УДК 544.232

ИССЛЕДОВАНИЕ ЗАВИСИМОСТЕЙ ВЯЗКОСТИ И ЭНЕРГИИ АКТИВАЦИИ ВЯЗКОГО ТЕЧЕНИЯ ЛИТИЕВОБОРАТНЫХ РАСПЛАВОВ ОТ СОДЕРЖАНИЯ ОКСИДА ЛИТИЯ

© 2022 г. А. А. Хохряков¹, С. Ю. Мельчаков¹, М. А. Самойлова^{1, *}, В. В. Рябов¹

¹Институт металлургии УрО Российской академии наук, ул. Амундсена, 101, Екатеринбург, 620016 Россия

*e-mail: mari.makarenko.1993@mail.ru Поступила в редакцию 25.11.2021 г. После доработки 03.02.2022 г. Принята к публикации 10.02.2022 г.

Вязкость бинарных расплавов $xLi_2O-(100 - x)B_2O_3$, в которых концентрация оксида лития менялась от 4.5 до 55.7 мол. %, была измерена от 1003 до 1630 К методом вибрационной вискозиметрии. С повышением температуры вязкость снижается. Температурная зависимость вязкости может быть разбита на низкотемпературную (1000–1300 K) и высокотемпературную (1300–1620 K) части. При постоянной температуре вязкость литиевоборатных расплавов в зависимости от состава меняется в пределах от 0.1 до 12.3 Па с, тогда как энергии активации вязкого течения меняются от 31.7 до 103.8 кДж/моль. Из конфигурационно-активационной модели вязкого течения рассчитаны конфигурационная энергия активации ε_h , которая изменялась от 12 до 25.4 кДж/моль, и активационная энергия переключения мостиковых кислородных связей U_{∞} – от 11.5 до 78.4 кДж/моль. Неаддитивное отклонение вязкости при последовательном увеличении содержания оксида лития в бинарном расплаве связано с изменением характера химической связи, формируемой разными отношениями базовых единиц BO_3 , BO_4 , BO_2O^- в цепочечных и кольцевых группировках борокислородной сетки расплава.

Ключевые слова: литиевоборатный расплав, вязкость, энергия активации, конфигурационно-активационная модель, структура расплава

DOI: 10.31857/S0002337X22050050

введение

Литиевоборатные расплавы составляют основу многих электролитов, флюсов и шлаков, использующихся в технологии получения металлов, сплавов, кристаллов и стекол. Разработка новых технологий с участием боратных расплавов требует знаний их физико-химических свойств.

Одним из структурно-чувствительных свойств расплавов является вязкость. Вязкость определяет скорость диффузии в расплавах, влияет на кинетику химических реакций и физико-химические процессы, протекающие при кристаллизации и стекловании расплавов. Исследованию вязкости расплавов Li₂O-B₂O₃ посвящено ограниченное количество научных статей. Шартсис с сотрудниками [1] исследовали вязкость литиевоборатных расплавов в интервале 773-1273 К для составов 2.5-28.8 мол. % Li₂O. Мусихин и Кудряшов изучали вязкость расплавов, содержащих 25 и 50 мол. % оксида лития, в интервале температур 1053-1536 К [2]. Они обнаружили отклонение от линейной зависимости на графике логарифма вязкости от обратной температуры для состава 25Li₂O-75B₂O₃.

Причины нелинейности авторы не обсуждали. Ота и Сога [3] исследовали вязкость в интервале 959–1333 К для расплавов, содержащих 30– 75 мол. % Li₂O. Лиу с соавторами исследовали вязкость шести составов стекол в интервале 16.7– 28.6 мол. % Li₂O в температурном диапазоне 1093– 1193 К [4]. Они показали, что у стекол, содержащих 22.2 мол. % Li₂O, наибольшая вязкость по сравнению с другими исследованными составами. Авторы объяснили это явление образованием боль-

шего отношения BO_4^-/BO_3 . В работах [5, 6] приводятся данные по температурам стеклования и физическим свойствам стекол Li₂O-B₂O₃.

