УЛК 546.776

СИНТЕЗ И ИССЛЕДОВАНИЕ ЛЮМИНОФОРА КВаGd(MoO₄)₃:Er³⁺/Yb³⁺ С ШЕЕЛИТОПОДОБНОЙ СТРУКТУРОЙ

© 2022 г. Н. М. Кожевникова*

Байкальский институт природопользования СО Российской академии наук, ул. Сахьяновой, 6, Улан-Удэ, 670047 Россия

*e-mail: nicas@binm.ru

Поступила в редакцию 23.06.2021 г. После доработки 31.10.2021 г. Принята к публикации 21.12.2021 г.

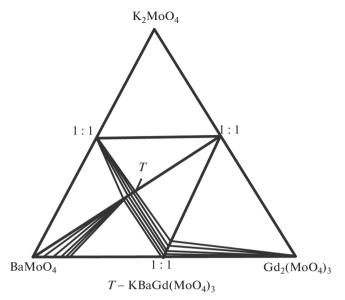
Изучены фазовые отношения в субсолидусной области системы $K_2\text{MoO}_4\text{-BaMoO}_4\text{-Gd}_2(\text{MoO}_4)_3$ по разрезам методами рентгенографического и дифференциального термического анализа, проведена триангуляция системы. Синтезирован тройной молибдат $KBaGd(\text{MoO}_4)_3$, который кристаллизуется в моноклинной шеелитоподобной структуре (пр. гр. $P2_1/n$). Легированием $KBaGd(\text{MoO}_4)_3$ ионами Er^{3+}/Yb^{3+} получен ап-конверсионный люминофор, обладающий антистоксовой люминесценцией в области 400-700 нм при возбуждении IK-излучением ($\lambda_{8036}=977$ нм). Синтезированный люминофор исследован методами рентгенографии, дифференциального термического анализа и колебательной спектроскопии, изучены его спектрально-люминесцентные характеристики.

Ключевые слова: система, фазовые равновесия, тройной молибдат, люминофор KBaGd(MoO₄) $_3$:Er $^{3+}$ / Yb $^{3+}$, ап-конверсионная люминесценция, ионы эрбия и иттербия

DOI: 10.31857/S0002337X2204008X

ВВЕДЕНИЕ

Молибдаты и вольфраматы, содержащие щелочноземельные и редкоземельные элементы, структуры которых производны от шеелита, обладая низким коэффициентом термического расширения, высокой химической и термической устойчивостью, находят широкое применение в таких областях, как квантовая электроника, волоконная оптика, люминофоры, лазерные устройства, апконверсионные материалы, преобразующие излучение с низкой энергией в излучение с более высокой энергией [1—4].


Поиск перспективных соединений и создание на их основе полифункциональных люминофоров, обладающих интенсивной люминесценцией при УФ-облучении и антистоксовой люминесценцией при ИК-возбуждении, является актуальной задачей для материаловедения. Эффективным способом воздействия на люминесцентные свойства материалов является легирование их ионами Er^{3+} , Yb^{3+} , способными поглощать ИК-излучение и преобразовывать его в видимую антистоксовую люминесценцию [5—18].

Обширность поля кристаллизации индивидуальных соединений и твердых растворов с шеелитоподобной структурой определяется возможностью изо- и гетеровалентных замещений щелочноземельных элементов катионами различной

природы, которые заселяют кристаллографические позиции каркаса структуры и ее полости. Широкий изоморфизм катионов различной природы приводит к дисбалансу зарядов в структуре шеелита вследствие геометрических особенностей расположения ближайших полиэдров, возникновению локальных и кооперативных искажений и позволяет регулировать оптические свойства фаз. Такие особенности строения шеелитоподобных молибдатов определяют перспективы их использования в качестве люминесцентных и лазерных материалов, химических сенсоров, ап-конверсионных материалов, что обуславливает интенсивные теоретические и экспериментальные исследования этой группы неорганических соединений [1-4, 14-16].

Среди тройных молибдатов, содержащих щелочноземельные и редкоземельные элементы, известны ряды кальциевых, стронциевых соединений MM'Ln(MoO_4)₃ (M=K,Rb,Cs;M'=Ca,Sr;Ln=Nd,Sm,Eu,Y,Lu) [6, 15]. Возможность других комбинаций катионов металлов не была проанализирована.

