УДК 544.22+537.63

# КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И МАГНИТНЫЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ ЗАМЕЩЕНИЯ $Ni_{1-x}M_xMnSb$ (M = Gd, Tm)

© 2022 г. Г. С. Римский<sup>1,</sup> \*, К. И. Янушкевич<sup>1</sup>, А. В. Руткаускас<sup>2</sup>

<sup>1</sup>Научно-практический центр Национальной академии наук Беларуси по материаловедению, ул. П. Бровки, 19, Минск, 220072 Беларусь

<sup>2</sup>Объединенный институт ядерных исследований "ДУБНА", Лаборатория нейтронной физики им. И.М. Франка, ул. Жолио-Кюри, 6, Дубна, Московская обл., 141980 Россия

\**e-mail: rimskiy@physics.by* Поступила в редакцию 01.09.2021 г. После доработки 14.01.2022 г. Принята к публикации 18.02.2022 г.

Методом твердофазных реакций при T = 1020 К синтезированы образцы Ni<sub>1 – x</sub>M<sub>x</sub>MnSb (M = Gd, Tm). Установлено, что однофазные составы Ni<sub>1-x</sub>M<sub>x</sub>MnSb обладают кубической сингонией со структурой типа MgAgAs ( $C1_b$ ), пр. гр.  $F\overline{4}3m$ . В твердых растворах параметр *a* элементарной ячейки до x = 0.05 увеличивается с ростом концентрации замещающего катиона. В интервале температур 80–900 К пондеромоторным методом измерены удельная намагниченность и удельная магнитная восприимчивость. При температурах ~5 и 77 К в магнитных полях с индукцией до 8 Тл изучены зависимости удельной намагниченности  $\sigma = f(B)$ . Выявлено уменьшение среднего магнитного момента и температуры Кюри при увеличении концентрации катионов замещения.

Ключевые слова: интерметаллиды, лантаноиды, кристаллическая структура, магнитные свойства, ферромагнетизм

DOI: 10.31857/S0002337X22060100

#### введение

Синтез материалов с сильной взаимосвязью магнитных и электрических характеристик является актуальной задачей материаловедения. Для разработчиков устройств микроэлектроники представляют интерес ферромагнитные полуметаллические соединения, которые можно использовать в качестве инжекторов спин-поляризованных электронов. По причине наличия достаточно высокой температуры Кюри и ожидаемой 100%-ной спиновой поляризации тройные полугейслеровые сплавы типа XMnZ (X = Ni, Pt, Pd, Cu; Z = Sb, Sn, In, Ga) позиционируются в качестве перспективных материалов для инжекции спина [1, 2].

Соединение NiMnSb является одним из примеров полуметаллического ферромагнетика. В нем зона неосновных электронов имеет щель на уровне Ферми. Состояния являются металлическими для электронов с одним направлением спина и полупроводниковыми для электронов с противоположным спином. Электроны проводимости практически полностью поляризованы по спину. Относительно высокая температура Кюри ( $T_c = 730-750$  K) и структурное сходство с полупроводниками типа цинковой обманки делают NiMnSb интересным для технологов электронной промышленности [3].

Анализ зонной структуры показывает, что магнитные свойства NiMnSb обусловлены магнитными моментами, локализованными на атомах Mn, взаимодействующих через электроны в зоне проводимости. Механизм обменных взаимодействий осуществляется по типу Рудермана-Киттеля-Касуя-Йосида [4-6]. Известно, что лантаноилы при лопировании и замешении могут увеличить магнитную анизотропию и способствовать сохранению значительной спиновой поляризации [7]. Поскольку 4f-электроны непосредственно не участвуют в химической связи и обладают спин-орбитальным взаимодействием, они энергетически отделены от уровня Ферми. В связи с этим интерес представляет изучение фундаментальных магнитных характеристик твердых растворов на основе NiMnSb в широком интервале температур при замещении никеля гадолинием и тулием. Выбор катионов замещения обусловлен наличием ферромагнитного упорядочения у ионов гадолиния и различием ионных радиусов. Оба этих фактора должны оказывать значительное влияние на магнитные и кристаллические характеристики при образовании твердых растворов.

Цель работы – синтез твердых растворов  $Ni_{1-x}M_xMnSb$  (M = Gd, Tm), изучение особенно-



**Рис. 1.** Рентгенограммы образцов  $Ni_{1-x}M_xMnSb$  (M = Gd, Tm).

стей взаимосвязи параметров кристаллической структуры и магнитных характеристик.

