УДК 621.762:621.777+620.178.15+544.45

СВС-ПРЕССОВАНИЕ КОМПОЗИТОВ НА ОСНОВЕ СИСТЕМЫ ТіВ₂–В₄С–АІ

© 2022 г. Ю. В. Богатов¹, В. А. Щербаков^{1, *}, А. Е. Сычев¹

¹Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова Российской академии наук, ул. Академика Осипьяна, 8, Черноголовка, Московская обл., 142432 Россия

> *e-mail: vladimir@ism.ac.ru Поступила в редакцию 17.11.2021 г. После доработки 29.01.2022 г. Принята к публикации 04.02.2022 г.

Методом силового CBC-компактирования получены металлокерамические композиты на основе системы TiB_2-B_4C-Al . В экспериментах использовали реакционные смеси, состоящие из порошков Ti, B, B_4C и Al. Содержание Al в композитах составляло 10 мас. %, а содержание B_4C варьировали от 20 до 40 мас. %. Экзотермическая реакция синтеза Ti + 2B обеспечивала взаимодействие в режиме горения. Показано, что использование функциональных добавок Al и B_4C позволило получить консолидированные металлокерамические образцы диаметром 58 мм с плотностью 3.3-3.7 г/см³. Показано, что частицы карбида бора сохраняли в процессе синтеза исходные форму и свойства, поскольку температуры горения для всех смесей ($1500-2050^{\circ}C$) не превышали температуру плавления B_4C . Измерены пределы прочности при изгибе и сжатии, а также микротвердость отдельных фаз в составе композитов.

Ключевые слова: СВС-компактирование, скорость и температура горения, металлокерамика TiB₂– B₄C–Al, предел прочности при изгибе и сжатии, твердость **DOI:** 10.31857/S0002337X22050013

введение

Керамика на основе карбида бора (В₄С) обладает высокой тугоплавкостью, твердостью, износостойкостью, химической стойкостью к агрессивным средам, а также высокой способностью к поглощению нейтронов [1-4]. Изделия из В₄С используют для изготовления легкой керамической брони, режущего инструмента и износостойких деталей, эксплуатируемых в агрессивных средах при высоких температурах. Однако широкое применение керамики на основе В₄С ограничено плохой спекаемостью из-за низких значений коэффициента самодиффузии и вязкости разрушения $(<2.2 MПа м^{1/2})$ [5–7]. Прочность керамики можно повысить введением в ее состав высокодисперсных фаз. Наиболее перспективными разработками оказались композиты с использованием диборида титана (TiB₂) и алюминия (Al) [7-11].

Керамические композиты получают традиционными методами порошковой металлургии: спеканием и горячим прессованием. Наибольшая эффективность этих методов проявляется при получении малогабаритных изделий, при получении изделий больших размеров их эффективность значительно уменьшается. При этом возрастает стоимость изделий, что обусловлено длительностью процессов, а также сложностью используемой оснастки и оборудования.

Перспективным методом получения композиционных материалов является сочетание самораспространяющегося высокотемпературного синтеза (**CBC**) с процедурой прессования горячего синтезированного продукта. Преимуществами метода являются высокая скорость реакции экзотермического синтеза, в ходе которой целевой продукт нагревается до высокой температуры, и использование для консолидации продуктов СВСреакции простого технологического оборудования [12].

Настоящая работа направлена на исследование возможности получения методом CBC-прессования керамических композитов, содержащих структурные составляющие с низкой удельной плотностью: $TiB_2 - 4.5 \ г/cm^3$, $B_4C - 2.5 \ г/cm^3$, $Al - 2.7 \ г/cm^3$. Такие композиты могут быть использованы в качестве керамической брони для защиты техники и живой силы. Разработка тугоплавких керамических композитов, обладающих высокой твердостью, прочностью и низкой плотностью, является актуальной технологической задачей.

Целью работы является исследование влияния содержания B₄C в реакционной смеси на формирование фазового состава, микроструктуры и ме-

Смесь	Состав смеси, мас. %				Состав композита, мас. %		
	Ti	В	Al	B ₄ C	TiB ₂	B ₄ C	Al
1	48.3	21.7	10	20	70	20	10
2	41.4	18.6	10	30	60	30	10
3	34.5	15.5	10	40	50	40	10

Таблица 1. Составы реакционных смесей и СВС-композитов

ханические характеристики композитов на основе системы TiB_2-B_4C-Al .