Цель настоящей работы — изучение фазовых равновесий в субсолидусной области системы $K_2MoO_4-BaMoO_4-Gd_2(MoO_4)_3$, синтез ап-конверсионного люминофора на основе тройного молибдата $KBaGd(MoO_4)_3$: Er^{3+}/Yb^{3+} с шеелито-

Рис. 1. Фазовые отношения в системе $K_2MoO_4-BaMoO_4-Gd_2(MoO_4)_3$ при $800^{\circ}C$.

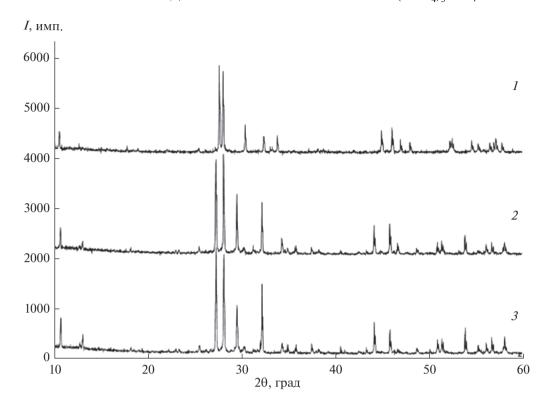
подобной структурой и изучение его люминесцентных и физико-химических свойств.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходными компонентами для изучения фазообразования в системе $K_2\text{MoO}_4\text{-BaMoO}_4\text{-}$ $Gd_2(\text{MoO}_4)_3$ служили предварительно синтезированные твердофазным способом $K_2\text{MoO}_4$, $Ba\text{MoO}_4$ и $Gd_2(\text{MoO}_4)_3$ из $K_2\text{CO}_3$, $Ba\text{CO}_3$, $Gd_2\text{O}_3$ и $Mo\text{O}_3$ в интервале температур $400-700^{\circ}\text{C}$ с многократной промежуточной гомогенизацией через каждые 20-30 ч. Время прокаливания при каждой температуре составляло 100-120 ч. После обжига образцы медленно охлаждали вместе с печью. Неравновесные образцы отжигали дополнительно, равновесие считали достигнутым, если фазовый состав образцов оставался неизменным при двух последовательных отжигах.

Продукты синтеза идентифицировали методами рентгенофазового анализа (РФА) на дифрактометре D8 Advance фирмы Bruker (CuK_{α} -излучение). Расчет рентгенограмм проводили с использованием программ "Рентген". Колебательные спектры поликристаллических образцов $KBaGd(MoO_4)_3$ зарегистрированы на спектрометрах Bruker FT-IR и Specord M-80 с использованием для возбуждения лазера с излучением в ближней ИК-области 1.06 мкм (геометрия обратного рассеяния, разрешение 3-5 см⁻¹). Образцы готовили в виде суспензии в вазелиновом масле на полиэтиленовой подложке и таблеток с KBr. Для приготовления изотопозамещенных по молибдену образцов использовали оксиды ⁹²MoO₃ и

¹⁰⁰МоО₃ с содержанием основного изотопа не менее 95%. Дифференциальный термический анализ (ДТА) проводили на дериватографе ОД-103 фирмы МОМ, скорость подъема температуры составляла 10°С/мин, навеска 0.3−0.4 г.


