УДК 544.31.031541.11/118546.03

КАЛОРИЧЕСКИЕ И ВОЛЮМЕТРИЧЕСКИЕ СВОЙСТВА СТЕКЛООБРАЗУЮЩЕЙ СИСТЕМЫ Ві₂O₃-B₂O₃-BaO ДЛЯ ОПТИЧЕСКИХ ПРИМЕНЕНИЙ¹

© 2022 г. А. Д. Плехович^{1,} *, Е. Е. Ростокина¹, М. Е. Комшина¹, К. В. Балуева¹, К. Ф. Игнатова¹, А. М. Кутьин¹

¹Институт химии высокочистых веществ им. Г.Г. Девятых Российской академии наук, ул. Тропинина, 49, БОКС-75, Нижний Новгород, 603951 Россия *e-mail: plekhovich@ihps-nnov.ru

Поступила в редакцию 24.02.2022 г. После доработки 08.04.2022 г. Принята к публикации 11.04.2022 г.

Измерены теплоемкость и волюметрические характеристики в интервале температур 300–1000 К стекол $0.20Bi_2O_3 \cdot xBaO \cdot (0.80 - x)B_2O_3$, содержащих 5, 10, 15 и 20 мол. % ВаО. По полученным данным с учетом установленных характеристик стеклования рассчитаны стандартные термодинамические функции: $C_p^{\circ}(T)$, $H^{\circ}(T) - H_l^{\circ}(0)$, $S^{\circ}(T) - S_l^{\circ}(0)$, $G^{\circ}(T) - H_l^{\circ}(0)$, плотности $\rho(T)$ и КТР $\alpha(T)$ в области от $T \to 0$ до 900 К в стеклообразном и переохлажденном жидком состояниях. Обладающие широкой областью прозрачности, подтвержденной спектроскопическими измерениями, исследованные методом ДСК образцы показали высокую кристаллизационную устойчивость.

Ключевые слова: ДСК, теплоемкость, стекло, плотность, КТР **DOI:** 10.31857/S0002337X22060094

ВВЕДЕНИЕ

Прозрачные в спектральном диапазоне от 0.38 до 3.4 мкм боратные стекла Bi_2O_3 – $BaO-B_2O_3$ способны хорошо растворять редкоземельные элементы, обладают низкой энергией фононов, высокой физической и химической стабильностью и имеют нелинейно-оптические свойства, а потому представляют большой интерес для разработок оптоэлектронных устройств [1–7]. Кроме того, благодаря широким концентрационным областям стеклообразования [8], варьируя состав стекла, можно приблизить показатель преломления, плотность, КТР и другие свойства стеклокерамики на его основе к характеристикам кристаллической фазы.

Кратко характеризуя исследуемую боратную стеклофазу, отметим, что оксид висмута, не являясь стеклообразователем [9], стабилизирует сетку стекла. В работе [10] установлено, что в системе $Bi_2O_3-B_2O_3$ наблюдается постепенное изменение к. ч. бора в стекле с 4 до 3 в интервале 40–50 мол. % Bi_2O_3 . Висмут в Bi_2O_3 обычно стремится занять октаэдрические позиции в структуре стекла [11], при этом плотность возрастает с увеличением содержания Bi_2O_3 [1, 12]. Оптически активная добавка Bi_2O_3 в системе Bi_2O_3 –BaO– B_2O_3 способствует увеличению области пропускания стекол в ИК-диапазоне спектра, а также показателя преломления [8]. Получить стекло системы Bi_2O_3 – B_2O_3 можно при относительно малых скоростях охлаждения (5–10 К/мин) при содержании оксида бора свыше 50 мол. % [13].

Боратные стекла на основе оксида висмута находят применение в виде стеклокерамики, для планарных оптических и электронных устройств [14], тепловых и механических датчиков, отражающих окон [1, 15], в качестве преобразователя частоты лазерного излучения на основе вынужденного комбинационного рассеяния [16] и т.д.

Фазовые равновесия и условия стеклообразования в системе $Bi_2O_3-B_2O_3-BaO$ изучены в работах [8, 17]. Поиск висмут-барий-боратных стекол, оптически совместимых по основным характеристикам с эрбий-алюмоиттриевым гранатом, может быть ускорен использованием метода минимизации энергии Гиббса для термодинамического прогнозирования условий образования кристалли-

¹ Дополнительная информация для этой статьи доступна по doi 10.31857/S0002337X22060094 для авторизованных пользователей.

