УДК 546.65.68.95:548.314

СИНТЕЗ И КРИСТАЛЛИЧЕСКИЕ СТРУКТУРЫ НОВЫХ ГАЛЛИДОВ RRu_xGa_{1-x} (R = Er, Tm, Lu) И ИНДИДОВ R₂Ru_{1-x}In_{1+x} (R = Dy, Ho, Er, Tm, Lu)

© 2022 г. Д. В. Седельников^{1,} *, Ю. А. Гришина¹, А. И. Турсина¹, Ж. М. Куренбаева¹, Е. В. Мурашова¹

¹Московский государственный университет им. М.В. Ломоносова, Ленинские горы, 1, Москва, 119991 Россия

*e-mail: sedelnikov.denis.96@mail.ru Поступила в редакцию 25.01.2022 г. После доработки 29.03.2022 г. Принята к публикации 30.03.2022 г.

В ходе систематического исследования систем R–Ru–Ga и R–Ru–In в области с высоким содержанием редкоземельных элементов (**P3**Э) был обнаружен ряд новых интерметаллических соединений переменного состава RRu_xGa_{1-x}(R = Er, Tm, Lu), R₂Ru_{1-x}In_{1+x} (R = Dy, Ho, Er, Tm, Lu), структуры которых принадлежат к известным структурным типам. Интерметаллиды RRu_xGa_{1-x} со структурой CsCl (*Pm*3*m*) демонстрируют статистическое расположение атомов Ga и Ru в позициях Cs. Соединения R₂Ru_{1-x}In_{1+x} относятся к структурному типу Pt₂ZnCd (*P4/mmm*), производному от CsCl в результате удвоения параметра *c*, в котором атомы Ru и In упорядоченно расположены в позициях Cs. Все полученные соединения существуют в областях гомогенности, границы которых сильно варьируются в зависимости от природы редкоземельного P3Э. В системе R–Ru–Ga для R = Er, Tm обнаружено новое соединение RRu_yGa_{1-y} со структурой MoB (*I*4₁/*amd*), которая в свою очередь является производной от структурного типа CrB (*Cmcm*). Интерметаллид RRu_yGa_{1-y} со структурой MoB имеет область гомогенности 0.05 < *y* < 0.20.

Ключевые слова: редкоземельные элементы, рутений, галлий, индий, рентгеновская дифракция, микроструктура

DOI: 10.31857/S0002337X22060124

введение

Интерес к интерметаллическим соединениям. содержащим редкоземельные элементы (РЗЭ), значительно вырос в последнее время из-за наличия у них широкого диапазона необходимых для современной техники магнитных и электрофизических свойств, вызванных поведением сильно коррелированных электронов [1-3]. Наиболее изученными из них являются соединения с церием, который может проявлять флуктуации валентности. В тройных интерметаллидах, содержащих церий и рутений одновременно, наблюдается значительное уменьшение расстояний Се-Ru до значений, меньших чем сумма ковалентных радиусов (2.89 Å). Большинство тройных соединений с такими структурными особенностями образуются в области систем с большим содержанием церия. В частности, соединения Ce_2RuX (X = Al, Ge) [4–6] и близкие к ним по составу $Ce_0Ru_4Ga_5$ и $La_0Ru_4In_5$ [7, 8] были получены и исследованы различными методами. Показано, что соединения имеют новые структурные типы, расстояния Ce-Ru в них укорочены (2.23–2.37 Å) (в соединении с лантаном соответствующие расстояния имеют обычную длину 2.75 Å), а из магнитных и электрофизических свойств следует отметить флуктуацию валентности, Кондо-взаимодействие и другие, связанные с сильно коррелированными электронами.

Соединения с другими РЗЭ середины и конца ряда состава R_2 RuX и близкого к нему практически не изучены. Имеется сообщение о строении и электропроводящих свойствах HoRu_{0.6}Ga_{0.4} со структурой CsCl [9]. В [10] сообщается об интерметаллидах магния R_2 RuMg (R = Sc, Y, Er, Tm, Lu) со структурой, производной от CsCl. В [11] не удалось получить соединения переходных металлов (Zn, Cu, Cd) с Tm и Er. Твердые растворы на основе GdCd с Ru, кристаллизующиеся в структурном типе CsCl, обладают выдающимися магнетокалорическими и магнитными свойствами, варьируемыми в зависимости от состава в широ-ком диапазоне температур [12, 13].