Для введения различных концентраций иона-активатора оксид гадолиния в KBaGd(MoO₄)₃ эквимолярно заменяли на оксиды эрбия и иттербия. Таким способом были получены образцы люминофора, содержащие 1-6 мол. % Er_2O_3 и 1-9 мол. % Yb_2O_3 . Спектры люминесценции образцов люминофора с различной концентрацией ионов эрбия и иттербия — $KBaGd_{0.97}Er_{0.01}Yb_{0.02}(MoO_4)_3$, $KBaGd_{0.95}Er_{0.01}-Yb_{0.04}(MoO_4)_3$, $KBaGd_{0.90}Er_{0.01}Yb_{0.09}(MoO_4)_3-$ измеряли на спектрометре Ocean Optics OE 65000. Для возбуждения люминесценции в ИК-диапазоне использовали лазерный диод InGaAs ($\lambda_{возб}$ = = 977 нм). Энергетический выход ап-конверсионной люминесценции измерен в видимом диапазоне спектра с помощью интегрирующей сферы. Приемником излучения являлся кремниевый фотодатчик TSL 237 с диапазоном чувствительности 300-1100 нм. Интенсивность возбуждающего пучка измерялась с помощью сферы. Энергетический выход люминофора определялся как отношение излученной мощности к поглощенной $(P_{\rm em}/P_{\rm abs})$. Поглощенную мощность рассчитывали как разницу между рассеянием от стандартного образца, не содержащего легирующих ионов, и от исследуемого образца. Времена жизни ап-конверсионной люминесценции ионов Er³⁺ определены в люминофоре с максимальным значением $B_{en} = 0.37\%$ при переходах между уровнями $^2H_{11/2} \rightarrow {}^4I_{15/2}$ и ${}^4S_{3/2} \rightarrow {}^4I_{15/2}$ (зеленая область спектра) и ${}^4F_{9/2} \rightarrow {}^4I_{15/2}$ (красная область спектра) с использованием интегрирующей сферы.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Взаимодействие в системе $K_2\text{MoO}_4\text{-BaMoO}_4\text{-}$ $Gd_2(\text{MoO}_4)_3$ изучено методом перекрещивающихся разрезов в области температур $450\text{--}800^\circ\text{C}$. Исследование системы $K_2\text{MoO}_4\text{--BaMoO}_4\text{--Gd}_2(\text{MoO}_4)_3$ проведено в две стадии. Первоначально изучали фазовый состав точек пересечения разрезов, исходящих из средних и двойных молибдатов, образующихся в ограняющих двойных системах. На второй стадии изучали выявленные квазибинарные до 800°C разрезы, что позволило провести триангуляцию системы.

На рис. 1 представлены фазовые отношения в системе K_2MoO_4 — $BaMoO_4$ — $Gd_2(MoO_4)_3$.

В ограняющей двойной системе $K_2\text{MoO}_4$ — $Gd_2(\text{MoO}_4)_3$ установлено образование молибдатов состава 1:1,5:1, кристаллизующихся в различных структурных типах [1,6,14]. При взаимодействии $K_2\text{MoO}_4$ с $Ba\text{MoO}_4$ зафиксировано об-

Рис. 2. Рентгенограммы α -KSm(MoO₄)₂ (1), KBaSm(MoO₄)₃ (2), KBaGd(MoO₄)₃ (3).

разование двойного молибдата K_2 Ba(MoO₄)₂, обладающего структурой пальмиерита. В системе BaMoO₄— Gd_2 (MoO₄)₃ синтезирован молибдат Ba Gd_2 (MoO₄)₄, принадлежащий к слоистой шеелитоподобной структуре с моноклинным искажением (пр. гр. C2/c) [2].

Наиболее подробно (через 1-2 мол. %) изучено взаимодействие на разрезе $BaMoO_4-KGd(MoO_4)_2$, где установлено образование тройного молибдата $KBaGd(MoO_4)_3$ при $650-750^{\circ}C$. Для достижения равновесия необходимо прокаливать реакционные смеси в течение 150-170 ч с промежуточной гомогенизацией.

Для системы $K_2\text{MoO}_4\text{-BaMoO}_4\text{-Gd}_2(\text{MoO}_4)_3$ квазибинарными разрезами являются $KGd(\text{MoO}_4)_2\text{-}$ $KBaGd(\text{MoO}_4)_3$, $K_2Ba(\text{MoO}_4)_2\text{-}KBaGd(\text{MoO}_4)_3$, $K_2Ba(\text{MoO}_4)_2\text{-}KGd(\text{MoO}_4)_2$, $Ba\text{MoO}_4\text{-}KBaGd(\text{MoO}_4)_3$, $BaGd_2(\text{MoO}_4)_4\text{-}KBaGd(\text{MoO}_4)_3$, $BaGd_2(\text{MoO}_4)_4\text{-}KGd(\text{MoO}_4)_2$. Методом $P\Phi A$ установлено, что в тройном молибдате $KBaGd(\text{MoO}_4)_3$ растворяется 3.5 мол. % $Ba\text{MoO}_4$, растворимость тройного молибдата в $Ba\text{MoO}_4$ составляет 12 мол. %. Фазовые отношения в системах $K_2Ba(\text{MoO}_4)_2\text{-}KBaGd(\text{MoO}_4)_3$ и $BaGd_2(\text{MoO}_4)_4\text{-}KBaGd(\text{MoO}_4)_3$ характеризуются двухфазными областями, системы эвтектические с областью гомогенности тройной фазы до 3 мол. %. Растворимость $KGd(\text{MoO}_4)_2$ в $KBaGd(\text{MoO}_4)_3$ составляет 3.0 мол. %, в $KGd(\text{MoO}_4)_2$