Таблица 1. Результаты определения макросостава стекол системы $Bi_2O_3-B_2O_3-BaO$ методом АЭС-ИСП

Образец	Мольная доля			
	Bi ₂ O ₃	B ₂ O ₃	BaO	
1	0.207	0.747	0.047	
2	0.192	0.709	0.099	
3	0.189	0.668	0.143	
4	0.190	0.614	0.196	

Примечание. Неопределенность результатов анализа 0.010 (P = 0.95).

ческих фаз в зависимости от состава стеклокристаллической системы [18]. При наличии литературных данных о стандартных термодинамических функциях (СТФ) исходных оксидных компонентов, а также кристаллической фазы YAG [19, 20] актуальность исследования определяется получением недостающей термодинамической информации для стеклообразующей системы Bi_2O_3 — B_2O_3 —BaO.

Цель работы — определение теплоемкости стекла, переохлажденного расплава и характеристик стеклования (ДСК-эксперимент), измерение плотности и КТР; обработка калорических и волюметрических данных по модельно-статистической теории [21–23] с получением полного набора СТФ образцов состава $0.20Bi_2O_3 \cdot (0.80 - x)B_2O_3 \cdot xBaO$ с x = 0.05, 0.10, 0.15, 0.20 мол. доли.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Получение стекол. Использование наиболее полной к настоящему времени базы данных о стеклах и керамике SciGlass показало, что подбором состава стеклообразующей системы Bi_2O_3 — B_2O_3 — B_2O_3 —BaO можно обеспечить ее совместимость с дисперсно-кристаллической фазой эрбий-алюмоиттриевого граната Er:YAG по показателю преломления, плотности, КТР при удобных для синтеза температурах стеклования и плавления стеклофазы.

Стекла $Bi_2O_3-B_2O_3-BaO$ с гомогенным распределением компонентов на молекулярном уровне получали растворением прекурсоров $Bi(NO_3)_3$, H_3BO_3 , $Ba(NO_3)_2$ квалификации "ос. ч." в бидистиллированной воде в заданном мольном соотношении. Подготовленную смесь компонентов после интенсивного перемешивания разливали в формы из фторопласта и помещали с сушильный шкаф до полного высыхания при температуре 423 К. Высушенный образец диспергировали в планетарной мельнице и нагревали в печи до 1223 К для получения расплава, после охлаждения разливали в нагретую до 623 К форму. Полученные образцы стекол отжигали 3 ч при температуре 603 К, при этом происходило формирование прозрачного аморфного стеклообразного образца, что подтверждается данными порошковой рентгенографии. Макросостав полученных стекол 0.20Bi₂O₃ · (0.80 – x)B₂O₃ · xBaO c x = 0.05, 0.10, 0.15, 0.20 мол. доли контролировался методом АЭС-ИСП, результаты анализа приведены в табл. 1.

Рентгенофазовый анализ. Рентгенограммы приготовленных порошков стекол записывали на дифрактометре XRD-6000 фирмы Shimadzu (излучение Cu K_{α} , геометрия съемки на отражение, шаг сканирования 0.02°, $2\theta = 10^{\circ} - 60^{\circ}$).

Плотность и КТР. Плотность стекол определяли методом гидростатического взвешивания в воде при температуре 294 \pm 0.5 К. Погрешность определения составляла \pm 0.01 г/см³ при чувствительности цифровых весов 10⁻⁴ г.

ТКЛР стекол определяли на горизонтальном дилатометре из кварцевого стекла с точностью $\pm 0.1 \times 10^{-6} \, \text{K}^{-1}$. Для расчетов по модели использована известная взаимосвязь объемного и линейного КТР: КТР = 3ТКЛР.

Спектроскопические исследования. Спектр пропускания стекол измеряли на спектрофотометре SF-2000 UV/vis (LOMO, Россия) в диапазоне длин волн 0.2–1.1 мкм и на ИК-фурье-спектрометре ФТ-801 (SIMEX, Россия) в диапазоне 7–1.8 мкм. Толщина образцов составляла 2–3 мм.