По данным [1—4] в табл. 1 собраны сведения о вязкости литиевоборатных расплавов, а на рис. 1 приводится зависимость вязкости расплава от содержания оксида лития при 1173 К. Как видно из рис. 1, вязкость расплавов отличается у разных авторов, что, вероятно, связано с ограничениями и погрешностями методов ее определения.

Цель настоящей работы заключается в определении вязкости расплавов $xLi_2O-(100 - x) B_2O_3$ в

ИССЛЕДОВАНИЕ ЗАВИСИМОСТЕЙ ВЯЗКОСТИ

Li O MOT %	A	В	$\Lambda T K$	Источник	
L1 ₂ O, MOJI. 70	$\lg \eta = A + 1$	<i>B/T</i> (Па с)	$\Delta I, \mathbf{K}$		
2.5	-4.884	6271	776-1280	[1]	
6.3	-5.856	7057	873-1263	[1]	
9.9	-8.974	10372	767-1271	[1]	
13.9	-9.651	11107	878-1170	[1]	
16.7	-8.072	9496	1093-1193	[4]	
16.8	-8.814	10308	972-1273	[1]	
18.2	-8.807	10385	1093-1193	[4]	
20.0	-10.114	11923	1093-1193	[4]	
21.6	-12.290	14017	967-1073	[1]	
22.2	-9.375	11136	1153-1193	[4]	
25.0	-6.005	6818	1099–1250	[2]	
	-4.040	4362	1250-1536		
	-15.944	18773	1173–1193	[4]	
25.6	-8.459	9632	1074-1174	[1]	
28.6	-0.561*		1193	[4]	
28.8	-10.062	11379	1071-1170	[1]	
30.0	-7.130	7642	1178-1298	[3]	
40.0	-3.931	3421	1163-1276	[3]	
45.0	-3.953	3295	1123-1281	[3]	
50.0	-5.015	4700	1053-1333	[2]	
	-3.897	3018	1122-1333	[3]	
60.0	-5.016	4137	1041-1225	[3]	
70.0	-1.527	166	959-1142	[3]	
75.0	-2.801	1255	1069-1228	[3]	

Таблица 1. Обзор литературных данных по вязкости расплавов $xLi_2O-(100 - x)B_2O_3$

* Значение логарифма вязкости при указанной температуре.

интервалах концентраций $0 \le x \le 56$ мол. % Li₂O и температур 960—1650 К в связи с отсутствием систематических данных в справочной литературе по этой проблеме.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Хорошо известно, что границы измерения вязкости зависят от применяемого метода измерения [7, 8]. Вязкость бинарных расплавов Li₂O-B₂O₃ измеряли на вискозиметре [9], работающем в режиме вынужденных колебаний. Конструкция вискозиметра, построенного в Институте металлургии УрО РАН, детально описана в работе [9]. Вискозиметр калибровали по эталонным жидкостям, использовали растворы глюкозы в тяжелой жидкости М-45 (ТУГХ № 150-59), применяемой для выделения мономинеральных фракций. Расчет относительной погрешности измерений был также выполнен в работе [9].

Боратные смеси готовили из предварительно переплавленного оксида бора и карбоната лития ("х. ч."). Смесь нагревали до 1600 К и выдерживали в течение 1 ч, затем расплав выливали на стальную плиту. Полученную стекловидную массу использовали для измерений вязкости.

Зависимость вязкости от температуры и состава расплава приведена на рис. 2, коэффициенты зависимости $\lg \eta = f(1/T) - в$ табл. 2.

Из рис. 2 видно, что при увеличении содержания оксида лития в расплаве значения вязкости отклоняются от правила аддитивности. Наблюдаемая зависимость отражает изменение межчастичных взаимодействий вследствие образования

Рис. 1. Литературные данные по вязкости литиево-боратных расплавов при 1173 К: *1* – [1], *2* – [2], *3* – [3], *4* – [4].

Рис. 2. Зависимости вязкости от состава расплава xLi₂O-(100 - x)B₂O₃ при 1173 (1), 1273 (2), 1373 К (3).