растворяется не более 1.5 мол. % $KBaGd(MoO_4)_3$. Разрез $K_2Ba(MoO_4)_2$ — $K_5Gd(MoO_4)_4$ не является квазибинарным, так как при температуре $800^{\circ}C$ он нестабилен из-за термической неустойчивости фазы $K_5Gd(MoO_4)_4$, которая плавится инконгруэнтно при $775^{\circ}C$. Разрез $K_2Ba(MoO_4)_2$ — $KGd(MoO_4)_2$ является простым эвтектическим без заметной растворимости компонентов.

Рентгенографическое исследование показало, что тройной молибдат KBaGd(MoO₄)₃ имеет шеелитоподобную структуру с моноклинным искажением и проявляет большое сходство в расположении наиболее интенсивных линий на рентгенограмме с α -KSm(MoO₄)₂, что свидетельствует об общности структурных мотивов тройного и двойного молибдатов. Для сравнения на рис. 2 приведены рентгенограммы α -KSm(MoO₄)₂, $KBaSm(MoO_4)_3$ и $KBaGd(MoO_4)_3$. Рентгенограммы KBaSm(MoO₄)₃ и KBaGd(MoO₄)₃ проиндицированы в моноклинной сингонии (пр. гр. $P2_{1}/n, Z = 9$). Соединения изоструктурны между собой, а также двойному молибдату α -KSm(MoO₄)₂ и принадлежат к структурному типу моноклинно искаженного шеелита.

Структуру $KBaGd(MoO_4)_3$ можно рассматривать как продукт гетеровалентного замещения щелочноземельного элемента в структуре шеелита по схеме: $2Ba = K^+ + Gd^{3+}$. Параметры кристал-

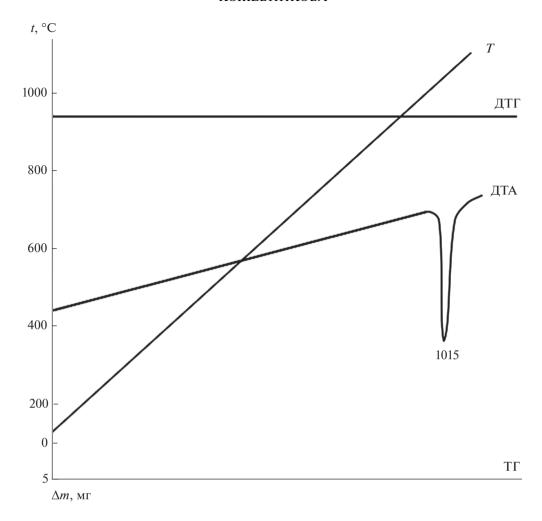


Рис. 3. Результаты термического анализа KBaGd(MoO₄)₃.

лической решетки KBaGd(MoO₄)₃ равны: a = 12.172(3) Å, b = 11.806(2) Å, c = 16.907(3) Å, $\beta = 95.00(3)$ °, V = 2420.4 Å³. Плавится KBaGd(MoO₄)₃ инконгруэнтно при 1015°C, не претерпевая полиморфных превращений (рис. 3).

Измеренные значения колебательных частот ИКи КР-спектров KBaGd(MoO₄)₃, KBaSm(MoO₄)₃, α -KSm(MoO₄)₂ приведены в табл. 1. Здесь же даны частоты колебаний BaMoO₄ и их отнесение к внутренним колебаниям групп MoO₄ и колебаниям кристаллической решетки (либрационным колебаниям MoO₄-групп (R) и трансляционным колебаниям различных подрешеток кристалла (T) [6, 19].

Представленные данные свидетельствуют о близости колебательных спектров $BaMoO_4$ и $KBaGd(MoO_4)_3$, $KBaSm(MoO_4)_3$, α - $KSm(MoO_4)_2$, что позволяет дать удовлетворительную интерпретацию. Имеющиеся различия объяснимы изменениями в межатомных расстояниях и, как следствие, в энергиях связей Mo-O при гетеровалентном изоморфном замещении в катионных

позициях. Так, границы области частот валентных колебаний групп MoO_4 заметно расширяются как в высокочастотную, так и в низкочастотную стороны, а число измеренных в этой области частот втрое больше, чем в спектре $BaMoO_4$. Увеличение числа полос связано с понижением симметрии групп MoO_4 , полным снятием вырождения трижды вырожденных колебаний и проявлением резонансного взаимодействия колебаний трансляционно-неэквивалентных групп MoO_4 .