Термический анализ. Стекла Bi₂O₃-B₂O₃-BaO исследовали на приборе DSC 404 F1 Pegasus, откалиброванном по стандартной методике с использованием сертифицированных эталонов, рекомендуемых фирмой NETZSCH. Измерения проводились в наиболее инертных к таким стеклам платиновых тиглях в потоке высокочистого и осушенного Ar 80 мл/мин при скорости нагревания 5 К/мин на образцах в форме дисков массой около 30 мг. Аппаратура и методика позволили выполнить измерения с погрешностями: 0.2 К для температур превращений, 1% для энтальпий переходов, а также определить удельную теплоемкость стекол в диапазоне температур 300-900 К с погрешностью менее 3%. Измерение удельной теплоемкости в интервале 300-900 К выполнено по стандартной методике с использованием поставляемого фирмой NETZSCH эталонного образца

Рис. 1. Рентгенограммы стекол $20Bi_2O_3 \cdot (80 - x)B_2O_3 \cdot xBaO.$

 Al_2O_3 с известной теплоемкостью. Полученные значения теплоемкости соответствуют химической формуле $0.20Bi_2O_3 \cdot (0.80 - x)B_2O_3 \cdot xBaO$ (x = 0.05, 0.10, 0.15, 0.20).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Рентгенофазовый анализ (рис. 1) подтвердил аморфную природу всех образцов.

Оптические спектры пропускания образцов стекол с различным содержанием BaO, представленные на рис. 2, свидетельствуют об их прозрачности в диапазоне 0.38–3.4 мкм.

Авторы [8] отмечают, что содержание групп [OH] в ИК-спектре таких стекол зависит от концентрации бора. Переплав стекол с выдержкой при 1223 К в течение 5 ч не приводит к снижению концентрации ионов гидроксила. Существование групп [BO₄] в стеклах с высоким содержанием висмута может быть связано с наличием атомов кислорода в составе [OH] [5].

Теплоемкость и характеристики стеклования. В исследованной серии стекол $20Bi_2O_3 \cdot (80 - x)B_2O_3 \cdot xBaO$ (x = 5, 10, 15, 20 мол. %) величина скачка теплоемкости уменьшается с увеличением содержания оксида бария (рис. 3), что может быть связано с соответствующим уменьшением содержания оксида бора.

Обработка данных по теплоемкости и расчет СТФ выполнены в рамках модельно-статистического подхода, основанного на квазичастичных

Рис. 2. Спектры пропускания стекол $20Bi_2O_3 \cdot (80 - x)B_2O_3 \cdot xBaO$.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 58 № 7 2022

Рис. 3. Кривые ДСК стекол $20Bi_2O_3 \cdot (80 - x)B_2O_3 \cdot xBaO$ при скорости нагрева 5 К/мин.

представлениях, отражающих природу тепловых возбуждений в стекле и расплаве [21–26].

Результаты расчета (линия) и экстраполяции (пунктир) теплоемкости по найденным методом нелинейной регрессии параметрам статистической модели в сравнении с измеренными значениями теплоемкости для серии стекол $Bi_2O_3-B_2O_3-B_aO$ представлены на рис. 4. Значения параметров модели приведены в табл. 2, а их зависимости от содержания оксида бария показаны на рис. 5.

Использование приведенных в Приложении аналитических выражений модельно-статистической теории при найденных параметрах, обеспечивающих хорошее описание измеренных значе-

ний C_p° , позволяет, кроме C_p° , рассчитать СТФ: энтальпию $H^{\circ}(T) - H_1^{\circ}(0)$, энтропию $S^{\circ}(T) - S_1^{\circ}(0)$,

энергию Гиббса $G^{\circ}(T) - H_1^{\circ}(0)$ с возможностью их экстраполяции как в низкотемпературную область до 0 К, так и в область расплава. Отметим, что ненулевые значения при 0 К характеризуют избыточные энтальпию, энтропию и энергию Гиббса стекла.

Плотность и КТР. В табл. 3 представлены измеренные значения плотности стекла и расчетное

Таблица 2. Параметры статистической модели, харак-
теризующие стеклообразное и переохлажденное жид-
кое состояния стекол $0.20 \text{Bi}_2 \text{O}_3 \cdot (0.80 - x) \text{B}_2 \text{O}_3 \cdot x \text{BaO}$

		2 3 ()		2 3
x	0.05	0.10	0.15	0.20
m_0	14.55	14.1	13.65	13.20
h*, K	974.62	808.49	766.46	851.54
<i>s</i> *	0.495	0.344	0.285	0.390
р	4.36	4.68	5.82	4.64
d_0	1.97	1.76	1.88	1.97
t	3.10	2.76	2.53	2.87
m _e	0.21	0.57	0.57	0.20
θ _e , K	64.7	58.3	49.5	47.3
α _e	0.001	0.044	0.027	0.001

