаса, обозначенные в табл. 4 как (Dy/Ta)1 и (Dy/Ta)2. Они координируются

Рис. 1. ИК-спектры синтезированных соединений.

шестью атомами кислорода с образованием октаэдров (Dy/Ta)O₆. Подобное разупорядоченное распределение по катионным позициям наблюдается в $K_2Tb_{1.5}Ta_{0.5}(PO_4)_3$ [14]. В соединении $K_2Dy_{1.5}Ta_{0.5}(PO_4)_3$, полученном ранее в работе [15], подобная структурная особенность не обнаружена. Это может быть связано с тем, что в [15] структуру уточняли по данным рентгеновской дифракции, где указанные катионы Dy и Ta трудно различимы по рассеянию. Применение в данной работе для соединения $K_2Dy_{1.5}Ta_{0.5}(PO_4)_3$ метода дифракции нейтронов имеет преимущество перед рентгеновской дифракцией, поскольку амплитуды

Рис. 2. Рентгенограммы порошков синтезированных соединений: $K_2 Er_{1.5} Ta_{0.5} (PO_4)_3$ (1), $K_2 Ho_{1.5} Ta_{0.5} (PO_4)_3$ (2), $K_2 Gd_{1.5} Ta_{0.5} (PO_4)_3$ (3).

Таблица 1.	Условия	синтеза и кр	исталлографи	ческие пар	раметры с	росфатов	$A_2R_{15}Ta_{05}$	$(PO_4)_3 (A =$	= K, R	.b; R =	= Ga,
Gd, Dy, He	o, Er, Yb)						2 110 010				

	%		Пара	метры		%		Парам	етры
	кание юида с, мас.	⁷ Da	элементарной			иие да гас.	vpa °C	элемент	гарной
Φορι αυτο		ату за, '	ячейки			кан юи е, м	ary a, '	ячейки	
Формула	Содеру лантан в фосфат	Темпер синтез	<i>a</i> , Å	<i>V</i> , Å ³	Формула	Содеру лантан в фосфате	Темпер синтез	a, Å	<i>V</i> , Å ³
К-содержащие производные				Rb-содержащие производные					
$K_2Ga_{1.5}Ta_{0.5}(PO_4)_3$		800	9.825(3)	948.4(1)					
$K_2Gd_{1.5}Ta_{0.5}(PO_4)_3$	34.2	800	10.430(7)	1134.6(3)	$Rb_2Gd_{1.5}Ta_{0.5}(PO_4)_3$	30.2	880	10.44(4)	1139(2)
K ₂ Dy _{1.5} Ta _{0.5} (PO ₄) ₃	35.0	800	10.345(2)	1107.1(1)	$Rb_2Dy_{1.5}Ta_{0.5}(PO_4)_3$	30.9	900	10.44(8)	1140(5)
K ₂ Ho _{1.5} Ta _{0.5} (PO ₄) ₃	35.3	800	10.325(3)	1100.7(1)	$Rb_2Ho_{1.5}Ta_{0.5}(PO_4)_3$	31.2	900	10.43(7)	1136(9)
K ₂ Er _{1.5} Ta _{0.5} (PO ₄) ₃	35.6	800	10.317(3)	1098.1(5)	$Rb_2Er_{1.5}Ta_{0.5}(PO_4)_3$	31.5	900	10.36(9)	1114(8)
					$Rb_2Yb_{1.5}Ta_{0.5}(PO_4)_3$	32.2	900	10.36(3)	1112(9)

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 58 № 4 2022

Рис. 3. Зависимость параметров элементарной ячейки от радиуса лантаноида.

Рис. 4. Нейтронограмма фосфата K₂Dy_{1.5}Ta_{0.5}(PO₄)₃: теоретический и экспериментальный спектры, расчетное положение рефлексов.

когерентного рассеяния нейтронов для Dy и Ta существенно различаются между собой [22].