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы  $Ni_{1-x}M_xMnSb$  (M = Gd, Tm) для эксперимента синтезировали методом твердофазных реакций. Шихту с необходимым соотношением порошков элементов тщательно перемешивали, помещали в кварцевые ампулы и вакуумировали. Синтез осуществляли при температуре 1020 К. После выдержки в течение 24 ч образцы подвергали закалке. Синтезированы образцы  $Ni_{1-x}M_xMnSb$  (M = = Gd, Tm) с шагом по концентрации 2.5 мол. %. Кристаллическую структуру и фазовый состав

| x     | а, нм                                  | <i>V</i> , 10 <sup>-2</sup> нм <sup>3</sup> | $ ho_{peht}$ , г/см <sup>3</sup> | а, нм                                  | <i>V</i> , 10 <sup>-2</sup> нм <sup>3</sup> | $ ho_{peht}$ , г/см <sup>3</sup> |
|-------|----------------------------------------|---------------------------------------------|----------------------------------|----------------------------------------|---------------------------------------------|----------------------------------|
|       | Ni <sub>1-x</sub> Gd <sub>x</sub> MnSb |                                             |                                  | Ni <sub>1-x</sub> Tm <sub>x</sub> MnSb |                                             |                                  |
| 0     | 0.592(5)                               | 20.80                                       | 7.52                             | 0.592(9)                               | 20.80                                       | 7.52                             |
| 0.025 | 0.592(6)                               | 20.81                                       | 7.59                             | 0.592(2)                               | 20.77                                       | 7.61                             |
| 0.05  | 0.593(1)                               | 20.87                                       | 7.65                             | 0.592(6)                               | 20.81                                       | 7.67                             |
| 0.075 | 0.593(6)                               | 20.91                                       | 7.71                             | 0.593(1)                               | 20.90                                       | 7.74                             |
| 0.10  | 0.594(4)                               | 21.00                                       | 7.76                             | 0.593(9)                               | 20.94                                       | 7.81                             |

**Таблица 1.** Параметры, объемы элементарных ячеек и рентгеновская плотность порошков Ni<sub>1-x</sub>M<sub>x</sub>MnSb (M = Gd, Tm)

изучали методом дифракции рентгеновских лучей (Си*K*<sub>a</sub>-излучение) при комнатной температуре.

Температурные зависимости удельной намагниченности  $\sigma = f(T)$  и обратной величины магнитной восприимчивости  $1/\chi = f(T)$  синтезированных образцов изучены в магнитном поле с индукцией B = 0.86 Тл пондеромоторным методом в диапазоне температур ~80–900 К. Точность измерения удельной намагниченности и удельной магнитной восприимчивости:  $\sigma = \pm 0.005$  А м<sup>2</sup>/кг;  $\chi = \pm 10^{-1}$  м<sup>3</sup>/кг. Полевые зависимости удельной намагниченности  $\sigma = f(B)$  изучены вибрационным методом в магнитных полях с индукцией до 8 Тл при ~5 и 77 К.

#### РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 представлены рентгенограммы твердых растворов  $Ni_{1-x}M_xMnSb$  (M = Gd, Tm).

Установлено, что при комнатной температуре твердые растворы  $Ni_{1-x}M_xMnSb$  (M = Gd, Tm) об-



**Рис. 2.** Концентрационные зависимости параметра a = f(x) и теоретической плотности  $\rho_{\text{рент}} = f(x)$  образцов Ni<sub>1 – x</sub>M<sub>x</sub>MnSb (M = Gd, Tm).

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 58 № 6 2022

ладают кубической сингонией типа MgAgAs ( $C1_b$ ),

пр. гр.  $F\overline{43m}$ . Рентгеновские исследования показали существование однофазных твердых растворов в интервале концентраций  $0 < x \le 0.05$ . При увеличении концентрации катионов замещения более 5% на рентгенограммах проявляются рефлексы гексагональной сингонии (пр. гр.  $P6_3/mmc$ ), характерные для антимонида марганца MnSb [8]. Концентрационные зависимости параметров элементарных ячеек Ni<sub>1-x</sub>M<sub>x</sub>MnSb (M = Gd, Tm) представлены на рис. 2. Рентгенографические характеристики приведены в табл. 1.

При анализе зависимостей a = f(x) установлено, что катионное замещение никеля гадолинием и тулием приводит к увеличению параметра *а* элементарной ячейки. При замещении гадолинием увеличение параметра *a* более значительно. Это является следствием различия величин ионных радиусов катионов никеля (0.69 Å), гадолиния (0.97 Å) и тулия (0.87 Å) [8].

Температурные зависимости удельной намагниченности и обратной величины магнитной восприимчивости представлены на рис. 3.

Проекция к оси *T* парамагнитной составляющей зависимостей  $10^{-2}/\chi = f(T)$  находится в положительной области температур, что указывает на ферромагнитное упорядочение магнитных моментов обменного взаимодействия в твердых растворах. В табл. 2 приведены значения магнитных моментов твердых растворов, рассчитанные из величин удельных намагниченностей при 80 К. Температуры Кюри твердых растворов определяли экстраполяцией линейной части зависимости квадрата удельной намагниченности от температуры к оси температур  $\sigma^2 = f(T)$ .