Примечание. Суммарное число степеней свободы, равное утроенному числу атомов в формульной единице вещества: $m_0 = 3(0.2 \cdot 5 + (0.8 - x) \cdot 5 + x \cdot 2) = m + m_e$, в свою очередь равно числу акустических и эйнштейновских мод; h^* , $s^* -$ энтальпийный и энтропийный параметры квазичастиц, соответствующих акустическим модам; p – параметр парастатистики, определяющий соотношение вакансионов Френкеля и Шотки; d_0 и t определяют "критическую" зависимость параметра внутренней размерности $d = d_0 / (1 - (T/T_g)^t)$ для стекла ($T < T_g$); θ_e и α_e – характеристическая температура и параметр ангармонизма m_e эйнштейновских мод.

т, К

Рис. 4. Измеренные значения теплоемкости (значки) и результат их обработки (пунктирные линии) для образцов $0.20Bi_2O_3 \cdot (0.80 - x)B_2O_3 \cdot xBaO$.

значение КТР стекол. По результатам измерений наблюдается увеличение плотности и КТР при увеличении содержания оксида бария.

Модельно-статистическая теория стеклообразующих систем кроме калорических функций включает в себя температурные зависимости плотности и КТР, выражения которых представлены в части II Приложения. Единый набор параметров квазичастиц как результат совместной обработки данных калориметрических и волюметрических

Таблица 3. Экспериментально измеренные плотности и КТР стекол $Bi_2O_3-B_2O_3-BaO$

BaO, мол. %	ρ _{293 K} , г/см ³ (±0.01)	KTP × 10 ⁶ , K ⁻¹ (± 0.30)
5	4.31	19.44
10	4.55	20.77
15	4.72	22.11
20	4.95	22.86

767

Рис. 5. Корреляционные зависимости параметров модели от содержания оксида бария в образцах $0.20Bi_2O_3 \cdot (0.80 - x)B_2O_3 \cdot xBaO$.

Рис. 6. Температурные зависимости плотности (сплошные линии) и КТР (пунктирные линии) для стекол $0.20Bi_2O_3 \cdot (0.80 - x)B_2O_3 \cdot xBaO$ (значки – измеренные значения плотности и КТР с погрешностями ± 0.01 г/см³ и $\pm 0.3 \times 10^{-6}$ K⁻¹ соответственно).

768

КАЛОРИЧЕСКИЕ И ВОЛЮМЕТРИЧЕСКИЕ СВОЙСТВА

33.39

Стекло	<i>V</i> ₀ , см ³ /моль	$\Delta V^* imes 10^2$, см ³ /моль			
$0.20Bi_2O_3 \cdot 0.75B_2O_3 \cdot 0.05BaO$	35.39	4.71			
$0.20 Bi_2 O_3 \cdot 0.70 B_2 O_3 \cdot 0.10 Ba O$	34.48	5.16			
$0.20 Bi_2 O_2 \cdot 0.65 B_2 O_2 \cdot 0.15 Ba O_2$	34.13	5.39			

Таблица 4. Объемные параметры элементарных возбуждений стекол

Примечание. Параметры $V_0, \Delta V^*$ отнесены к акустическим степеням свободы.

измерений содержит объемные параметры элементарных возбуждений (табл. 4), дополняющие модельные параметры табл. 2, и тем самым по формулам (П11)–(П14) определяет температурные зависимости плотности $\rho(T)$ и КТР(T) (рис. 6).

 $0.20Bi_2O_3 \cdot 0.60B_2O_3 \cdot 0.20BaO$

ЗАКЛЮЧЕНИЕ

Для спектроскопически и рентгенографически охарактеризованных образцов стеклообразующей системы $0.20Bi_2O_3 \cdot (0.80 - x)B_2O_3 \cdot xBaO$ (x = 0.05, 0.10, 0.15, 0.20) методом ДСК изучены теплоемкость стекла, переохлажденного расплава и характеристики стеклования, а также измерены плотность (гидростатическое взвешивание) и КТР (дилатометрия).

Параметры модельно-статистической теории стекла и расплава, найденные при совместной обработке данных калориметрического и волюметрического эксперимента, позволили

• определить СТФ $C_p^{\circ}(T), H^{\circ}(T) - H_1^{\circ}(0), S^{\circ}(T) -$

 $-S_1^{\circ}(0), G^{\circ}(T) - H_1^{\circ}(0)$ в температурной области от $T \rightarrow 0$ до 900 K;

• рассчитать температурные зависимости плотности и КТР исходя из опорных значений, измеренных при комнатной температуре;

 осуществить теоретически обоснованную экстраполяцию калорических и волюметрических функций в низкотемпературную область до 0 К для определения, в частности, важной термодинамической характеристики S°(298.15);

• получить корреляционные зависимости параметров модели от содержания оксида бария.