Цель настоящей работы — исследование интерметаллических соединений, образующихся в тройных системах с рутением R - Ru - X (R = Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu; X = Ga, In) с содержанием РЗЭ 50 ат. %, определение границ областей гомогенности, температур плавления, кристаллических структур.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Новые соединения получали из чистых РЗЭ (99.85 мас. %), рутения (99.96 мас. %), галлия (99.9999 мас. %) или индия (99.9999 мас. %), взятых в стехиометрических соотношениях, метолом высокотемпературного жилкофазного синтеза в электрической дуге в атмосфере аргона. Для хорошего проплавления компонентов образцы переворачивали и повторно плавили несколько раз. Затем сплавленные образцы помещали в кварцевую ампулу, вакуумировали и отжигали в электрических печах при температуре 600°С в течение 30 сут до установления равновесия. После этого ампулы с образцами закаливали в ледяной воде. Отожженные образцы исследовали методами сканирующей электронной микроскопии (СЭМ), локального рентгеноспектрального анализа (ЛРСА), рентгеновской дифракции на порошке и монокристалле, дифференциального термического анализа.

Микроструктуру полученных образцов изучали с применением СЭМ на электронном микроскопе Carl Zeiss LEO EVO 50XVP с EDX-спектрометром, оборудованном анализатором INCA Energy 450 (Oxford Instruments) для ЛРСА. Ускоряющее напряжение составляло 20 кВ. В качестве внешних стандартов использовали двойные галлиды и индиды РЗЭ. Погрешность измерения для каждого элемента не превышала 0.9 ат. %.

Образцы для рентгенофазового анализа (РФА) и предварительного определения параметров элементарных ячеек снимали на автоматическом дифрактометре STOE STADI Р в геометрии "на пропускание" (Cu $K_{\alpha 1}$ -излучение, Ge(111)-монохроматор), оборудованном линейным детектором PSD. Съемку проводили в интервале углов $5^{\circ} \le 2\theta \le 90^{\circ}$, с шагом 0.01° и экспозицией 10 с на точку. Индицирование рентгенограмм и расчет параметров элементарных ячеек выполняли с использованием пакета программ STOE WinXpow [14]. Для уточнения кристаллической структуры новых соединений методом Ритвельда по программе FULLPROF [15, 16] в качестве структурной модели использовали координаты атомов известных прототипов (CsCl, Pt₂ZnCd) [17, 18].

Кристаллические структуры R_2 RuIn (R = Tm, Lu) и ErRu_{0.06}Ga_{0.94} определены методом рентгеноструктурного анализа монокристалла с использованием автодифрактометра Bruker APEX2, APEX3 (Мо K_{α} -излучение, графитовый монохроматор). Определение кристаллических структур проводили с использованием прямых методов (SHELXS) и уточняли методом наименьших квадратов в анизотропном приближении (SHELXL) [19]. Поглощение учитывали с помощью программы SADABS [20]. Проекции кристаллических структур, рисунки полиэдров и другие структурные детали были выполнены с применением программы DIAMOND [21].

Структурная информация депонирована в объединенную структурную базу CCDC/FIZ (Karlsruhe): CSD-2142390 (ErRu_{0.06}Ga_{0.94}), CSD-2142391 (Tm₂RuIn), CSD-2142392 (Lu₂RuIn).

Дифференциальный термический анализ проводили на сканирующем калориметре производства фирмы NEITZCH Leading Thermal Analysis STA 449 F1 Jupiter Platinum RT в атмосфере гелия высокой степени чистоты. Образцы массой до 30 мг нагревали в интервале температур от 25 до 1200°С со скоростью 20°/мин.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Синтез образцов стехиометрического состава $R_{50}Ru_{25}Ga_{25}$ проведен с РЗЭ середины и конца ряда: R = Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu. Анализ присутствующих фаз в образцах методами ЛРСА и РФА демонстрирует отсутствие интерметаллидов состава R_2RuGa с R = Sm, Gd, Tb, Dy, Ho. Соединения этого состава присутствуют в образцах с R = Er, Tm, Lu. Все они кристаллизуются в структурном типе CsCl (корректная формула соединения RRu_xGa_{1-x}), пр. гр. *Pm* $\overline{3}m$, где позиции хлора (000) занимают атомы R, а позиции цезия (1/2 1/2 1/2) – статистически атомы Ru и Ga. Кристаллические структуры всех исследованных соединений уточнены по порошку методом Ритвельда (рис. 1).

