УДК 536.63

СИНТЕЗ, КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И ВЫСОКОТЕМПЕРАТУРНАЯ ТЕПЛОЕМКОСТЬ АПАТИТОВ $Pb_{10 - x}Sm_x(GeO_4)_{2 + x}(VO_4)_{4 - x}$ (x = 0.2, 0.5, 0.7, 1.0) В ОБЛАСТИ 350–1000 К

© 2022 г. Л. Т. Денисова^{1, *}, М. С. Молокеев^{1, 2}, Ю. Ф. Каргин³, Е. О. Голубева¹, Н. В. Белоусова¹, В. М. Денисов¹

¹Сибирский федеральный университет, пр. Свободный, 79, Красноярск, 660041 Россия ²Институт физики им. А.В. Киренского ФИЦ КНЦ СО Российской академии наук, Красноярск, Академгородок, 50, 660036 Россия

³Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук,

Ленинский пр., 49, Москва, 119991 Россия

*e-mail: ldenisova@sfu-kras.ru Поступила в редакцию 30.01.2022 г. После доработки 26.03.2022 г. Принята к публикации 28.03.2022 г.

Обжигом на воздухе стехиометрических смесей оксидов PbO, Sm₂O₃, GeO₂ и V₂O₅ в интервале температур 773–1073 К синтезированы соединения Pb_{10 – x}Sm_x(GeO₄)_{2 + x}(VO₄)_{4 – x} (x = 0.2, 0.5, 0.7, 1.0) со структурой апатита. С использованием рентгеновской дифракции исследована их кристаллическая структура. Методом дифференциальной сканирующей калориметрии измерена высокотемпературная теплоемкость (350–1000 K). На основании этих данных рассчитаны термодинамические свойства.

Ключевые слова: твердофазный синтез, кристаллическая структура, апатиты, высокотемпературная теплоемкость, термодинамические свойства

DOI: 10.31857/S0002337X22070089

ВВЕДЕНИЕ

Сложные оксидные соединения, имеющие структуру апатита, привлекают внимание возможностями их практического применения в качестве лазерных, люминесцентных и оптических материалов [1-7]. Важной особенностью соединений семейства апатитов является способность их структурных единиц к замещению другими ионами, что приводит к образованию твердых растворов, состав которых может изменяться в достаточно широких пределах [4, 7–10]. Так, например, замещением части свинца в Pb₅(GeO₄)(VO₄)₂ на лантан или празеолим получены соответственно апатиты составов Pb₈La₂(GeO₄)₄(VO₄)₂ [6] и Pb₈Pr₂(GeO₄)₄(VO₄)₂ [11]. Свойства подобных соединений, имеющих общий вид $Pb_{10-x}R_x(GeO_4)_{2+x}(VO_4)_{4-x}$ (R = P3M, x = 0-3), исследованы крайне мало. Имеются данные о структуре $Pb_{10}(GeO_4)_2(VO_4)_4$ (x =0) [12, 13], $Pb_{10-x}La_{x}(GeO_{4})_{2+x}(VO_{4})_{4-x}$ [6, 11], $Pb_{10-x}Pr_{x}(GeO_{4})_{2+x}(VO_{4})_{4-x}$ [11, 14] И $Pb_{10-x}Nd_x(GeO_4)_{2+x}(VO_4)_{4-x}$ [15] (x = 0-3). Кроме того, исследована высокотемпературная теплоемкость этих соединений, содержащих La [16], Pr [14] и Nd [15].

Целью настоящей работы является синтез, исследование кристаллической структуры и высокотемпературной теплоемкости апатитов $Pb_{10-x}Sm_x(GeO_4)_{2+x}(VO_4)_{4-x}$ (x = 0.2, 0.5, 0.7 и 1.0).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы $Pb_{10-x}Sm_x(GeO_4)_{2+x}(VO_4)_{4-x}$ (x = 0.2, 0.5, 0.7 и 1.0) получали твердофазным синтезом из предварительно прокаленных исходных оксидов PbO, Sm_2O_3 , V_2O_5 "ос.ч" и GeO₂ (99.99%). Стехиометрические смеси гомогенизировали в агатовой ступке и прессовали в таблетки. Их обжигали на воздухе при 773, 873, 973 К (по 10 ч) и при 1073 К (200 ч). Через каждые 10 ч таблетки перетирали и снова прессовали.

Контроль фазового состава полученных образцов проводили с использованием рентгенофазового анализа. Порошковые рентгенограммы получены при комнатной температуре на дифрактометре Bruker D8 ADVANCE (Си K_{α} -излучение) с использованием линейного детектора VANTEC. Шаг сканирования составлял 0.016°, время экс-

Рис. 1. Кристаллическая структура $Pb_{10-x}Sm_x(GeO_4)_{2+x}(VO_4)_{4-x}$.