Полученные данные — необходимая исходная информация для применения методов химической термодинамики, включая ее неравновесную часть, при анализе и прогнозировании процессов получения стеклокристаллических материалов с использованием перспективной стеклообразующей системы Bi₂O₃—BaO—B₂O₃.

БЛАГОДАРНОСТЬ

5.94

Работа выполнена при финансовой поддержке гранта Российского научного фонда № 20-73-10110.

СПИСОК ЛИТЕРАТУРЫ

 Saritha D., Markandeya Y., Salagram M., Vithal M., Singh A.K., Bhikshamaiah G. Effect of Bi₂O₃ on Physical, Optical and Structural Studies of ZnO-Bi₂O₃-B₂O₃ Glasses // J. Non-Cryst. Solids. 2008. V. 354. P. 5573-5579.

https://doi.org/10.1016/j.jnoncrysol.2008.09.017

- Barbier J., Cranswick L.M.D. The Non-Centrosymmetric Borate Oxides, MBi₂B₂O₇ (M = Ca, Sr) // J. Solid State Chem. 2006. V. 179. P. 3958–3964. https://doi.org/10.1016/j.jssc.2006.08.037
- Barbier J., Penin N., Denoyer A., Cranswick L.M.D. BaBiBO₄, a Novel Noncentrosymmetric Borate Oxide // Solid State Sci. 2004. V. 7. P. 1055–1061. https://doi.org/10.1016/j.solidstatesciences.2004.11.031
- Bubnova R.S., Krivovichev S.V., Filatov S.K., Egorysheva A.V., Kargin Y.F. Preparation, Crystal Structure and Thermal Expansion of a New Bismuth Barium Borate, BaBi₂B₄O₁₀ // J. Solid State Chem. 2007. V. 180. P. 596–603.

https://doi.org/10.1016/j.jssc.2006.11.001

- 5. *Rada S., Culea E., Rus V.* Spectroscopic and Quantum Chemical Investigation of the 4Bi₂O₃ · B₂O₃ Glass Structure // J. Mater. Sci. 2008. V. 43. P. 6094–6098. https://doi.org/10.1007/s10853-008-2949-7
- Becker P. Thermal and Optical Properties of Glasses of the System Bi₂O₃-B₂O₃ // Cryst. Res. Technol. 2003. V. 38. P. 74–82. https://doi.org/10.1002/crat.200310009
- Stehle C., Vira C., Hogan D., Feller S., Affatigato M. Optical and Physical Properties of Bismuth Borate Glasses Related to Structure // Phys. Chem. Glas. 1998. V. 39. P. 83–86.
- Егорышева А.В., Володин В.Д., Скориков В.М. Стеклообразование в системе Bi₂O₃-B₂O₃-BaO // Неорган. материалы. 2008. Т. 44. № 11. С. 1397—1401.
- 9. Денисов В.М., Белоусова Н.В., Денисова Л.Т. Бораты висмута // Журн. Сибирского федерального ун-та. 2013. Т. 6. № 2. С. 132—150.
- Жереб В.П., Бабицкий Н.А., Бермешев Т.В., Шубин А.А., Сидорак А.В. Стеклообразование в Ві₂O₃-В₂O₃. Термическая стабильность и структура стекол // Журн. Сибирского федерального ун-та. 2014. Т. 7. № 3. С. 371-382.

- Saritha D., Markandeya Y., Salagram M., Vithal M., Bhikshamaiah G. Effect of Bi₂O₃ on Physical, Optical and Structural Studies of ZnO-Bi₂O₃-B₂O₃ Glasses // J. Non-Cryst. Solids. 2008. V. 354. P. 5573-5579. https://doi.org/10.1016/j.jnoncrysol.2008.09.017
- 12. Rani S., Kundu R.S., Ahlawat N., Punia S., Sangwan K.M., Rani K. Bismuth Modified Physical and Optical Properties of Barium Boro-Tellurite Glasses // AIP Conf. Proc. 2019. № 2115. 030255. https://doi.org/10.1063/1.5113094
- Каргин Ю.Ф., Жереб В.П., Егорышева А.В. Диаграмма метастабильного состояния системы Bi₂O₃-B₂O₃ // Журн. неорган. химии. 2002. Т. 47. № 8. С. 1362–1364.
- Sayyed M.I., Issa S.A.M., Tekin H.O., Saddeek Y.B. Comparative Study of Gamma-Ray Shielding and Elastic Properties of BaO-Bi₂O₃-B₂O₃ and ZnO-Bi₂O₃-B₂O₃ Glass Systems // Mater. Chem. Phys. 2018. V. 217. P. 11-22.