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для приготовления реакционных смесей использовали порошки титана марки ПТМ (ТУ 14-22-57-92), содержание 99%, размер частиц <45 мкм; алюминия марки АСД-1 (ТУ 1791-99-019-98), содержание 99.7%, размер частиц <40 мкм; бора аморфного (ТУ 113-12-132-83), содержание не менее 93 мас. %, размер частиц менее 0.5 мкм. В качестве дисперсного наполнителя использовали порошок карбида бора (В₄С) с содержанием основного компонента 95 мас. %. Взаимодействие в режиме СВС обеспечивала смесь порошков титана и бора, массовое содержание которых рассчитывали на образование диборида титана (TiB₂). Карбид бора использовали для увеличения твердости и уменьшения плотности композитов. Алюминий использовали в качестве металлической связки, которая необходима для эффективной консолидации горячего продукта синтеза и достижения минимальной остаточной пористости композита.

Экзотермический синтез композитов осуществляли по следующей реакции:

$$(0.9 - x)(\mathrm{Ti} + 2\mathrm{B}) + x\mathrm{B}_{4}\mathrm{C} + 0.1\mathrm{Al} \rightarrow \rightarrow (0.9 - x)\mathrm{Ti}\mathrm{B}_{2} + 0.1\mathrm{Al} + x\mathrm{B}_{4}\mathrm{C}.$$

Рис. 1. Микрофотография частиц карбида бора (В₄С).

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 58 № 5 2022

В табл. 1 представлены использованные в экспериментах составы реакционных смесей и ожидаемые расчетные составы полученных из них композитов.

Содержание алюминия в смесях 1-3 поддерживали постоянным, равным 10 мас. %, а содержание B_4C варьировали в пределах от 20 до 40 мас. %. Микрофотография исходного порошка B_4C представлена на рис. 1. Видно, что частицы B_4C имеют осколочную форму, а их размер составляет 5–50 мкм.

Исходные порошки смешивали в стальной шаровой мельнице объемом 2.5 л при скорости вращения барабана 60 об./мин и массовом соотношении шихты и шаров 1 : 4 в течение 20 ч. Материал шаров – сталь ШХ15, диаметр шаров – 25 мм. Исходные образцы массой 80 г и диаметром 58 мм предварительно прессовали из реакционных смесей под давлением 20 МПа до относительной плотности 0.62–0.65.

Образцы помещали в реакционную пресс-форму в окружении теплоизолятора, в качестве которого использовали кварцевый песок дисперсностью 200—500 мкм. Дисперсный теплоизолятор обеспечивал удаление примесного газа, выделяющегося в волне горения, и квазиизостатическое прессование конечного продукта. Реакцию горения инициировали раскаленной электрическим током вольфрамовой спиралью на цилиндрической поверхности образца. После завершения реакции горячий продукт синтеза прессовали под давлением 100 МПа в течение 5 с. Получение композитов методом CBC-прессования подробно описано в [12].

При синтезе образцов из смесей 2 и 3 использовали "химическую печку" [11] для ускорения процесса горения, а также в качестве дополнительного источника тепла, необходимого для консолидации продуктов горения при горячем прессовании. "Химическую печку" прессовали из смеси порошков титана и сажи, взятых в стехиометрическом соотношении.

Температуру (t_r) и среднюю скорость горения (U_r) измеряли с помощью вольфрам-рениевых термопар диаметром 200 мкм по методике [13]. Сигналы термопар регистрировались с помощью аналого-цифрового преобразователя и обрабатывались на компьютере. Частота регистрации — 1 кГц. По-

лученные значения скоростей ($U_{\rm r}$) и температур ($t_{\rm r}$) горения усредняли по результатам трех экспериментов. Ошибка измерений не превышала 3%.

Плотность синтезированных керамических образцов находили методом гидростатического взвешивания. Механические характеристики композитов определяли на универсальной испытательной машине Instron-1195 при скорости нагружения 2 мм/мин. Предел прочности при изгибе определяли на образцах размером 5 × 5 × 40 мм, а предел прочности при сжатии – 5 × 5 × 8 мм.