Несмотря на сложность вхождения в однотипные позиции каркаса катионов Dy и Ta, значительно различающихся по ионным радиусам (0.912 Å для Dy c к. ч. = 6 и 0.64 Å для Ta c к. ч. = 6) и электронному строению, факт существования соединения $K_2Dy_{1.5}Ta_{0.5}(PO_4)_3$ подчеркивает гибкость лангбейнитового каркаса в отношении включения (адаптации в структуре) различных по природе катионов. Октаэдры (Dy/Ta)O₆ значительно деформированы: длина связей (Dy/Ta)–O варьируется от 2.12 до 2.47 Å и в среднем равна 2.36 Å. Это несколько больше длин связей

Таблица 2. Экспериментальные параметры и результаты уточнения кристаллической структуры $K_2 Dy_{1.5} Ta_{0.5} (PO_4)_3$

Сингония	Кубическая
Пр. гр.	<i>P</i> 2 ₁ 3 (№ 198)
<i>a</i> , Å	10.3142(1)
<i>V</i> , A ³	1097.3(2)
Ζ	4
Цвет	Белый
<i>d</i> , Å	0.97-4.76
Число рефлексов	164
R _{exp}	4.02
R _{wp}	2.59
R _p	3.78
χ^2	2.56
Число уточняемых параметров	39

(Dy/Ta)-O (2.18 Å) в $K_2Dy_{1.5}Ta_{0.5}(PO_4)_3$ [15] и (Tb/Ta)-O (2.161 Å) в $K_2Tb_{1.5}Ta_{0.5}(PO_4)_3$ [14], но находится в соответствии с длинами связей Ta-O (от 1.87 до 2.45 Å) и Dy-O (от 2.34 до 2.45 Å) в сложном оксиде DyTa₇O₁₉ [23].

РО₄-тетраэдры изолированы друг от друга, но посредством общих атомов кислорода они соединены с (Dy/Ta)-октаэдрами в соотношении 3 : 2 в расчете на одну формульную единицу, образуя димер. Соединение полиэдров за счет только общих кислородных вершин (но не ребер и/или граней) делает каркас очень гибким: с одной стороны, допускает значительную деформацию обоих полиэдров, а с другой — позволяет сохранять октаэдро-тетраэдрический димер как характерный фрагмент лангбейнитового каркаса. Эти димеры сочленяются и образуют трехмерную вязь, содержащую крупные межкаркасные эллипсоидально-

Таблица 3. Заселенности позиций (w), координаты и тепловые факторы $B_{изo}$ катионов в структуре $K_2Dy_{1.5}Ta_{0.5}(PO_4)_3$

Атом	Позиция	w	x	У	Z,	<i>В</i> _{изо}
K(1)	4 <i>a</i>	1	0.0507	0.0507	0.0507	4
K(2)	4 <i>a</i>	1	0.3138	0.3138	0.3138	0.3
Dy/Ta(1)	4 <i>a</i>	0.75/0.25	0.5795	0.5795	0.5795	0.3
Dy/Ta(2)	4 <i>a</i>	0.75/0.25	0.8554	0.8854	0.8554	0.38
Р	12 <i>b</i>	3	0.6051	0.4552	0.2442	0.24
01	12 <i>b</i>	4	0.6518	0.4996	0.3701	0.44
O2	12 <i>b</i>	4	0.7124	0.4239	0.1696	0.17
O3	12 <i>b</i>	4	0.5423	0.3013	0.2748	0.18
O4	12 <i>b</i>	4	0.5887	0.6042	0.1659	0.15

Таблица 4. Межатомные расстояния (Å) и валентные углы в структуре K₂Dy_{1.5}Ta_{0.5}(PO₄)₃

КО ₉ -полиэдры					РО ₄ -тетраэдры				
K1–O2	2.8 × 3	K2–O1	2.41 × 3			O1-P-O2	104.3		
K1-O3	2.85 × 3	K2–O2	2.42 × 3	P-01	1.4	O2-P-O3	107.7		
K1-O4	3.24 × 3	K2–O4	3.8×3	P–O2	1.47	O1-P-O4	99.7		
$\langle K-O \rangle$	2.96°	$\langle K-O \rangle$	2.88°	Р-О3	1.76	O2-P-O3	100.7		
(Dy/Ta)О ₆ -октаэдры					1.76	O2-P-O4	148.2		
(Dy/Ta)1-O1	2.45 × 3	(Dy/Ta)2-O3	2.47 × 3	$\langle P-O \rangle$	1.60°	O3-P-O4	91.47		
(Dy/Ta)1–O2	2.36 × 3	(Dy/Ta)2-O4	2.12 × 3			$\langle O-P-O \rangle$	108.7°		
$\langle (Dy/Ta)1-O \rangle$	2.41°	$\langle (Dy/Ta)2-O \rangle$	2.30°						

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 58 № 4 2022

Рис. 5. Фрагмент структуры K₂Dy_{1 5}Ta_{0 5}(PO₄)₃.