кольцевых и цепочечных группировок, формирующих мостиковые и немостиковые кислородные связи, соотношение между которыми зависит от состава расплава.

Вводимый в расплавленный B_2O_3 оксид лития взаимодействует в первую очередь с более рыхлой частью сетки расплава, в которой ион лития занимает наибольшее количество вакансий. В результате в диапазоне 0–9 мол. % Li₂O в расплавах формируется "субмикронеоднородная" структура, вытянутая в одном направлении, в окрестностях которой концентрируются ионы лития [10]. Эта "субмикронеоднородная" структура пред-

ставляет собой цепочки из полиэдров BO_4^- , в которых связи $B^{IV}-O-B^{IV}$ слабее по сравнению со связями $B^{III}-O-B^{III}$ (IV – к. ч. атомов бора, O – мостиковый кислород). Это значительно облегчает сдвиги мостиковых атомов кислорода во

ИССЛЕДОВАНИЕ ЗАВИСИМОСТЕЙ ВЯЗКОСТИ

Li ₂ O, мол. %	Α	В	$\pm \Delta_A$	$\pm \Delta_B$	$\pm \lg \eta$	ΔΤ Κ
		$\Delta I, \mathbf{K}$				
0	-1.657	3182	0.027	39	0.012	1173–1613
4.5	-1.975	3520	0.031	43	0.017	1148-1622
6.7	-3.36	4592	0.08	88	0.024	1035-1307
	-1.73	2459	0.09	128	0.022	1307-1605
8.9	-2.08	3485	0.11	133	0.028	1111-1373
	-1.34	2460	0.06	82	0.010	1373-1597
10.0	-2.45	3758	0.05	62	0.018	1062-1381
10.9	-1.53	2489	0.05	76	0.009	1381-1622
14.0	-5.63	6998	0.31	356	0.09	1025-1288
14.9	-2.44	2894	0.17	243	0.046	1288-1630
16.0	-4.80	6277	0.16	188	0.041	1070-1294
10.9	-2.61	3439	0.14	206	0.036	1294-1597
18.2	-3.70	4873	0.18	205	0.044	1008-1245
	-1.80	2516	0.11	150	0.033	1245-1597
20.6	-7.26	8755	0.22	241	0.042	1051-1220
	-3.18	3779	0.20	286	0.08	1220-1605
24.1	-6.56	7843	0.32	348	0.07	1032-1208
	-2.88	3395	0.17	229	0.042	1208-1506
29.1	-6.00	6777	0.17	206	0.038	1114-1319
	-2.66	2354	0.13	194	0.031	1319-1597
39.8	-9.5	10684	0.8	836	0.14	1021-1153
	-3.81	4098	0.24	318	0.08	1153-1491
43.7	-8.73	9782	0.27	284	0.06	1003-1174
	-3.42	3545	0.22	284	0.07	1174-1482
55.7	-3.76	3373	0.09	108	0.05	1017-1430
	-1.82	599	0.16	243	0.014	1430-1572

Таблица 2. Вязкость расплавов $xLi_2O-(100 - x)B_2O_3$

фрагментах B^{IV} —O— B^{IV} , что является причиной снижения вязкости. Следует отметить, что образование таких цепочек не нарушает в целом слоистого строения бинарной системы $Li_2O-B_2O_3$.

В интервале 9–11 мол. % Li₂O при контакте цепочек из полиэдров $BØ_4$ с бороксольными кольцами начинают образовываться триборатные группировки ($B_3O_3Ø_4^-$). Последние формируют трехмерные фрагменты сетки расплава. Это увеличивает вязкость бинарного боратного расплава. Поскольку межчастичное взаимодействие между оставшимися бороксольными кольцами достаточно сильное, вводимый оксид лития при x > 11 мол. % переводит цепочки, собранные из полиэдров $BØ_4^-$, в метаборатные группировки $BØ_2O^-$. Ион лития становится мостиковым ионом между метаборатными единицами расплава, его к. ч. увеличивается. Трансформация цепочечных группировок заканчивается при содержании $\text{Li}_2\text{O} \sim 15$ мол. %. Дальнейшее увеличение содержания оксида лития в расплаве приводит к образованию кольцевых три-, пента- и ди-триборатных групп $(B_3O_3\phi_4^-, B_5O_6\phi_4, B_5O_6\phi_5^{2-})$, изображение этих структур приведено в [11]. Известно, что в щелочноборатных расплавах в области 15–30 мол. % оксида щелочного металла происходит реакция диспропорционирования

$$BO_4^- \rightleftharpoons BO_2O^-$$
. (1)