В измеренных спектрах увеличивается число либрационных колебаний MoO_4 -групп, активных в ИК-спектрах. Их частоты практически не меняются по ряду исследованных соединений и близки соответствующим частотам $BaMoO_4$. Число наблюдаемых полос трансляционных колебаний отвечает предполагаемому теорией. Соответствующие частоты в ряде случаев претерпевают закономерные изменения в ходе замещения катионов. Полученные данные свидетельствуют о том, что в трансляционных колебаниях $KBaGd(MoO_4)_3$, $KBaSm(MoO_4)_3$, α - $KSm(MoO_4)_2$ в равной степени

Таблица 1. Частоты колебаний в KP- и ИК-спектрах $KBaGd(MoO_4)_3$, $KBaSm(MoO_4)_3$, α - $KSm(MoO_4)_2$, $BaMoO_4$

Отнесение	v, cm^{-1}							
	$BaMoO_4$		α -KSm(MoO ₄) ₂		KBaSm(MoO ₄) ₃		KBaGd(MoO ₄) ₃	
	ИК	KP	ИК	KP	ИК	KP	ИК	KP
		891	925	944		934	934	933
v_1				929	915	919	916	918
				888		895		894
						867	855	866
			845	869				
	830	838		840	840	838		837
				815		815		814
		792		803	801		800	802
V ₃			795	795	760	774	758	772
				767		746		747
			760	746		737		
			682		682		680	
			455				474	
			417		417			
	371	360	386		386		385	
v_2		346	352	383	352	385	353	386
				332		364		362
			327		327		326	
	324	325	300		300		316	
V_4				320				
	292		286		286	322	284	320
v_2								
			210		210			
R						229		227
			187					
		189						
T	154			176				
			157	154				
R		143	139	100				
R		136	125					
R								
		107						
T	105	76						
		79						

участвуют все катионы (рис. 4). Имеющее место понижение симметрии кристаллической решетки при гетеровалентном замещении катионов в структуре шеелита определяется искажениями молибден-кислородных тетраэдров.

Образцы люминофоров $KBaGd_{0.97}Er_{0.01}Yb_{0.02}$ - $(MoO_4)_3$, $KBaGd_{0.95}Er_{0.01}Yb_{0.04}(MoO_4)$, $KBaGd_{0.90}Er_{0.01}$ -

 $Yb_{0.09}(MoO_4)_3$ обладают способностью преобразовывать возбуждающее ИК-излучение в видимый свет (рис. 5). Ап-конверсионной люминесценцией принято называть люминесценцию, которая приводит к образованию кванта света с большей энергией, чем энергия кванта возбуждения [11]. Ап-конверсионная люминесценция в редкозе-

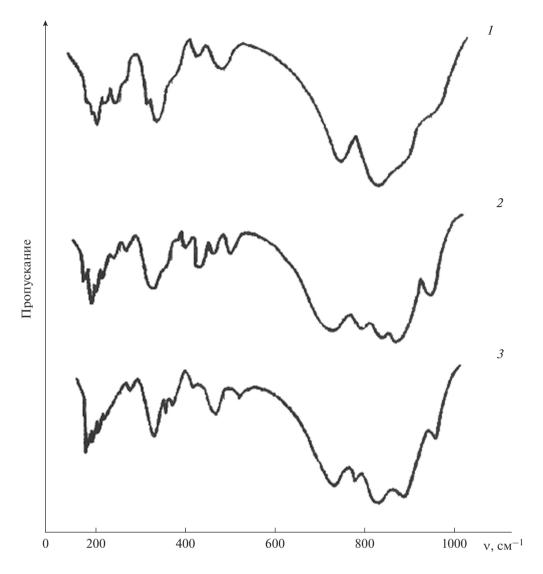
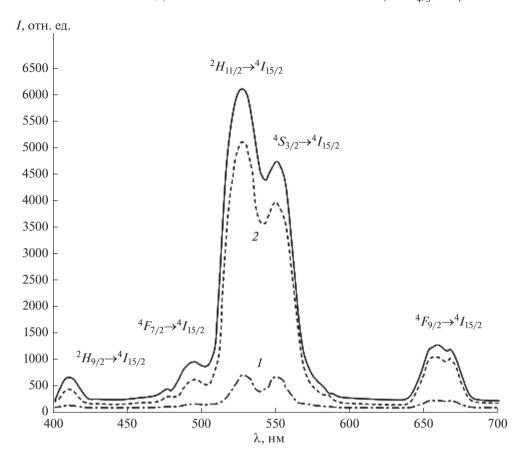



Рис. 4. ИК-спектры α-KSm(MoO₄)₂ (1), KBaSm(MoO₄)₃ (2), KBaGd(MoO₄)₃ (3).