го вида полости, полностью заселенные катионами К.

ЗАКЛЮЧЕНИЕ

Методом твердофазной реакции при 800 и 900°С получены новые соединения тантала, лантаноидов иттриевой группы и галлия состава $A_2R_{1.5}Ta_{0.5}(PO_4)_3$ (A = K, Rb; R = Ga, Gd, Dy, Ho, Er, Yb). Использование низкотемпературной модификации оксида тантала позволило снизить температуру синтеза $K_2Dy_{1.5}Ta_{0.5}(PO_4)_3$ на 150°С по сравнению с данными [15].

Уточнение структуры $K_2 Dy_{1.5} Ta_{0.5} (PO_4)_3$ по данным порошковой дифракции нейтронов показало разупорядоченный характер распределения Dy и Ta по позициям каркаса.

Данные фосфаты могут рассматриваться как перспективные однофазные минералоподобные матрицы-кандидаты, способные включать в свой состав компоненты, образующиеся при переработке отходов ядерных технологий, в частности фракции редкоземельных элементов, для изоляции их от биосферы.

БЛАГОДАРНОСТЬ

Работа выполнена при финансовой поддержке Российского научного фонда (номер проекта 21-13-00308).

Авторы благодарят В.С. Куражковскую за снятие ИК-спектров.

СПИСОК ЛИТЕРАТУРЫ

- Benmoussa A., Borel M.M., Grandin A., Leclaire A., Raveau B. Langbeinite, a Host Lattice for "V₃O" Clusters: The Trivalent Vanadium Phosphate K₁₁V₁₅P₁₈O₇₃ // J. Solid State Chem. 1992. V. 97. № 2. P. 314–318. https://doi.org/10.1016/0022-4596(92)90039-X
- 2. Kasthuri Rangan K., Gopalakrishnan J. New Titanium-Vanadium Phosphates of Nasicon and Langbeinite Structures, and Differences between the Two Structures toward Deintercalation of Alkali Metal // J. Solid State Chem. 1994. V. 109. № 1. P. 116–121. https://doi.org/10.1006/jssc.1994.1080
- 3. Сизова Р.Г., Блинов В.А., Воронков А.А., Илюхин В.В., Белов Н.В. Уточненная структура Na₄Zr₂(SiO₄)₃ и ее место в ряду смешанных каркасов с общей формулой M₂(TO₄)₃ // Кристаллография. 1981. Т. 26. № 2. С. 293–300.
- 4. Carvajal J.J., Aznar A., Solé R., Gavaldà Jna., Massons J., Solans X., Aguiló M., Díaz F. Growth and Structural Char-

2022

acterization of Rb₂Ti_{1.01}Er_{0.99}(PO₄)₃ // Chem. Mater. 2003. V. 15. № 1. P. 204–211. https://doi.org/10.1021/cm020806t

- 5. Jiao M., Lv W., Lü W., Zhao Q., Shao B., You H. Optical Properties and Energy Transfer of a Novel $KSrSc_2(PO_4)_3$: $Ce^{3+}/Eu^{2+}/Tb^{3+}$ Phosphor for White Light Emitting Diodes // Dalton Trans. 2015. V. 44. P. 4080-4087.
- 6. Lajmi B., Hidouri M., Wattiaux A., Fournés L., Darriet J., Ben Amara M. Crystal Structure, Mössbauer Spectroscopy, and Magnetic Properties of a New Potassium Iron Oxyphosphate $K_{11}Fe_{15}(PO_4)_{18}O$ Related to the Langbeinite-Like Compounds // J. Alloys Compd. 2003. V. 361. № 1-2. P. 77-83. https://doi.org/10.1016/S0925-8388(03)00412-2
- 7. Orlova A.I., Trubach I.G., Kurazhkovskava V.S., Pertierra P., Salvadó M.A., García-Granda S., Khainakov S.A., Garcia J.R. Synthesis, Characterization, and Structural Study of $K_2FeZrP_3O_{12}$ with the Langbeinite Structure // J. Solid State Chem. 2003. V. 173. No 2. P. 314–318. https://doi.org/10.1016/S0022-4596(03)00101-4
- 8. Трубач И.Г., Бескровный А.И., Орлова А.И., Орлова В.А., Куражковская В.С. Синтез и исследование новых фосфатов вида $K_2LnZr(PO_4)_3$ (Ln = Ce-Yb, Y) со структурой лангбейнита // Кристаллография. 2004. T. 49. № 4. C. 692–696.
- 9. Орлова А.И., Орлова В.А., Бучирин А.В., Бескровный А.И. Цезий и его аналоги рубидий, калий в ромбоэдрических [тип NaZr₂(PO₄)₃] и кубических [тип лангбейнита] фосфатах. 1. Кристаллохимические исследования // Радиохимия. 2005. Т. 47. № 3. C. 203-212.
- 10. Orlova A.I., Ojovan M.I. Ceramic Mineral Waste-Forms for Nuclear Waste Immobilization // Materials. 2019. V. 12. P. 2638-2683. https://doi.org/10.3390/ma12162638
- 11. Орлова А.И., Корытиева А.К., Логинова Е.Е. Семейство фосфатов со структурой лангбейнита. Кристаллохимический аспект иммобилизации радиоактивных отходов // Радиохимия. 2011. Т. 53. № 1. C. 48-57.
- 12. Орлова А.И., Корытцева А.К., Борцова Е.В., Нагорнова С.В., Казанцев Г.Н., Самойлов С.Г., Банкрашков А.В., Куражковская В.С. Фосфаты тантала и ниобия каркасного строения. Кристаллохимическое моделирование, синтез и исследование новых соединений // Кристаллография. 2006. Т. 51. № 3. C. 391-399.
- 13. Затовский И.В., Слободяник Н.С., Ущапивская Т.Н., Огородник И.В., Бабарик А.А. Синтез сложных фос-