Рентгенофазовый анализ (РФА) синтезированных композитов проводили с помощью дифрактометра ДРОН-3 с использованием монохроматического Си K_{α} -излучения. Микроструктуру и элементный состав композитов исследовали на автоэмиссионном сканирующем электронном микроскопе сверхвысокого разрешения Zeiss Ultra Plus с системой рентгеновского микроанализа INCA Energy 350 XT. Средний размер структурных составляющих в керамических образцах определяли методом хорд по выборке не менее 150 зерен [14]. Микротвердость синтезированных композитов по Виккерсу измеряли на твердомере ПМТ-3 (вдавливание четырехгранной алмазной пирамидки с нагрузкой 1 Н) согласно ГОСТ 2999-75. При полготовке шлифов образнов их заливали сплавом Вуда в алюминиевые цилиндрические обоймы и шлифовали наждачной бумагой различной зернистости, затем полировали на сукне с помощью алмазной пасты. Твердость композитов по методу Роквелла измеряли на твердомере ТК-14-250 в соответствии с ГОСТ 9013-59.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 2 представлен типичный вид шлифованных образцов диаметром 58 мм из композитов *1–3*. Образцы после синтеза сохраняют форму, их диаметр практически не изменяется. При увеличении содержания карбида бора в композитах поверхность образцов темнеет.

В табл. 2 представлены параметры горения спрессованных смесей 1-3 и характеристики синтезированных из них композитов. Видно, что с увеличением концентрации B_4C от 20 до 40 мас. %

Рис. 2. Фотография шлифованных металлокерамических образцов.

 $t_{\rm r}$ уменьшалась от 2050 до 1500°С, а $U_{\rm r}$ – от 4.4 до 0.08 см/с.

Низкие температура и скорость горения исходных образцов затрудняют получение плотных керамических композитов. Поэтому для увеличения скорости горения, а также в качестве дополнительного источника тепла при синтезе композитов 2 и 3 использовали "химическую печку". Из табл. 2 видно, что измеренная гидростатическая плотность керамических образцов превышает расчетную теоретическую. Это связано с наличием в керамических образцах небольшого количества Fe (7.9 г/см³), попадающего в смеси после обработки исходных порошковых компонентов в шаровой мельнице стальными размольными телами (1-2%), а также с образованием Al₂O₃, обладающего большей плотностью (4.0 г/см³) по сравнению с чистым Al (2.7 г/см^3).

На рис. 3 представлены дифрактограммы композитов 1-3. Результаты РФА показали, что в композитах присутствуют основные фазы TiB₂, B₄C, Al и Al₂O₃. Содержание алюминия отличается от расчетного, так как его часть волне горения взаимодействовала с оксидом бора, который содержался в исходном порошке бора в виде примеси.

Несмотря на уменьшение содержания Al (за счет образования Al_2O_3), в процессе консолидации CBC-продукта формировались плотные композиты. При увеличении содержания B_4C удель-

Таблица 2.	Параметры горени	я реакционных смесей и характеристики композитов
------------	------------------	--

Смесь	$U_{ m r}$, см/с	t_{Γ} , °C	Теоретическая плотность*, г/см ³	Экспериментальная плотность**, г/см ³	Размер частиц ТіВ ₂ , мкм
1	4.4	2050	3.66	3.7	1.2
2	0.5	1850	3.45	3.5	0.3-0.7
3	0.08	1500	3.25	3.3	<0.5

* Рассчитывали для композитов, содержащих TiB₂, B₄C и Al.

** Определяли методом гидростатического взвешивания.

Рис. 3. Дифрактограммы композитов *1*–*3* (TiB₂–B₄C–Al₂O₃–Al) с содержанием 20 (*1*), 30 (*2*), 40 мас. % B₄C (*3*).

ная плотность композитов заметно уменьшалась: с 3.7 для композита 1 до 3.3 г/см³ для композита 3, поскольку из всех структурных составляющих карбид бора имеет наиболее низкую плотность — 2.5 г/см³. При анализе микроструктур, представленных на рис. 4а, 4в, 4д, пористые участки не обнаружены. Низкая остаточная пористость обусловлена содержанием в композитах алюминия, выполняющего роль металлической связки и повышающего эффективность консолидации при прессовании горячего продукта.