https://doi.org/10.1016/j.matchemphys.2018.06.034

- 15. Saddeek Y.B., Gaafar M.S. Physical and Structural Properties of Some Bismuth Borate Glasses // Mater. Chem. Phys. 2009. V. 115. P. 280–286. https://doi.org/10.1016/j.matchemphys.2008.12.004
- 16. Филатов С.К., Александрова Ю.В., Шепелев Ю.Ф., Бубнова Р.С. Структура оксобората висмута Ві₄B₂O₉ при 20, 200 и 450°С // Журн. неорган. химии. 2007. Т. 52. № 1. С. 26–33.
- Егорышева А.В., Скориков В.М., Володин В.Д., Мыслицкий О.Е., Каргин Ю.Ф. Фазовые равновесия в системе BaO-Bi₂O₃-B₂O₃ // Журн. неорган. химии. 2006. Т. 51. № 12. С. 2078-2082.
- Балуева К.В., Плехович А.Д., Кутьин А.М., Суханов М.В. Термодинамический анализ кристаллизационной устойчивости стекол Ge–S–Bi // Журн. неорган. химии. 2021. Т. 66. № 8. С. 1046–1053. https://doi.org/10.31857/S0044457X2108002X
- Fujita S., Tanabe S. Thermal Quenching of Ce³⁺: YAG Glass-Ceramic Phosphor // Conf. on Lasers and Elec-

tro-Optics. Pacific Rim. 2009. P. TUP6_20. https://doi.org/10.1109/cleopr.2009.5292444

- Fujita S., Tanabe S. Fabrication, Microstructure and Optical Properties of Er³⁺:YAG Glass-Ceramics // Opt. Mater. 2010. V. 32. P. 886–890. https://doi.org/10.1016/j.optmat.2010.01.014
- Balueva K.V., Kut'in A.M., Plekhovich A.D., Motorin S.E., Dorofeev V.V. Thermophysical Characterization of TeO₂-WO₃-Bi₂O₃ Glasses for Optical Applications // J. Non-Cryst. Solids. 2021. V. 553. P. 120465. https://doi.org/10.1016/j.jnoncrysol.2020.120465
- Kut'in A.M., Plekhovich A.D., Balueva K.V., Dorofeev V.V. Effects of Er₂O₃ Content on Heat Capacity, Thermodynamic Functions and Vitrification Characteristics of Er³⁺-Doped Tellurite Glass // J. Non-Cryst. Solids. 2018. V. 480. P. 95–99. https://doi.org/10.1016/j.jnoncrysol.2017.06.020
- Kut'in A.M., Plekhovich A.D., Balueva K.V., Sukhanov M.V., Skripachev I.V. Standard Thermodynamic Functions of GeSx:Bi (1 < x < 2) Glasses // J. Non-Cryst. Solids. 2019. V. 509. P. 74–79. https://doi.org/10.1016/j.jnoncrysol.2018.12.030
- Кутьин А.М., Плехович А.Д., Балуева К.В., Дорофеев В.В. Характеристики стеклования и термодинамические функции стекол (1-x)(0.75TeO₂-0.25WO₃) + xLa₂O₃ // Неорган. материалы. 2018. Т. 54. № 7. С. 744–751. https://doi.org/10.1134/S0020168518070075
- Kut'in A.M., Plekhovich A.D., Balueva K.V., Motorin S.E., Dorofeev V.V. Thermal Properties of High Purity Zinc-Tellurite Glasses for Fiber-Optics // Thermochim. Acta. 2019. V. 673. P. 192–197. https://doi.org/10.1016/j.tca.2019.01.027
- 26. *Кутьин А.М., Маркин А.В., Дорофеев В.В., Моисеев А.Н.* Термодинамические свойства стекол (TeO₂)_{0.95 n z}(ZnO)_z(Na₂O)_n(Bi₂O₃)_{0.05} // Неорган. материалы. 2011. Т. 47. № 10. С. 1257–1263. https://doi.org/10.1134/s0020168511090135