позиции на каждый шаг 2 с. Уточнение Ритвельда проведено в программе TOPAS 4.2 [17].

Теплоемкость образцов $Pb_{10-x}Sm_x(GeO_4)_{2+x}(VO_4)_{4-x}$ (x = 0.2, 0.5, 0.7 и 1.0) измеряли методом дифференциальной сканирующей калориметрии при помощи термоанализатора STA 449 С Jupiter (NETZSCH, Германия). Методика экспериментов описана нами ранее [18]. Погрешность измерений не превышала 2%.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Рентгенофазовый анализ показал, что однофазные соединения со структурой апатита образуются в области составов $0 \le x \le 1$. Однофазные образцы с x = 2 получить не удалось. Подобное наблюдалось при синтезе $Pb_{8-x}Gd_xNa_2(VO_4)_6O_{x/2}$ (примесь $GdVO_4$) [4] и $Pb_{8-x}Eu_xNa_2(VO_4)_6O_{x/2}$ (примесь $EuVO_4$) [19]. В нашем случае фазовую принадлежность примеси установить не удалось.

Для однофазных образцов все рефлексы проинлицированы в гексагональной сингонии (пр. гр. $P6_3/m$) с параметрами, близкими к апатиту Pb₅(GeO₄)(VO₄)₂ [12, 13]. Поэтому эта структура была взята в качестве стартовой модели уточнения. В обе независимые позиции ионов свинца (Pb1 и Pb2) (рис. 1) были помещены ионы Pb/Sm с фиксированными значениями заселенностей позиций согласно предполагаемой химической формуле. Уточнить заселенность Sm не представлялось возможным из-за малого значения концентраций. Для единственной позиции Ge/V было рассчитано соотношение между ионами Ge и V, учитывая химическую формулу, и эти заселенности также были фиксированы в ходе уточнения. Тепловые параметры всех атомов уточнены в изотропном приближении. Уточнение шло стабильно и дало низкие величины *R*-факторов (табл. 1, рис. 2). Координаты атомов и основные длины связей представлены в табл. 2 и 3 соответственно. На рис. 3 показано влияние состава образцов $Pb_{10-x}Sm_x(GeO_4)_{2+x}(VO_4)_{4-x}$ на параметры элементарной ячейки. Параметры элементарной ячейки незамещенного образца (x = 0) взяты из работы [13].

Ванадат-германат свинца можно отнести к лакунарным апатитам [10, 20]. В апатитах с данной структурой отсутствуют анионы в каналах вдоль оси *с* элементарной ячейки. При этом стабилиза-

x	0.2	0.5	0.7	1.0
Пр. гр.	<i>P</i> 6 ₃ / <i>m</i>			
<i>a</i> , Å	10.09143(6)	10.09242(6)	10.09276(6)	10.0922(5)
<i>c</i> , Å	7.38601(6)	7.36970(6)	7.35802(6)	7.3410(1)
$V, Å^3$	651.397(10)	650.086(9)	649.08(1)	648.53(2)
Z	1	1	1	1
<i>d</i> , г/см ³	7.13	7.12	7.11	7.10
$\Delta 2\theta$, град	7.5-120	7.5-120	7.5-120	7.5-110
$R_{wp}, \%$	6.10	6.61	5.54	5.53
$R_p, \%$	4.79	4.38	5.54	5.54
<i>R_{exp}</i> , %	3.86	3.71	3.61	3.60
<i>R</i> _{<i>B</i>} , %	1.96	1.84	1.83	1.80
χ^2	1.58	1.51	1.53	1.52

Таблица 1. Основные параметры съемки и уточнения структуры $Pb_{10-x}Sm_x(GeO_4)_{2+x}(VO_4)_{4-x}$

Примечание. a, c — параметры ячейки; V — объем ячейки; d — рассчитанная плотность; факторы недостоверности: R_{wp} — весовой профильный, R_p — профильный, R_{exp} — ожидаемый, R_B — интегральный; χ^2 — качество подгонки.

Рис. 2. Экспериментальный (1), расчетный (2) и разностный (3) профили рентгенограммы Pb₉Sm(GeO₄)₃(VO₄)₃ после уточнения методом минимизации производной разности.

ция структуры осуществляется за счет стехиометрически активных катионов, имеющих $6s^2$ -пары электронов (в нашем случае Pb^{2+}) и находящихся в положении Pb2.