мельных ионах возникает как в результате процессов, протекающих внутри одного иона, так и благодаря кооперативным межионным взаимодействиям с суммированием энергии.

Ионы иттербия-донора обладают высоким эффективным сечением поглощения в ИК-области. Энергетические состояния иона эрбия акцептора обладают длительным временем жизни, поэтому ион-донор может безызлучательно передать на долгоживущее состояние акцептора сразу несколько поглощенных фотонов, что приведет к увеличению энергии возбужденного метастабильного состояния и, соответственно, уменьшению длины волны люминесценции KBaGd(MoO₄)₃:Er³⁺/Yb³⁺ [7–13, 17, 18]. Происхождение наблюдаемых полос при возбуждении ($\lambda_{возб} = 977$ нм) в спектрах ап-конверсионной люминесценции может быть объяснено следующим образом.

После двухстадийного последовательного возбуждения ионов ${\rm Er^{3+}}$ до уровня ${}^4F_{7/2}$ в результате безызлучательных релаксаций происходит заселение возбужденных уровней ${}^2H_{11/2}$, ${}^4S_{3/2}$, ${}^4F_{9/2}$, ${}^4I_{9/2}$, что приводит к ап-конверсионной люминесценции в области 400-700 нм [7-13]. Спектр люминесценции обладает сильной полосой излучения при 525 нм, полосой средней интенсивности при 550 нм в зеленой области и двумя слабыми полосами излучения при 655 нм в красной области спектра. Полосы излучения при 525 и 550 нм в зеленой области спектра соответствуют переходам $^2H_{11/2}$ \to $^4I_{15/2}$ и $^4S_{3/2}$ \to $^4I_{15/2}$ в ионах ${\rm Er}^{3+}$, а излучение при 655 нм в красной области спектра связано с переходом ${}^4F_{9/2} \rightarrow {}^4I_{15/2}$. Полоса при 490 нм соответствует переходу ${}^4F_{7/2} \to {}^4I_{15/2}$. Полоса излучения при 410 нм обусловлена переходом ${}^{2}H_{9/2} \rightarrow {}^{4}I_{15/2}$.

Рис. 5. Спектры люминесценции образцов люминофора KBaGd(MoO₄) $_3$: Er $^{3+}$ /Yb $^{3+}$ с разной концентрацией ионов активаторов: KBaGd $_{0.97}$ Er $_{0.01}$ Yb $_{0.02}$ (MoO₄) $_3$ (I), KBaGd $_{0.95}$ Er $_{0.01}$ Yb $_{0.04}$ (MoO₄) (I), KBaGd $_{0.90}$ Er $_{0.01}$ Yb $_{0.09}$ (MoO₄) $_3$ (I), KBaGd $_{0.936}$ Er $_{0.01}$ Yb $_{0.09}$ Er $_{0.01}$ Yb $_{0.09}$ CMOO₄) $_3$ (I), KBaGd $_{0.936}$ Er $_{0.01}$ Yb $_{0.09}$ Er $_{0.01}$ Yb $_{0.09}$ CMOO₄) $_3$ (I), KBaGd $_{0.936}$ Er $_{0.01}$ Yb $_{0.09}$ Er $_{0.01}$ Yb $_{0.09}$ CMOO₄) $_3$ (I), KBaGd $_{0.936}$ Er $_{0.01}$ Yb $_{0.09}$ Er $_{0.01}$ Yb $_{0.09}$ CMOO₄) $_3$ (I), KBaGd $_{0.936}$ Er $_{0.01}$ Yb $_{0.09}$ Er $_{0.01}$ Yb $_{0.09}$ CMOO₄) $_3$ (I)