Все исследованные интерметаллиды состава RRu_xGa_{1-x} , или близкого к нему, существуют в области гомогенности. Для определения границ этих областей были приготовлены образцы $R_{50}Ru_{10}Ga_{40}$, $R_{50}Ru_{15}Ga_{35}$, $R_{50}Ru_{20}Ga_{30}$ c R = Er, Tm. Согласно РФА, все они содержат RRu_xGa_{1-x} в качестве основной фазы (табл. S1). Параметр элементарной ячейки а в области гомогенности симбатно изменяется в пределах 3.4708(5)-3.4551(4) Å для ErRu_xGa_{1-x} и 3.4587(5)-3.4433(4) Å для TmRu_xGa_{1-x} (табл. S1). Протяженность области гомогенности у соединений с тулием и эрбием практически одинакова, и составляет 5 ат. %, согласно ЛРСА полученных образцов, и лежит в пределах 0.6 < x < 0.7 (рис. 2). Следует отметить, что соединений с точным составом RRu_{0.5}Ga_{0.5} для R = Er, Tm не обнаружено. Для LuRu_xGa_{1-x} область гомогенности распространяется в направлении большего содержания рутения. Возможно, протяженность этой области достигает состава LuRu [22], который также кристаллизуется в структурном типе CsCl. Параметр а в области гомогенности LuRu_xGa_{1-x} изменяется в пределах 3.4170(4)-3.3832(4) Å. В табл. S1 представлен фа-

Рис. 1. Экспериментальные (красные), теоретические (черные) рентгенограммы и их разностные кривые (синие) для образцов состава RRu_xGa_{1-x} (полосками зеленого цвета обозначены позиции Брэгга).

зовый состав образцов и параметры их элементарных ячеек в зависимости от состава.

В образцах RRu_xGa_{1-x} с R = Er, Tm, где x = 0.8и 0.7, кроме фазы RRu_xGa_{1-x} со структурой CsCl, наблюдается образование новой тетрагональной фазы RRu_yGa_{1-y} со структурой MoB [11] (рис. 3а), причем в образцах с x = 0.8 содержание этой фазы примерно такое же, как и фазы со структурой CsCl. Почти во всех исследованных образцах в качестве примеси присутствует фаза переменного состава R₂₆(Ru_xGa_{1-x})₁₇ [9] со структурным типом Sm₂₆(Co_xGa_{1-x})₁₇ [23].

Кристаллическая структура тетрагональной фазы $ErRu_yGa_{1-y}$ определена рентгеноструктурным анализом по монокристаллу. Точный состав этого соединения — $ErRu_{0.06(1)}Ga_{0.94(1)}$ — хорошо согласуется с составом, установленным в ЛРСА (50 ат. % Er, 3 ат. % Ru, 47 ат. % Ga).

Результаты уточнения и основные кристаллографические параметры представлены в табл. 1, координаты атомов и межатомные расстояния в структурах — в табл. 2 и 3, общий вид структур — на рис. 3.

Кристаллическая структура ErRu_{0.06(1)}Ga_{0.94(1)} (рис.3а) относится к структурному типу МоВ (*I4*₁/*amd*), который в свою очередь является производным от структурного типа CrB (*Стст*). В структурном типе CrB кристаллизуются все двойные галлиды с РЗЭ RGa (рис. 3б), а тройной интерметаллид состава Ce₂RuGe имеет производную от него структуру (рис. 3в) [5]. Основными строительными элементами структуры REGa (CrB) являются бесконечные параллельные цепи из атомов галлия, направленные вдоль [001], между которыми расположены атомы РЗЭ. Блоки из Ga-цепей чередуются с блоками из РЗЭ в направлении [010]. В структуре ErRu_{0.06(1)}Ga_{0.94(1)} (МоВ) аналогичные строительные элементы в виде цепей Ru_{0.05}Ga_{0.95} упакованы в элементарной ячейке другим образом. В направлении [001] чередуются блоки из Ru/Ga-цепей с блоками из РЗЭ, причем в соседних блоках Ru/Ga-цепи располагаются перпендикулярно друг другу (рис. 3а). Межатомные

СИНТЕЗ И КРИСТАЛЛИЧЕСКИЕ СТРУКТУРЫ НОВЫХ ГАЛЛИДОВ

Рис. 2. Микроструктура образцов RRu_xGa_{1-x} (состав соединений приведен в ат. %).