На рис. 4б, 4г, 4е представлены микроструктуры полученных композитов. Видно, что частицы B_4C в композитах сохранили свою исходную форму (рис. 1). Это обусловлено тем, что синтез и консолидация композитов осуществлялись при температуре ниже температуры плавления карбида бора (2350°С). С увеличением содержания карбида бора от 20 до 40 мас. % из-за уменьшения температуры горения средний размер частиц TiB₂ уменьшается от 1.2 до 0.1 мкм (табл. 2).

В табл. 3 представлены механические свойства синтезированных композитов: прочность при

изгибе, прочность при сжатии, твердость по Роквеллу и микротвердость по Виккерсу, измеренная отдельно для участков, содержащих фазы TiB_2 –Al₂O₃–Al, и на крупных включениях B₄C. C увеличением содержания B₄C с 20 до 40 мас. % для участков TiB₂-Al₂O₃-Al, образующих каркас композитов, максимальные значения микротвердости увеличиваются, но также увеличивается и интервал их разброса. Это может быть обусловлено неравномерным распределением фаз, содержащих Al, что связано со снижением температуры горения и консолидации композитов (табл. 2). Микротвердость, измеренная на крупных частицах B_4C для композитов 1-3, находится в интервале 36-39.4 ГПа. Это подтверждает, что исходные частицы карбида бора в процессе синтеза сушественно не изменяются.

Композиты 1 и 2 обладают наиболее высокими значениями прочности и твердости (табл. 3). Твердость по Роквеллу коррелирует с пределом прочности при изгибе. Максимальными значениями обладает композит 2: $\sigma_{\rm изг} = 570$ МПа, HRA = 84–86. При увеличении содержания B_4C

Kontroott	σ _{изг} , МПа	σ _{сж} , МПа	Микротвер	Thomason HDA	
композит			TiB ₂ -Al ₂ O ₃ -Al	B ₄ C	твердость, пка
1	520	1675	13-17.5	36.7	80-81.5
2	570	1580	17-20.3	39.4	84–86
3	330	1016	13.5–24.5	36.0	78-81.5

Таблица 3. Физико-механические характеристики композитов

Рис. 4. Микроструктура композитов *1–3*, содержащих 20 (а, б), 30 (в, г), 40 мас. % B₄C (д, е): TiB₂–Al (светлая фаза), B₄C (темная фаза), Al–Al₂O₃ (серая фаза).

до 40 мас. % (композит 3) прочностные характеристики и твердость по Роквеллу уменьшаются. Одна из причин может быть связана с уменьшением объемной доли металлокерамического каркаса TiB_2 – Al_2O_3 –Al, обеспечивающего прочностные свойства композитов. Другой причиной может являться различие в коэффициентах теплового расширения между B_4C ($\alpha = 5.7 \times 10^{-6} \text{ K}^{-1}$) и TiB_2 ($\alpha = 8.7 \times 10^{-6} \text{ K}^{-1}$). Это может приводить к созданию остаточных напряжений в объеме образца в

процессе CBC, что при увеличении содержания B₄C может негативно отражаться на характеристиках прочности и твердости.

ЗАКЛЮЧЕНИЕ

Методом CBC-прессования получены металлокерамические композиты на основе системы $TiB_2-B_4C-Al_2O_3-Al$ диаметром 58 мм, с плотностью 3.3–3.7 г/см³ и низкой остаточной пористо-

стью. Показано, что в процессе синтеза исходный Al частично окисляется с образованием Al₂O₃. Оставшаяся часть Al обеспечивает эффективную консолидацию горячего продукта синтеза практически до беспористого состояния. Показано, что в композитах частицы B₄C сохраняют свою первоначальную форму. Это обусловлено тем, что температура горения реакционных смесей составляла 1500-2050°С и была ниже температуры плавления карбида бора (2350°С).

При содержании в композитах 20 и 30 мас. % В₄С пределы прочности при изгибе составляют 520 и 570 МПа, при сжатии – 1675 и 1580 МПа соответственно. При увеличении содержания В₄С до 40 мас. % прочностные характеристики снижаются. Микротвердость частиц В₄С во всех композитах составляет 36.0-39.4 ГПа и соответствует микротвердости керамического материала из карбила бора.