Ионы-активаторы Er³⁺ являются центрами люминесценции люминофора, а сенсибилизирующее действие ионов Yb3+ увеличивает интенсивность ап-конверсионной люминесценции благодаря эффективной передаче энергии от Yb3+ к Er³⁺ и более высокому коэффициенту поглощения иттербия по сравнению с эрбием. Механизмом возбуждения ${}^2H_{9/2}$ -уровня может быть перенос энергии от возбужденного состояния Yb³⁺ на уровень ${}^4F_{9/2}$ иона ${\rm Er}^{3+}$, поскольку разность энергий между уровнями ${}^4F_{9/2}$ и ${}^2H_{9/2}$ близка к энергии возбужденного иона иттербия [8—11]. Вследствие низкой заселенности уровня ${}^4F_{9/2}$ наиболее вероятным каналом возбуждения является заселение вышележащих уровней из более заселенного $^4S_{3/2}$ -уровня через перенос энергии от иона ${
m Yb^{3+}\,c}$ последующим превращением этих высоко лежащих уровней в ${}^{2}H_{9/2}$ [8–13]. При переходе с высоко лежащих уровней может происходить видимая люминесценция. Более высокая интенсивность обусловлена отношением концентраций ионов Yb^{3+} : Er^{3+} , равным 9: 1 (рис. 5, спектр 3), другие соотношения концентраций ионов иттербия и эр-

бия являются неоптимальными. Высокое содержание ионов иттербия и низкое содержание ионов эрбия способствуют повышению интенсивности ап-конверсионной люминесценции, что обусловлено эффективным переносом энергии от иона иттербия к иону эрбия. Характер спектров связан с влиянием кристаллической решетки матрицы на штарковскую структуру основного и возбужденного уровней ионов-активаторов. Экспериментальные значения для энергетического выхода (B_{en}) составляют: для $KBaGd_{0.97}Er_{0.01}Yb_{0.02}(MoO_4)_3$ – 0.14%, KBaGd $_{0.95}$ Er $_{0.01}$ Yb $_{0.04}$ (MoO $_{4}$) $_{3}$ — 0.19%, KBaGd $_{0.90}$ Er $_{0.01}$ Yb $_{0.09}$ (MoO $_{4}$) $_{3}$ — 0.37%. Времена 0.14%, жизни ап-конверсионной люминесценции ионов Er³⁺ в люминофоре с максимальным значением $B_{en}=0.37\%$ при переходах $^2H_{11/2} \rightarrow ^4I_{15/2}$ и $^4S3/2 \rightarrow ^4I_{15/2}$ (зеленая область спектра) и $^4F_{9/2} \rightarrow ^4I_{15/2}$ (красная область спектра) составили 46 ± 5 и 18 ± 3 мкс.

ЗАКЛЮЧЕНИЕ

Изучены фазовые равновесия в субсолидусной области системы $K_2MoO_4-BaMoO_4-Gd_2(MoO_4)_3$ по разрезам в интервале температур 450–800°C.

Синтезирован тройной молибдат $KBaGd(MoO_4)_3$, кристаллизующийся в моноклинной сингонии (пр. гр. $P2_1/n$, Z=9). Проведена триангуляция системы при 800° С. Получен ап-конверсионный люминофор на основе тройного молибдата, активированного ионами эрбия и иттербия $KBaGd(MoO_4)_3$: Er^{3+}/Yb^{3+} при различном соотношении концентраций ионов активаторов.

Оптимизировано соотношение концентраций ионов эрбия и иттербия, высокая интенсивность обусловлена отношением концентраций ионов Yb^{3+} : Er^{3+} , равным 9:1, другие соотношения являются неоптимальными. Люминофор $KBaGd(MoO_4)_3$: Er^{3+}/Yb^{3+} может найти применение в лазерах, в преобразователях UK-излучения в видимое, в цветных дисплеях, в биомедицинской диагностике, в оптической связи.