Рис. 3. Кристаллические структуры $ErRu_{0.06(1)}Ga_{0.94(1)}$ (MoB-структурный тип) (а), ErGa (CrB-структурный тип) (б), Ce_2RuGe (упорядоченный вариант CrB-типа) (в).

расстояния Ga-Ga в цепи в структуре ErGa составляют 2.789 Å, а в $ErRu_{0.06(1)}Ga_{0.94(1)}$ они короче и составляют 2.622(1) Å, что показывает значительное химическое связывание из-за внедрения атомов переходного металла.

Ближайшее окружение атомов Ga образуют 7 атомов РЗЭ на расстоянии не более 3.12 Å в форме тригональной призмы с одним дополнительным атомом. Соседние призмы вокруг атомов галлия одной цепи конденсируются посредством общей прямоугольной грани. Призмы соседней перпендикулярной цепи контактируют через общие вершины.

Согласно результатам ЛРСА, RRu_yGa_{1-y} имеет область гомогенности 0.05 < y < 0.20. Образование подобных тетрагональных фаз наблюдалось в системах с цинком, медью в качестве переходного элемента: YGa_{0.8}Zn_{0.2}, YGa_{0.85}Cu_{0.15} [11]. С рутением такие соединения обнаружены впервые и только для галлидов эрбия и тулия. В структуре Ce₂RuGe со структурным типом, производным от CrB, наблюдается упорядоченное замещение по-

СЕДЕЛЬНИКОВ и др.

=0.00(1) =0.94(1), 111210011						
Формула соединения	ErRu _{0.06(1)} Ga _{0.94(1)}	Tm ₂ RuIn	Lu ₂ RuIn			
Молекулярная масса	238.94	553.75	565.83			
Состав по ЛРСА, ат. %	Er _{49.8} Ru _{3.3} Ga _{46.9}	Tm _{49.4} Ru _{25.7} In _{24.9}	Lu _{49.4} Ru _{24.2} In _{26.4}			
Сингония	Тетрагональная	Тетрагональная	Тетрагональная			
<i>a</i> , Å	4.1311(13)	3.4343(11)	3.4253(4)			
<i>c</i> , Å	21.465(7)	7.439(3)	7.4059(8)			
<i>V</i> , Å ³	366.3(3)	87.74(7)	86.89(2)			
Пр. гр.	I4 ₁ /amd	P4/mmm	P4/mmm			
Ζ	8	1	1			
$D_{\rm pacy}$, г/см ³	8.665	10.480	10.813			
μ, мм ⁻¹	59.216	60.486	66.831			
<i>F</i> (000)	798	231	235			
Размер кристалла, мм	$0.06 \times 0.04 \times 0.02$	$0.14 \times 0.11 \times 0.1$	0.1 imes 0.04 imes 0.04			
θ _{min} —θ _{max} , град	3.797-33.236	2.738-30.229	2.750-31.938			
	$-6 \le h \le 5$	$-4 \le h \le 4$	$-4 \le h \le 5$			
Диапазон <i>hkl</i>	$-6 \le k \le 6$	$-4 \le k \le 4$	$-5 \le k \le 5$			
	$-32 \le l \le 15$	$-32 \le l \le 15$ $-10 \le l \le 10$				
Коррекция поглощения	Полуэмпирическая из эквивалентов					
Max, min пропускание	0.055, 0.017	0.0344, 0.0061	0.1098, 0.0527			
Метод уточнения	Полноматричный МНК по F ²					
Собрано отражений	1333	1333 1080				
Независимых отражений	221	111	124			
$c I > 2\sigma(I), R_{int}$	166, 0.029	111, 0.0748	124, 0.0329			
Количество уточняемых параметров	10	8	9			
GoF	1.115	1.225	1.113			
$R1, wR2 [I > 2\sigma(I)]$	0.020, 0.045	0.040, 0.105	0.017, 0.041			
<i>R</i> 1, <i>wR</i> 2 (все отражения)	0.032, 0.048	0.042, 0.105	0.017, 0.041			
$\Delta \rho_{max}, \Delta \rho_{min}, e/Å^3$	2.058, -1.206	4.683, -3.547	1.481, -1.933			

Таблица 1. Кристаллографические данные и основные параметры уточнения кристаллических структур $ErRu_{0.06(1)}Ga_{0.94(1)}$, Tm_2RuIn и Lu_2RuIn (монокристальные данные)

ловины атомов германия атомами переходного элемента (рутения), однако ни один из других РЗЭ не образует соединений с аналогичным распределением атомов.