СПИСОК ЛИТЕРАТУРЫ

- 1. Neuman E.W., Hilmas G.E., Fahrenholtz W.G. Processing, Microstructure, and Mechanical Properties of Zirconium Diboride-Boron Carbide Ceramics // Ceram. Int. 2017. V. 43. № 9. P. 6942-6948. https://doi.org/10.1016/j.ceramint.2017.02.117
- 2. XinYan, Yue Shu, Mao Zhao, Peng Lü, Oing Chang, Hong Oiang Ru. Synthesis and Properties of Hot Pressed B_4C -Ti B_2 Ceramic Composite // Mater. Sci. Eng., A. 2010. V. 527. № 27–28. P. 7215–7219. https://doi.org/10.1016/j.msea.2010.07.101
- 3. Ping H., Shaoming D., Yanmei K., Xiangvu Z., Yusheng D. Microstructure and Mechanical Properties of B₄C-TiB₂ Ceramics Prepared by Reaction Hot Pressing Ti_3SiC_2 as Additive // J. Ceram. Int. 2015. V. 42(1). P. 650-656.

https://doi.org/10.1016/j.ceramint.2015.08.160

4. Kovziridze Z.D., Mestvirishvili Z., Tabatadze G., Nizharadze N.S., Mshvildadze M., Nikoleishvili E. Improvement of Boron Carbide Mechanical Properties in B_4C -TiB₂ and B_4C -ZrB₂ Systems // J. Electron. Cool.

Therm. Contr. 2013. V. 3. № 2. P. 43–48. https://doi.org/10.4236/jectc.2013.32006

5. *Thévenot E* Boron Carbide – A Comprehensive Review // J. Eur. Ceram. Soc. 1990. V. 6. № 4. P. 205-225. https://doi.org/10.1016/0955-2219(90)90048-k

- 6. Baharvandi H., Hadian A. Pressureless Sintering of TiB₂−B₄C Ceramic Matrix Composite // J. Mater. Eng. Perform. 2008. V. 17. P. 838–841. https://doi.org/10.1007/s11665-007-9182-4
- 7. Kelvin Y.X., Vladislav D., Lukasz F., Bin C., Kanak K., Luoning M., James W.M., Richard A.H., Ramesh K.T., Mingwei C., Kevin J.H. Microstructural Characterization of Boron-Rich Boron Carbide // Acta Mater. 2017. V. 136. P. 202-214. https://doi.org/10.1016/j.actamat.2017.06.063
- 8. Skorokhod V., Jr., Vlajic M.D., Krstic V.D. Mechanical Properties of Pressureless Sintered Boron Carbide Containing TiB₂ Phase // J. Mater. Sci. Lett. 1996. V. 15. P. 1337-1339. https://doi.org/10.1007/BF00240800
- 9. Sigl L.S., Kleebe H.J. Microcracking in B_4C-TiB_2 Composites // J. Am. Ceram. Soc. 1995. V. 78. P. 2374-2380.
- 10. Jung J., Kang S. Advances in Manufacturing Boron Carbide-Aluminum Composites // J. Am. Ceram. Soc. 2004. V. 87. № 1. P. 47-54. https://doi.org/10.1111/j.1551-2916.2004.00047.x
- 11. Scherbakov V.A., Gryadunov A.N., Alymov M.I. Synthesis and Characteristics of B_4C-TiB_2 // Compos. Adv. Mater. Technol. 2016. № 4. P. 16-21. https://doi.org/10.17277/amt.2016.04.pp.016-021
- 12. Питюлин А.Н. Силовое компактирование в СВС процессах // Самораспространяющийся высокотемпературный синтез: теория и практика. Черноголовка: Территория, 2001. С. 333-353.
- 13. Богатов Ю.В., Баринов В.Ю., Щербаков В.А. Влияние морфологии порошков титана на параметры СВС и структуру компактного диборида титана // Перспективные материалы. 2020. № 3. С. 50-60. https://doi.org/10.30791/1028-978X-2020-3-50-60
- 14. Салтыков С.А. Стереометрическая металлография. М.: Металлургия, 1976. С. 269.