БЛАГОДАРНОСТЬ

Работа выполнена в рамках государственного задания БИП СО РАН (проект № 0273-2021-0008).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Трунов В.К., Ефремов В.А., Великодный Ю.А.* Кристаллохимия и свойства двойных молибдатов и вольфраматов. Л.: Наука, 1986. 173 с.
- 2. *Morozov V., Arakcheeva A., Redkin V. et al.* Na_{2/7}Gd_{4/7}MoO₄: a Modulated Scheelite-Type Structure and Condactivity Properties // Inorg. Chem. 2012. V. 51. № 9. P. 5313–5324. https://doi.org/10.1021/ic300221 m
- 3. *Раскина М.В., Морозов В.А., Павленко А.В. и др.* Структура и люминесцентные свойства твердых растворов Sm_{2-x}Eu_x(MoO₄)₃ // Журн. неорган. химии. 2015. Т. 60. № 1. С. 89–97. https://doi.org/10.7868/S0044457X15010122
- 4. Золотова Е.С., Рахманова М.И., Соколов В.В., Усков Е.М. Влияние висмута и кальция на интенсивность люминесцеции люминофора $NaY_{1-x}Eu_x(MoO_4)_2$ // Неорган. материалы. 2011. Т. 47. № 11. С. 1368—1371.
- 5. *Каминсий А.А.* Спектроскопия кристаллов. М.: Наука, 1975. 255 с.
- 6. *Кожевникова Н.М., Мохосоев М.В.* Тройные молибдаты. Улан-Удэ: Изд-во Бурятского госуниверситета, 2000. 298 с.

- 7. Манаширов О.Я., Сатаров Д.К., Смирнов В.Б. и др. Состояние и перспективы разработок антистоксовых люминофоров для визуализации ИК-излучений в области 0.8—1.3 мкм // Неорган. материалы. 1993. Т. 29. № 10. С. 1322—1325.
- 8. *Овсянкин В.В., Феофилов П.П.* Кооперативная сенсибилизация люминесценции в кристаллах, активированных редкоземельными ионами // Письма в ЖЭТФ.1966. Т. 4. Вып. 11. С. 471—474.
- 9. Kuznetsov S., Ermakova Yu., Voronov V. et al. Up-conversion Quantum Yields of SrF₂:Yb³⁺, Er³⁺Sub-micron Particles Prepared by Precipitation in Water Solution // J. Mater. Chem. C. 2018. V. 6. № 3. P. 598–604.
- 10. *Озель Ф.Е.* Материалы и устройства, использующие антистоксовые люминофоры с переносом энергии // ТИИЭР. 1973. Т. 61. № 6. С. 87—120.
- 11. Auzel F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids // Chem. Rev. 2004. V. 104. № 1. P. 139–173.
- Lyapin A.A., Ermakov A.S., Kuznetsov S.V. et al. Upconversion Luminescence of CaF₂–SrF₂–ErF₃ Single Crystals upon 1.5 μm Laser Excitation // J. Phys.: Conf. Ser. 2019. V. 1410. 012086. https://doi.org/10.1088/1742-6596/1410/1/012086
- 13. *Казарян А.К., Тимофеев Ю.Р., Фок М.В.* Антистоксовое преобразование излучения в люминофорах с редкоземельными ионами // Тр. ФИАН. 1986. Т. 175. С. 4–65.
- 14. *Евдокимов А.А.*, *Ефремов В.А.*, *Трунов В.К. и др.* Соединения редкоземельных элементов. Молибдаты, вольфраматы. М.: Наука, 1991. 267 с.
- Kozhevnikova N.M., Korsun V.P., Mursakhanova I.I., Mokhosoev M.V. Luminescence Materials Based on Re Molybdates // J. Rare Earth. 1991. V. 2. P. 845–849.
- 16. *Jiang Y., Liu Y., Liu G., Dong X., Wang J., Yu W., Dong Q.* Surfactant-Assisted Hydrothermal Synthesis of Octahedral Structured NaGd(MoO₄)₂:Eu³⁺/Tb³⁺ and Tunable Photoluminescent Properties // Opt. Mater. 2014. V. 36. P. 1865–1870. https://doi.org/10.1016/j.optmat.2014.03.043
- 17. *Георгобиани А.Н., Грузинцев А.Н., Бартту К., Беналул П.* Инфракрасная люминесценция соединений Y_2O_2 S: Er^{3+} и Y_2O_3 : Er^{3+} // Неорган. материалы. 2004. Т. 40. № 8. С. 963–968.
- 18. *Грузинцев А.Н*. Антистоксовая люминесценция Y_2O_3 :Er³+ // Неорган. материалы. 2014. Т. 50. № 1. С. 64—69.
- https://doi.org/10.7868/S0002337X14010084 19. Петров К.И., Полозникова М.Э., Шарипов Х.Т., Фо-
- Петров К.И., Полозникова М.Э., Шарипов Х.Т., Фомичев В.В. Колебательные спектры молибдатов и вольфраматов. Ташкент: ФАН, 1990. 135 с.