В системах R–Ru–In образуются интерметаллиды состава R₂RuIn для R = Dy, Ho, Er, Tm, Lu (табл. S2). По данным ЛРСА и РФА, для РЗЭ середины ряда (R = Sm, Gd, Tb) соединения состава RE₂RuIn не были получены, при этом образуются соединения с известными структурными типами (табл. S2). Полученные соединения R₂RuIn кристаллизуются в тетрагональной ячейке структурного типа Pt₂ZnCd (*P*4/*mmm*) [16], производного от CsCl [15] в результате удвоения параметра *c*. Структура представляет собой стопку из двух тетраэдрически искаженных кубов типа CsCl с атомами РЗЭ в вершинах, в центре одного их них расположен атом рутения, а в центре другого –

Таблица 2. Координаты атомов и эквивалентные изотропные параметры атомного смещения U_{eq} в структурах ErRu_{0.06(1)}Ga_{0.94(1)}, Tm₂RuIn и Lu₂RuIn (монокристальные данные)

Атом	x	у	Z.	$U_{eq}, \mathrm{\AA}^2$			
ErRu _{0.06(1)} Ga _{0.94(1)}							
Er	0	1/4	0.1793(1)	0.018(1)			
Ru/Ga	0	1/4	0.0377 (1)	0.017(1)			
Tm ₂ RuIn							
Tm	1/2	1/2	0.2158(2)	0.021(1)			
In	0	0	1/2	0.024(1)			
Ru	0	0	0	0.021(1)			
Lu ₂ RuIn							
Lu	1/2	1/2	0.2171(1)	0.012(1)			
In	0	0	1/2	0.013(1)			
Ru	0	0	0	0.010(1)			
	-	-		•			

600

Атом 1	Атом 2	$d, \mathrm{\AA}$	Атом 1	Атом 2	d, Å	Атом 1	Атом 2	$d, \mathrm{\AA}$
$ErRu_{0.06(1)}Ga_{0.94(1)}$		Tm ₂ RuIn			Lu ₂ RuIn			
Er	4Ga	3.0060(10)	Tm	4Ru	2.9109(11)	Lu	4Ru	2.9070(4)
	Ga	3.0420(18)		Tm	3.210(3)		4In	3.2026(4)
	2Ga	3.1094(13)		4In	3.2199(12)		Lu	3.2152(11)
	2Er	3.6698(13)		3Tm	3.4343(11)		3Lu	3.4253(4)
	4Er	3.7384(11)	Ru	8Tm	2.9109(11)	Ru	8Lu	2.9070(4)
Ga	2Ga	2.6221(18)	In	8Tm	3.2199(12)	In	8Lu	3.2026(4)
	4Er	3.0060(10)						
	Er	3.0420(18)						
	2Er	3.1094(13)						

Таблица 3. Основные межатомные расстояния в структурах $ErRu_{0.06(1)}Ga_{0.94(1)}$, Tm_2RuIn и Lu_2RuIn (монокристальные данные)

атом индия (рис. 4а). Удвоение параметра *с* вызвано упорядоченным расположением атомов Ru и In в позициях Cs. Позиции Cl занимают атомы R. Из-за большого различия в размерах атомов Ru (r = 1.34 Å) и In (r = 1.60 Å) они располагаются не статистически, а каждый в своей позиции. Параметры и объемы элементарных ячеек уменьшаются в ряду от Dy к Lu вследствие лантаноидного сжатия (табл. 4).

Кристаллические структуры определены по монокристальным данным для двух соединений: Tm₂RuIn и Lu₂RuIn (табл. 1). Рентгенограммы порошков полученных соединений хорошо согласуются со структурной моделью, определенной по монокристаллам. На рис. 4б представлены результаты уточнения кристаллической структуры Lu₂RuIn методом Ритвельда. При сравнении межатомных расстояний Lu–Ru в тройном интерметаллиде Lu₂RuIn (2.9070(4) Å) и в LuRu (2.883 Å) (CsCl) [22] видно, что они немного отличаются друг от друга и превышают сумму ковалентных радиусов Lu и Ru. В свою очередь расстояния R–In и R–Ru в фрагментах типа CsCl различаются почти на 0.3 Å.