Из рис. 3 и табл. 1 следует, что при замещении свинца самарием в области составов $0.2 \le x \le 1$ происходит линейное уменьшение параметров *c*, *V* и *d* элементарной ячейки. При этом параметры *a* и *b* практически не изменяются. Можно отметить, что в координационном полиэдре Pb1 средние межатомные расстояния Pb1–O1 (2, 3) уменьшаются, а в полиэдре Pb2 средние расстояния Pb2–O1 (2, 3) почти не меняются. Возможно, это объясняется увеличением концентрации не только ионов самария, но и ионов Ge⁴⁺, замещающих V⁵⁺ в тетраэдрах Ge(V)O₄. Уменьшение объема элементарной ячейки с ростом концентрации Sm согласуется с меньшим ионным радиусом Sm³⁺ по сравнению с таковым для Pb²⁺ [21].

Влияние температуры в области 350–1000 К на теплоемкость образцов $Pb_{10-x}Sm_x(GeO_4)_{2+x}(VO_4)_{4-x}$ показано на рис. 4. Видно, что значения C_p увеличиваются как с ростом температуры от 350 до 1000 К, так и при увеличении концентрации самария. Заметим, что наблюдается близость значений теплоемкости для образцов с x = 0.5 и 0.7. Учитывая это, в дальнейшем в качестве примера будем рассматривать образец $Pb_9Sm(GeO_4)_3(VO_4)_3$. Установлено, что температурные зависимости теплоем-кости хорошо описываются уравнением Праусница, Рида, Шервуда [22]

$$C_{p} = a + bT + dT^{2} + fT^{3}, \qquad (1)$$

которое лучше, чем уравнение Майера-Келли [23]

$$C_p = a + bT + cT^2, \tag{2}$$

описывает экспериментальные результаты. Уравнение (1) для $Pb_9Sm(GeO_4)_3(VO_4)_3$ имеет следующий вид:

$$C_p = (766.9 \pm 5.9) + (512.3 \pm 28.7) \times 10^{-3}T - (38.24 \pm 4.43) \times 10^{-5}T^2 + (1.79 \pm 0.22) \times 10^{-7}T^3.$$

Коэффициент корреляции для уравнения (3) равен 0.9996, а максимальное отклонение от сглаживающей кривой — 1.4%.

Следует отметить, что подобное наблюдалось при исследовании теплоемкости образцов $Pb_{10-x}Eu_x(GeO_4)_{2+x}(VO_4)_{4-x}$ (x = 0.1, 0.2, 0.3) [24]. Используя соотношение (3) и уравнения для расчета термодинамических функций [22], рассчитали изменения энтальпии, энтропии и энергии Гиббса. Результаты приведены в табл. 4.

Рис. 3. Влияние состава образцов $Pb_{10-x}Sm_x(GeO_4)_{2+x}(VO_4)_{4-x}$ на параметры элементарной ячейки: a = b(1), c(2), V(3) и d(4).

ДЕНИСОВА и др.

Таблица 2. Атомные координаты и изотропные тепловые параметры (Å²) образцов $Pb_{10-x}Sm_x(GeO_4)_{2+x}(VO_4)_{4-x}$