Наибольшей намагниченностью при температуре жидкого азота обладает исходное соединение NiMnSb. Увеличение степени замещения атомов никеля атомами гадолиния и тулия приводит к уменьшению магнитных моментов, измеренных при 80 К, а также температур фазового превращения магнитный порядок—магнитный беспорядок.

| x     | σ <sub>80 К</sub> , А м <sup>2</sup> /кг | $\mu_{80K},\mu_{\bar{B}}$ | <i>Т<sub>С</sub></i> , К | $\sigma_{80 \text{ K}}$ , А м <sup>2</sup> /кг | $\mu_{80K},\mu_{\overline{b}}$ | <i>Т<sub>С</sub></i> , К |
|-------|------------------------------------------|---------------------------|--------------------------|------------------------------------------------|--------------------------------|--------------------------|
|       |                                          | $Ni_{1-x}Gd_xMnSb$        |                          | Ni <sub>1-x</sub> Tm <sub>x</sub> MnSb         |                                |                          |
| 0     | 90.04                                    | 3.79                      | 725                      | 90.04                                          | 3.79                           | 725                      |
| 0.025 | 89.60                                    | 3.82                      | 735                      | 88.82                                          | 3.79                           | 739                      |
| 0.05  | 85.06                                    | 3.66                      | 728                      | 84.85                                          | 3.66                           | 730                      |
| 0.075 | 82.64                                    | 3.59                      | 686                      | 82.94                                          | 3.60                           | 689                      |
| 0.10  | 80.98                                    | 3.56                      | 621                      | 80.91                                          | 3.57                           | 646                      |

**Таблица 2.** Удельная намагниченность при 80 K, температура Кюри и средние магнитные моменты твердых растворов Ni<sub>1 – x</sub>M<sub>x</sub>MnSb (M = Gd, Tm)



**Рис. 3** Температурные зависимости удельной намагниченности и обратной величины магнитной восприимчивости образцов  $Ni_{1-x}M_xMnSb$  (M = Gd, Tm).

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 58 № 6 2022



**Рис. 4.** Полевые зависимости удельной намагниченности образцов  $Ni_{1-x}M_xMnSb$  (M = Gd, Tm) при температурах 5 и 77 К.

На рис. 4 приведены полевые зависимости  $\sigma = f(B)$  удельной намагниченности твердых растворов замещения Ni<sub>1 – x</sub>M<sub>x</sub>MnSb (M = Gd, Tm) при температурах 5 и 77 К. При 5 К исследуемые составы выходят на насыщение в магнитных полях с индукцией *B* от 1.0 до 1.5 Тл. В области концентраций 0.075  $\leq x \leq 0.10$  магнитное насы-

щение образцов не наблюдается, вероятнее всего, по причине присутствия несвязанного MnSb ( $\mu_{0K} =$ = 3.53 $\mu_{\rm b}$  [9]). Имеет место проявление спонтанного магнитного момента, существование которого подтверждается наличием гистерезиса на зависимостях  $\sigma = f(B)$  как при 5 К, так и при 77 К. Величина магнитного гистерезиса проявляется при срав-

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 58 № 6 2022

|       | $\sigma_s$ , Ам <sup>2</sup> /кг         | $\mu, \mu_{B}$ | $\sigma_s$ , Ам <sup>2</sup> /кг | $\mu, \mu_{\overline{b}}$ | $\sigma_s$ , Ам <sup>2</sup> /кг         | $\mu, \mu_{B}$ | $\sigma_s$ , Ам <sup>2</sup> /кг | $\mu, \mu_{\overline{b}}$ |
|-------|------------------------------------------|----------------|----------------------------------|---------------------------|------------------------------------------|----------------|----------------------------------|---------------------------|
| x     | Ni <sub>1 - x</sub> Gd <sub>x</sub> MnSb |                |                                  |                           | Ni <sub>1 - x</sub> Tm <sub>x</sub> MnSb |                |                                  |                           |
|       | T = 5  K                                 |                | T = 77  K                        |                           | T = 5  K                                 |                | T = 77  K                        |                           |
| 0.00  | 92.29                                    | 3.89           | 90.46                            | 3.81                      | 92.29                                    | 3.89           | 90.46                            | 3.81                      |
| 0.025 | 90.82                                    | 3.87           | 89.89                            | 3.83                      | 89.62                                    | 3.82           | 88.96                            | 3.79                      |
| 0.05  | 88.73                                    | 3.82           | 85.97                            | 3.70                      | 88.05                                    | 3.80           | 86.35                            | 3.72                      |
| 0.075 | 84.95                                    | 3.69           | 84.25                            | 3.66                      | 85.97                                    | 3.75           | 84.08                            | 3.67                      |
| 0.10  | 82.34                                    | 3.62           | 81.13                            | 3.56                      | 84.07                                    | 3.71           | 81.36                            | 3.59                      |

**Таблица 3.** Удельная намагниченность насыщения ( $\sigma_s$ ) и значения средних магнитных моментов ( $\mu$ ) образцов Ni<sub>1-x</sub>M<sub>x</sub>MnSb (M = Gd, Tm) при 5 и 77 K

нительно небольших магнитных полях  $\sim \pm 1.5$  мTл, а остаточная удельная намагниченность имеет величину порядка  $\sim 1.0$  А м<sup>2</sup>/кг.