фатов со структурой лангбейнита из растворов в расплавах // Журн. прикл. химии. 2006. Т. 79. № 1. C. 12-17.

- 14. Xue Y.-L., Zhao D., Zhang S.-R., Li Y.-N., Fan Y.-P. A New Disordered Langbeinite-Type Compound, $K_2Tb_{1.5}Ta_{0.5}P_3O_{12}$, and Eu^{3+} -Doped Multicolour Light-Emitting Properties // Acta Crystallogr. 2019. V. 75. P. 213–220.
- 15. Zhang S., Zhao D., Dai Sh., Lou H., Zhang R. Energy Transfer, Superior Thermal Stability and Multi-Color Emitting Properties of Langbeinite-Type Solid-Solution Phosphor $K_2Dy_{1.5 - x}Eu_xTa_{0.5}(PO_4)_3 // J$. Rare Earths. 2021. V. 39. No 8. P. 921–929. https://doi.org/10.1016/j.jre.2020.07.003
- 16. DIFFRAC.EVA. Release 2011. Copyright Bruker AXS 2010, 2011. Version 2.0. www.bruker-axs.com
- 17. Балагуров А.М., Бескровный А.И., Журавлев В.В., Миронова Г.М., Бобриков И.А., Неов Д., Шеверёв С.Г. Дифрактометр для исследований переходных процессов в реальном времени на импульсном источнике нейтронов ИБР-2 // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2016. V. 10. № 5. С. 3-16.
- 18. Zlokazov V.B., Chernvshev V.V. MRIA a Program for a Full Profile Analysis of Powder Multiphase Neutron-Diffraction Time-of-Flight (Direct and Fourier) Spectra // J. Appl. Crystallogr. 1992. V. 25. № 3. P. 447-451.

https://doi.org/10.1107/S0021889891013122

- 19. Wulff H., Guth U., Loescher B. The Crystal Structure of $K_2REZr(PO_4)_3$ (RE = Y, Gd) Isotypic with Langbeinite // Powder Diffr. 1992. V. 7. P. 103–106.
- 20. Shannon R.D. Revised Effective Ionic Radii and Svstematic Studies of Interatomic Distances in Halides and Chalcogenides // Acta Crystallogr., Sec. A. 1976. V. 32. № 5. P. 751–767. https://doi.org/10.1107/S0567739476001551
- 21. Ni Y., Hughes J.M., Mariano A.N. Crystal Chemistry of the Monazite and Xenotime Structures // Am. Mineral. 1995. V. 80. P. 21-26.
- 22. Sears V.F. Neutron Scattering Lengths and Cross Sections // Neutron News. 1992. V. 3. № 3. P. 26–27. https://doi.org/10.1080/10448639208218770
- 23. Guo G.-C., Zhuang J.-N., Wang Y.-G., Chen J.-T., Zhuang H.-H., Huang J.-S., Zhan Q.-E. Dysprosium Tantalum Oxide, DyTa₇O₁₉ // Acta Crystallogr. 1996. V. 52. P. 5–7.