При повышенных температурах динамическое равновесие реакции (1) смещается вправо. В области 30 мол. % Li₂O происходит заметное снижение вязкости расплава (рис. 2). В области 30–

45 мол. % Li_2O формируются диборатные группы

 $(B_4O_5 \phi_4^{2-})$. Взаимодействие ионов лития с диборатными единицами приводит к практически постоянному значению вязкости.

По данным табл. 2, в области температур 1200– 1300 К для составов с x > 6 мол. % Li₂O наблюдается излом, который разделяет зависимость lg $\eta = f(1/T)$ на низко- и высокотемпературный интервалы и связан с распадом кольцевых групп при повышении температуры [11]. Для расплавов, содержащих менее 6 мол. % Li₂O, температура излома ($T_{изл}$) не зафиксирована. Это означает, что она, вероятно, находится в более высокотемпературной области, недоступной для используемого метода измерений.

Необходимо отметить, что в отличие от работы [1] (рис. 1, табл. 1) на зависимости вязкости от состава (рис. 2, табл. 2) выделяется дополнительный минимум при x = 6.7 мол. % Li₂O. Этот минимум отделяет область образования цепочечных

единиц из полиэдров BO_4^- от области образования кольцевых полярных группировок. Наблюдаемое отличие, возможно, связано с тем, что используемый в работе [1] метод измерения вязкости дает более усредненные величины вследствие более низкой чувствительности к химическим связям бинарного расплава.

Для расчетов энергетических параметров литиевоборатных расплавов была использована конфигурационно-активационная модель вязкого течения Д.С. Сандитова [12], согласно которой вязкость описывается уравнением Эйринга

$$\eta = \frac{Nh}{V_{\eta}} \exp\left(\frac{F_{\eta}}{RT}\right).$$
(2)

В уравнении (2) температурная зависимость свободной энергии активации вязкого течения имеет вид

$$F_{\eta} = U_{\infty} + \gamma \frac{V_0}{V_h} RT \left[\exp\left(\frac{\varepsilon_h}{RT}\right) - 1 \right].$$
(3)

Здесь N — число кинетических единиц расплава, h — постоянная Планка, V_{η} — активационный объем вязкого течения, U_{∞} — энергия переключения мостиковых связей в сетке расплава, ε_h — конфигурационная энергия активации борокислородной сетки расплава (или энергия образования микродырки), γ — коэффициент перекрывания микропустот ($0.5 \le \gamma \le 1$), v_0 — минимальный объем микродырки, в который может перескочить частица, v_h — изменение объема аморфной среды, вызванное образованием дырки.

В статье [12] было показано, что множитель $\gamma \frac{V_0}{V_h}$ существенно не влияет на вычисляемые зна-

чения F_{η} и варьируется в интервале $0.5 \le \gamma \le 1$, поэтому для упрощения расчетов его значение было принято равным единице.

Энергию активации вязкого течения литиевоборатных расплавов для высокотемпературного $(E_{a(L)})$ и низкотемпературного $(E_{a(H)})$ интервалов рассчитывали по формуле:

$$E_a = R \frac{\ln \eta_1 - \ln \eta_2}{1/T_1 - 1/T_2}, \quad T_1 > T_2.$$
(4)

В работе [12] показано, что начиная с некоторой температуры смещение кинетических единиц оксидного расплава осуществляется только переключением мостиковых кислородных связей $(F_{\eta} = \text{const})$. Тогда энергия активации вязкого течения расплава E_a соответствует энергии переключения мостиковых связей U_{∞} и для высокотемпературного интервала будет справедливо тождество

$$F_{\eta} = U_{\infty} \equiv E_{a(L)}.$$
 (5)