По результатам изучения петель магнитного гистерезиса твердых растворов  $Ni_{1-x}M_xMnSb$  (M = Gd, Tm) определены величины удельной намагниченности насыщения ( $\sigma_s$ ) и магнитных моментов, рассчитанные с использованием соотношения

$$\mu = \frac{\sigma M}{N_A} \mu_{\rm B},\tag{1}$$

где  $\sigma$  — удельная намагниченность, M — молярная масса,  $\mu_{\rm b}$  — магнетон Бора,  $N_A$  — постоянная Авогадро (табл. 3).

### ЗАКЛЮЧЕНИЕ

Установлено, что методом твердофазных реакций с последующей закалкой можно синтезировать однофазные твердые растворы Ni<sub>1 - x</sub>M<sub>x</sub>MnSb  $(M = Gd, Tm, x \le 0.05)$  с кристаллографической структурой типа MgAgAs ( $C1_b$ ), пр. гр.  $F\overline{4}3m$ . Выявлено, что параметры кубической элементарной ячейки исследуемых образцов увеличиваются линейно с ростом концентрации замещающего катиона от 0.5925 нм для NiMnSb до 0.5944 нм для  $Ni_{0.90}Gd_{0.10}MnSb$  и 0.5939 нм для  $Ni_{0.90}Tm_{0.10}MnSb$ . Установлено, что синтезированные образцы являются ферромагнетиками. Величина среднего магнитного момента при ~80 К уменьшается от  $3.79 \,\mu_{\rm B}$  в NiMnSb до  $3.56 \,\mu_{\rm B}$  в Ni<sub>0.90</sub>Gd<sub>0.10</sub>MnSb и до 3.57  $\mu_{\rm B}$  в Ni<sub>0.90</sub>Tm<sub>0.10</sub>MnSb. Температура Кюри уменьшается от  $T_c = 725$  К до 621 и 646 К соответственно. При  $x \ge 0.075$  образцы не обладают магнитным насыщением.

### СПИСОК ЛИТЕРАТУРЫ

- Schmidt G., Molenkamp L.W. Spin Injection into Semiconductors, Physics and Experiments // Semicond. Sci. Technol. 2002. V. 17. № 4. P. 310–321.
- de Groot R.A., Mueller F.M., Engen P.G., Buschow K.H.J. New Class of Materials: Half-Metallic Ferromagnets // Phys. Rev. Lett. 1983. V. 50. P. 2024–2027.
- 3. de Groot R.A., Mueller F.M., van Engen P.G., Buschow K.H.J. Half-Metallic Ferromagnets and Their Magneto-Optical Properties (invited) // J. Appl. Phys. 1984. V. 55. № 6. P. 2151–2154.
- 4. Otto M.J., van Woerden R.A.M., van der Valk P.J., Wijngaard J., van Bruggen C.F., Haas C. Half-Metallic Ferromagnets. II. Transport Properties of NiMnSb and Related Inter-Metallic Compounds // J. Phys.: Condens. Matter. 1989. V. 1. № 13. P. 2351–2360.
- Otto M.J., Feil H., van Woerden R.A.M., Wijngaard J., van der Valk P.J. Electronic Structure and Magnetic, Electrical and Optical Properties of Ferromagnetic Heusler Alloys // J. Magn. Magn. Mater. 1987. V. 70. P. 33–38.
- Tobal J., Pierre J. Electronic Phase Diagram of the XTZ (X = Fe, Co, Ni; T = Ti, V, Zr, Nb, qMn; Z = Sn, Sb) Semi-Heusler Compounds // J. Alloys Compd. 2000. V. 296. P. 243–252.
- Attema J.J., Fang C.M., Chioncel L., deWijs G.A., Lichtenstein A.I., de Groot R.A. Defects in Half-Metals and Finite Temperature // J.Phys.: Condens. Matter. 2004. V. 16. № 40. P. S.5517–S5524.
- 8. *Пенкаля Т.* Очерки кристаллохимии. Л.: Химия, 1974. 496 с.
- Takei W.J., Cox D.E., Shirane G. Magnetic Structures in the MnSb-CrSb System // Phys. Rev. 1963. V. 129. № 5. P. 2008–2018.