Состав соединений R_2 RuIn (R = Dy, Ho, Er, Tm, Lu) по результатам ЛРСА представлен на рис. 5. Все пять соединений, полученных в системе R-Ru-In, состава $R_2Ru_{1-x}In_{1+x}$ существуют в области гомогенности. Для определения границ этих областей были приготовлены образцы $R_{50}Ru_{22}In_{28}$, $R_{50}Ru_{20}In_{30}$, $R_{50}Ru_{15}In_{35}$, $R_{50}Ru_{10}In_{40}$ для R = Dy, Ho, Er, Tm, Lu. На рис. 6 представлены

Рис. 4. Кристаллическая структура $Lu_2Ru_{1-x}In_{1+x}(x=0)$ (а) и его экспериментальная (красная), теоретическая (черная) рентгенограммы и их разностная кривая (синяя) (полосками зеленого цвета обозначены позиции Брэгга) (б).

СЕДЕЛЬНИКОВ и др.

Формула соединения	<i>a</i> , Å	<i>c</i> , Å	<i>V</i> , Å ³	Температура плавления, °С	Область
$Dy_2Ru_{1-x}In_{1+x}$	3.4616(8)	7.596(3)	91.02(2)	1028(1)	0-0.20
$Ho_2Ru_{1-x}In_{1+x}$	3.4550(16)	7.561(8)	90.25(6)	1084(1)	0-0.48
$Er_2Ru_{1-x}In_{1+x}$	3.4474(19)	7.504(4)	89.18(6)	1173(1)	0-0.36
$Tm_2Ru_{1-x}In_{1+x}$	3.4261(11)	7.402(5)	86.88(6)	1117(1)	0-0.40
$Lu_2Ru_{1-x}In_{1+x}$	3.4219(3)	7.411(1)	86.77(1)	1167(1)	0-0.28

Таблица 4. Параметры и объемы элементарных ячеек, температуры плавления и области гомогенности соединений $R_2Ru_{1-x}In_{1+x}$ (R = Dy, Ho, Er, Tm, Lu)

фрагменты рентгенограмм для образцов с диспрозием, в трех из которых присутствует соединение $Dy_2Ru_{1-x}In_{1+x}$, а при уменьшении концентрации рутения образуется твердый раствор на

основе DyIn со структурой типа CsCl. По мере увеличения содержания рутения и уменьшения содержания индия в образце происходит сдвиг самых интенсивных отражений, что свидетельствует об

Рис. 5. Микроструктура образцов $R_2Ru_{1-x}In_{1+x}$

Puc. 6. Фрагменты рентгенограмм DyRu_xIn_{1-x} (x = 0.2), DyRu_xIn_{1-x} (x = 0.24), Dy₂Ru_{1-x}In_{1+x} (x = 0.2), Dy₂Ru_{1-x}In_{1-x} (x = 0.2), Dy₂Ru

Рис. 7. ДСК-кривая образца состава $Lu_2Ru_{1-x}In_{1+x}$ (x = 0).

изменении параметров элементарной ячейки соединения с областью гомогенности $Dy_2Ru_{1-x}In_{1+x}$ и твердого раствора $DyRu_xIn_{1-x}$. Кроме того, видно, что при переходе от твердого раствора $DyRu_xIn_{1-x}$ к соединению $Dy_2Ru_{1-x}In_{1+x}$ происходит расщеп-

ление пика 110 на два — 110 и 102, что подтверждает изменение симметрии элементарной ячейки, а именно, ее тетрагональное искажение. Параметры и объемы элементарных ячеек соединений, размеры области гомогенности твердых растворов $R_2 Ru_{1-x} In_{1+x}$ представлены в табл. 4.