На зависимости $\lg \eta = f(1/T)$ в области низких температур свободная энергии активации вычисляется по уравнению (3). В данном случае использовать значение $E_{a(H)}$ для расчета F_{η} по уравнению (5) уже нельзя, т.к. $E_{a(H)}$ включает в себя и энергию переключения мостиковых кислородных связей, и энергию образования "микродырок". Поэтому при расчетах необходимо учитывать приращение свободной энергии вязкого течения $\Delta F_{\eta} = E_{a(H)} - E_{a(L)}$ для интервала $\Delta T = T_{_{\rm ИЗЛ}} - 0$. В качестве температурной "привязки" был выбран абсолютный нуль шкалы Кельвина. Тогда уравнение (3) для расчета свободной энергии активации в низкотемпературном интервале можно представить в виде

$$F_{\eta} = E_{a(L)} + RT \exp\left(\frac{\varepsilon_h}{RT}\right) - RT, \qquad (6)$$

а приращение функции ΔF_{η} в низкотемпературном интервале

$$\Delta F_{\eta} + R\Delta T = R\Delta T \exp\left(\frac{\varepsilon_h}{R\Delta T}\right). \tag{7}$$

Параметр ε_h может быть вычислен по формуле

$$\varepsilon_{h} = R\Delta T \ln\left(\frac{\Delta F_{\eta}}{R\Delta T} + 1\right) =$$

$$= RT_{\mu_{3\pi}} \ln\left(\frac{E_{a(H)} - E_{a(L)}}{RT_{\mu_{3\pi}}} + 1\right).$$
(8)

Из уравнений (5) и (8) следует важный вывод, что параметры ε_h и U_∞ не являются функциями температуры, а определяются только составом и физико-химическими параметрами расплава, которые в свою очередь зависят от его структуры. Значения параметров ε_h и U_∞ для исследованных литиевоборатных расплавов приведены в табл. 3.

ИССЛЕДОВАНИЕ ЗАВИСИМОСТЕЙ ВЯЗКОСТИ

···· • • • • • • • • • • • • • • • • •	1 1 1 1		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	2 2 3	
Li ₂ O, мол. %	$U_\infty,$ кДж/моль	ε _h , кДж/моль	$F_{\eta} = U_{\infty} + \varepsilon_h,$ кДж/моль	Структурная единица [11]	
4.5	$E_a = 67.4^*$		67.4	u	
6.7	47.1	17.0	64.1	цепочки ВØ ₄	
8.9	47.6	12.0	59.2	$B_3O_3O_4^-$	
10.9	47.7	13.0	60.7	Цепочки В $\emptyset_4^- \rightleftarrows \mathrm{BO}_2 \emptyset$	
14.9	55.4	22.7	78.1		
16.9	65.9	19.4	85.3		
18.2	48.2	17.4	65.6		
20.6	72.3	23.7	96.0		
24.1	65.0	22.6	87.6	$B_3 O_3 O_4$	
29.1	45.1	23.7	78.0	$B_5 O_6 \emptyset_4$	
39.8	78.4	25.4	103.8	$B_5O_6O_5^2 B_4O_5O_4^2$	
43.7	67.9	25.2	93.1		
55.7	11.5	20.2	31.7		

Таблица 3. Параметры конфигурационно-активационной модели для расплавов $xLi_2O-(100 - x)B_2O_3$

* Энергия активации вязкого течения (кДж/моль) расплава в интервале 1148-1622 К.

Из табл. 3 следует, что зависимость энергии активации вязкого течения литиевоборатных расплавов ε_h , U_{∞} , F_{η} от состава достаточно сложная и определяется несколькими факторами. При x < 6.7 мол. % она зависит от количества мостиковых атомов кислорода $B^{IV}-O-B^{IV}$, входящих в состав цепочек из полиэдров $B\phi_4^-$. При концентрациях оксида лития больше 6.7 мол. % величины активационных энергий обусловлены соотношением кинетических единиц $B\phi_4^-/B\phi_2O^-$, а также типом кольцевых группировок, формирующих мостиковые связи $B^{IV}-O-B^{IV}$. Необходимо отметить, что минимумы энергии активации вязкого течения в расплавах F_{η} приходятся на составы 8.9, 18.2

траций BO_4^-/BO_2O^- является максимальным.