Параметр элементарной ячейки *а* увеличивается при уменьшении содержания рутения в соединении $Dy_2Ru_{1-x}In_{1+x}$, а параметр *c* при этом уменьшается. Аналогичные тенденции проявляются и для остальных соединений $R_2Ru_{1-x}In_{1+x}$ (R = Ho, Er, Tm, Lu). По совокупности данных РФА и ЛРСА были оценены области гомогенности при низком содержании рутения у соединений $R_2Ru_{1-x}In_{1+x}$ (R = Dy, Ho, Er, Tm, Lu) (табл. 4). Исследования в области с содержанием рутения выше 25 ат. % не проводились.

Температуры плавления пяти новых соединений R_2 RuIn (R = Dy, Ho, Er, Tm, Lu) определены по результатам дифференциального термического анализа. На рис. 7 представлена ДСК-кривая для образца с лютецием. Согласно ДТА, соединения не претерпевают фазовых переходов до плавления. Температуры плавления R_2 RuIn (R = Dy, Ho, Er, Tm, Lu) увеличиваются от диспрозия к лютецию. РФА образцов, охлажденных после плавления, демонстрирует тот же фазовый состав, что и до плавления (рис. S3, S4), что свидетельствует о конгруэнтном характере плавления интерметаллидов R_2 RuIn (R = Dy, Ho, Er, Tm, Lu).

ЗАКЛЮЧЕНИЕ

Полученные соединения состава $R_2 Ru_{1-x} X_{1+x}$ расширяют семейство тройных галлидов и индидов рутения с содержанием РЗЭ 50 ат. %. Тройные соединения в этой области системы образуются для тяжелых РЗЭ, начиная с эрбия для галлидов и с диспрозия для индидов. Кристаллические структуры полученных соединений состоят из фрагментов RRu, RIn, RGa типа CsCl. Характерной особенностью кристаллических структур полученных соелинений является наличие основного каркаса структуры из крупных атомов РЗЭ, в пустотах которого располагаются меньшие по размеру атомы рутения или индия. При этом межатомные расстояния Ru–In и Ru–Ga значительно превышают сумму их ковалентных радиусов, что исключает образование связи между этими атомами. Кроме этих соединений, в системе с галием на изоконцентрате 50 ат. % R (R = Er, Tm) с невысоким содержанием рутения образуются соединения со структурой типа МоВ.

БЛАГОДАРНОСТЬ

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 19-03-00135а).

Экспериментальные данные для рентгеноструктурного анализа получены на оборудовании ЦКП ИОНХ РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Pöttgen R., Janka O., Chevalier B.* Cerium Intermetallics CeTX Review III // Z. Naturforsch., B: Chem. Sci. 2016. V. 71. № 3. P. 165–191. https://doi.org/10.1515/znb-2016-0013
- Benlagra A., Fritz L., Vojta M. Kondo Lattices with Inequivalent Local Moments: Compdetitive Versus Cooperative Kondo Screening // Phys. Rev. B: Condens. Matter. 2011. V. 84. № 7. P. 075126. https://doi.org/10.1103/PhysRevB.84.075126
- Slebarski A., Deniszczyk J., Kaczorowski D. Mixed Valence of Ce and Its Consequences on the Magnetic State of Ce₉Ru₄Ga₅: Electronic Structure Studies // Materials. 2020. V. 13. № 10. P. 2377. https://doi.org/10.3390/ma13102377
- Murashova E., Kurenbaeva Zh., Tursina A., Marushina E., Yaroslavtsev A., Leshchev D., Seropegin Y., Kaczorowski D. Novel Ternary Compdound Ce₂RuAl: Synthesis, Crystal Structure, Magnetic and Electrical Properties // J. Alloys Compd. 2013. V. 580. P. 55–60. https://doi.org/10.1016/j.jallcom.2013.05.065
- Kaczorowski D., Murashova E., Kurenbaeva Zh., Gribanov A. Novel germanide Ce₂RuGe: Synthesis, Crystal Structure and Low-Temperature Physical Properties // J. Alloys Compd. 2019. V. 802. P. 437–444. https://doi.org/10.1016/j.jallcom.2019.06.214
- Ślebarski A., Deniszczyk J., Murashova E., Kaczorowski D. Magnetic Ground State in Novel Valence Fluctuating Compaund Ce₂RuGe: Electronic Structure Investigations // J. Magn. Magn. Mater. 2020. V. 514. P. 167142. https://doi.org/10.1016/j.jmmm.2020.167142
- Shablinskaya K., Murashova E., Tursina A., Kurenbaeva Zh., Yaroslavtsev A., Seropegin Y. Intermetallics La₉Ru₄In₅ and Ce₉Ru₄Ga₅ with New Types of Structures. Synthesis, Crystal Structures, Physical Properties // Intermetallics. 2012. V. 23. P. 106–110. https://doi.org/10.1016/j.intermet.2011.12.024
- Kaczorowski D., Murashova E., Kurenbaeva Zh. Antiferromagnetic Ordering in an Intermediate Valence Compaund Ce₉Ru₄Ga₅ // J. Alloys Compd. 2013. V. 557. P. 23–26. https://doi.org/10.1016/j.jallcom.2012.11.205
- Мякуш О.Р., Федорчук А.А., Зелинский А.В. Кристаллическая структура R₂₆(Ru_xGa_{1 - x})₁₇ (R – Ge, Gd, Y, Tb, Dy, Ho, Er, Tm, Lu) и HoRu_{0.6}Ga_{0.4}// Неорган. материалы. 1998. Т. 34. № 6. С. 688–691.
- Kersting M., Rodewald U. Ch., Pöttgen R. The Magnesium Intermetallics RE₂RuMg (RE = Sc, Y, Er, Tm, Lu) i2 Superstructures of the CuAu Type // Z. Kristallogr. 2015. V. 230. № 3. P. 151–155. https://doi.org/10.1515/zkri-2014-1831
- Zhao J.-T., Seo D.-K., Corbett J.D. Synthesis, Structures and Properties of CaGa, YGa and Y(Ga,Z) Phases: a Model for the Transformation of a CrB to a MoB-Type Structure in Doped YGa Phases // J. Alloys Compd. 2002. V. 334. P. 110–117. https://doi.org/10.1016/S0925-8388(01)01784-4
- Tappe F, Schappacher F.M., Hermes W., Eul M., Pöttgen R. Drastic Decrease of the Curie Temperature in the Solid Solution GdRu_xCd_{1-x} // Z. Naturforsch., B: Chem. Sci. 2009. P. 356–360. https://doi.org/10.1515/znb-2009-0320