ЗАКЛЮЧЕНИЕ

и 29.1 мол. % Li₂O, в которых отношение концен-

Методом вибрационной вискозиметрии измерена вязкость литиевоборатных расплавов в температурном 1003—1630 К и концентрационном $0 \le x \le 56$ мол. % Li₂O интервалах.

В области малых концентраций $0 \le x \le 9$ мол. % Li₂O снижение вязкости вызвано образованием

цепочек из полиэдров BO_4^- , а увеличение вязкости при $9 \le x \le 11$ мол. % Li₂O — образованием кольцевых триборатных групп. В целом нелинейное изменение вязкости с увеличением концентрации оксида лития связано с конверсией BO_4^- в группы $BØ_2O^-$, входящих в другие типы кольцевых полиборатных цепочек.

С использованием конфигурационной теории вязкого течения вычислены конфигурационная энергия активации ε_h и энергия переключения мостиковых связей U_{∞} для исследованных составов расплава.

В области температур 1200—1300 К наблюдается излом, который разделяет зависимость $\lg \eta = f(1/T)$ на низко- и высокотемпературный интервалы и связан с распадом кольцевых боратных группировок при увеличении температуры.

СПИСОК ЛИТЕРАТУРЫ

- Shartsis L., Capps W., Spinner S. Viscosity and Electrical Resistivity of Molten Alkali Borates // J. Am. Ceram. Soc. 1953. V. 36. № 10. P. 319–326.
- Мусихин В.И., Кудряшов В.Н. Строение и свойства металлургических расплавов Свердловск: Ин-т металлургии УНЦ АН СССР, 1974. Т. 28. С. 91–96.
- 3. *Ota R., Soga N., Yogyo-Kyokai-Shi //* J. Ceram. Soc. Jpn. 1983. V. 91. № 6. P. 265–271.
- Liu H., Shen G., Wang X., Wei J.D. Viscosity and Ir Investigations in the Li₂O-B₂O₃ System // Prog. Cryst. Growth Character. Mater. 2000. V. 40. P. 235–241.
- Chryssikos G.D., Duffy J.A., Hutchinson J.M., Ingram M.D., Kamitsos E.I., Pappin A.J. Lithium Borate Glasses: a Quantitative Study of Strength and Fragility //

J. Non-Cryst. Solids. 1994. V. 172–174. Part 1. P. 378–383.

- Kojima S., Novikov V.N., Kodama M. Fast Relaxation, Boson Peak, and Anharmonicity in Li₂O−B₂O₃ Glasses // J. Chem. Phys. 2000. V. 113. № 15. P. 6344–6350.
- 7. Соловьев А.Н., Каплун А.Б. Вибрационный метод измерения вязкости жидкостей. Новосибирск: Наука, 1970. 140 с.
- 8. *Viswanath D.S., Ghosh. T.K., Prasad D.H.L., Dutt N.V.K., Rani K.Y.* Viscosity of liquids. Theory, Estimation, and Data. Dordrecht: Springer, 2007.
- 9. Штенгельмейер С.В., Прусов В.А., Бочегов В.А. Усовершенствование методики измерения вязкости вибрационным вискозиметром // Завод. лаб. 1985. Т. 51. № 9. С. 56–57.
- Голубков В.В. Структура В₂О₃ и щелочных боратов в стеклообразном и расплавленном состоянии // Физика и химия стекла. 1992. Т. 18. № 2. С. 14–33.
- 11. Осипов А.А., Осипова Л.М., Быков В.Н. Структура щелочноборатных стекол и расплавов. Миасс. 2009. С. 417.
- Сандитов Д.С. Вязкость стеклообразующих расплавов в области перехода "жидкость-стекло" // ЖЭТФ. 2010. Т. 137. № 4. С. 767–782.