- Li L., Niehaus O., Johnscher M., Pöttgen R. Magnetic Properties and Tuneable Magnetocaloric Effect with Large Temperature Span in GdCd_{1-x}Ru_x solid solutions // Intermetallics. 2015. V. 60. P. 9–12. https://doi.org/10.1016/j.intermet.2015.01.005
- 14. STOE WINXPOW, Version 2.24. Stoe & Cie GmbH. Germany, Darmstadt, 2007.
- 15. *Rodriguez-Carvajal J.* FULLPROF: a Program for Rietveld Refinement and Pattern Matching Analysis Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr. Toulouse, 1990. P. 127.
- Roisnel T., Rodriguez-Carvajal J. Materials Science Forum // Proc. of the Eur. Powder Diffraction Conference (EPDIC7). 2000. P. 118.
- 17. *Davey W.P., Wick F.G.* Crystal Structure of CsCl and TlCl // Z. Phys. Chem. 1929. V. 3. P. 209–214.
- Khan Y., Schubert K. Über einige Strukturen im System Pt-Zn-Cd // J. Less-Common. Met. 1970. V. 20. № 3.

P. 266-268.

https://doi.org/10.1016/0022-5088(70)90071-8

- Sheldrick G.M. Crystal Structure Refinement with SHELXL // Acta Crystallogr., Sect. C. 2015. V. 71. № 1. P. 3–8. https://doi.org/10.1107/S2053229614024218
- Sheldrick G.M. SADABS Bruker Nonius Area Detector Scaling and Absorption Correction. Univesity of Göttingen, 2004.
- 21. *Brandenburg K.* DIAMOND. Release 3.2k. Bonn: Crystal Impact Gmbh, Germany. 2014.
- Iandelli A., Palenzona A. Das Verhalten des Ytterbiums mit den Metallen der achten Gruppe des periodischen Systems // Rev. Chim. Miner. 1976. V. 13. P. 55–61.
- Ярмолюк Я.П., Гринь Ю.Н., Олеш О.М. Кристаллическая структура R₂₆Ga_xCo_(17-x) (R = La, Ce, Pr, Nd или Sm,) и R₂₆Ga_xNi_(17-x) (R = Ce, Pr, Nd или Sm) // Кристаллография. 1980. Т. 25. С. 248–253.