Атом	x	У	Ζ	B _{iso}	Осс	
x = 0.2						
Pb1	1/3	2/3	0.0047(5)	1.50(5)	0.98	
Sm1	1/3	2/3	0.0047(5)	1.50(5)	0.02	
Pb2	0.25310(15)	0.0027(3)	1/4	1.52(5)	0.98	
Sm2	0.25310(15)	0.0027(3)	1/4	1.52(5)	0.02	
Ge	0.3992(4)	0.3827(4)	1/4	0.33(9)	11/30	
V	0.3992(4)	0.3827(4)	1/4	0.33(9)	29/30	
01	0.2950(17)	0.4719(17)	1/4	2.2(2)	1	
O2	0.5899(16)	0.4966(16)	1/4	2.2(2)	1	
O3	0.3541(11)	0.2591(11)	0.0712(13)	2.2(2)	1	
	I	x =	0.5	I	I	
Pb1	1/3	2/3	0.0060(5)	1.41(6)	0.95	
Sm1	1/3	2/3	0.0060(5)	1.41(6)	0.05	
Pb2	0.25459(14)	0.0041(2)	1/4	1.31(5)	0.95	
Sm2	0.25459(14)	0.0041(2)	1/4	1.31(5)	0.05	
Ge	0.4014(4)	0.3832(4)	1/4	0.30(9)	5/12	
V	0.4014(4)	0.3832(4)	1/4	0.30(9)	7/12	
01	0.3036(15)	0.4778(16)	1/4	2.2(2)	1	
O2	0.5909(15)	0.4946(14)	1/4	2.2(2)	1	
O3	0.3575(10)	0.2625(1)	0.0712(12)	2.2(2)	1	
	ļ	<i>x</i> =	0.7	ļ	ļ	
Pb1	1/3	2/3	0.0062(5)	1.63(6)	0.93	
Sm1	1/3	2/3	0.0062(5)	1.^3(6)	0.07	
Pb2	0.25523(13)	0.0049(2)	1/4	1.45(5)	0.93	
Sm2	0.25523(13)	0.0049(2)	1/4	1.45(5)	0.07	
Ge	0.4022(4)	0.3832(4)	1/4	0.30(9)	0.45	
V	0.4022(4)	0.3832(4)	1/4	0.30(9)	0.55	
01	0.3032(16)	0.4790(16)	1/4	2.8(2)	1	
O2	0.5944(15)	0.4994(15)	1/4	2.8(2)	1	
O3	0.3610(11)	0.2642(11)	0.0672(12)	2.8(2)	1	
x = 1						
Pb1	1/3	2/3	0.0089(3)	0.0287(5)		
Sm1	1/3	2/3	0.0089(3)	0.0287(5)		
Pb2	0.25610(12)	0.00575(19)	0.25000	0.0377(5)		
Ge	0.4042(4)	0.3844(4)	0.25000	0.0249(9)		
V	0.4042(4)	0.3844(4)	0.25000	0.0249(9)		
O1	0.3244(14)	0.4992(13)	0.25000	0.034(2)		
O2	0.5999(13)	0.4878(13)	0.25000	0.041(2)		
O3	0.3516(8)	0.2656(8)	0.0619(9)	0.038(2)		

		x = 0.2			
(Pb1/Sm1)-O1	2.556(10)	(Ge/V)-O1	1.692(11)		
$(Pb1/Sm1)-O2^{I}$	2.851(11)	(Ge/V)-O2	1.677(11)		
$(Pb1/Sm1)-O3^{II}$	2.909(13)	(Ge/V)–O3	1.714(1)		
$(Pb2/Sm2)-O1^{III}$	2.703(15)				
$(Pb2/Sm2)-O2^{IV}$	2.215(14)				
(Pb2/Sm2)-O3	2.615(10				
$(Pb2/Sm2)-O3^{V}$	2.581(1)				
		x = 0.5	l I		
(Pb1/Sm1)-O1	2.527(10)	(Ge/V)-O1	1.682(10)		
$(Pb1/Sm1)-O2^{I}$	2.835(9)	(Ge/V)–O2	1.665(10)		
(Pb1/Sm1)–O3 ^{II}	2.882(9)	(Ge/V)–O3	1.721(9)		
(Pb2/Sm2)–O1 ^{III}	2.790(14)				
$(Pb2/Sm2)-O2^{IV}$	2.218(12)				
(Pb2/Sm2)-O3	2.644(9)				
$(Pb2/Sm2)-O3^{V}$	2.558(9)				
		x = 0.7	l I		
(Pb1/Sm1)–O1	2.514(10)	(Ge/V)–O1	1.703(10)		
$(Pb1/Sm1)-O2^{I}$	2.849(10)	(Ge/V)–O2	1.692(10)		
(Pb1/Sm1)–O3 ^{II}	2.854(9)	(Ge/V)–O3	1.710(9)		
(Pb2/Sm2)–O1 ^{III}	2.796(14)				
$(Pb2/Sm2)-O2^{IV}$	2.170(13)				
(Pb2/Sm2)-O3	2.64710)				
$(Pb2/Sm2)-O3^{V}$	2.570(9)				
x = 1.0					
(Pb1/Sm1)-O1	2.418(10)	(Ge/V)-O1	1.709(17)		
$(Pb1/Sm1)-O2^{I}$	2.747(12)	(Ge/V)-O2	1.712(12)		
(Pb1/Sm1)–O3 ^{II}	2.945(9)	(Ge/V)–O3	1.729(7)		
Pb2–O2 ^{III}	2.249(11)				
Pb2-O3	2.681(7)				
Pb2–O3 ^{IV}	2.490(7)				

Таблица 3. Основные длины связей (Å) в $Pb_{10-x}Sm_x(GeO_4)_{2+x}(VO_4)_{4-x}$

Элементы симметрии для x = 0.2, 0.5 и 0.7: (I) -x + 1, -y + 1, z - 1/2; (II) y, -x + y + 1, -z; (III) -x + y, -x, -z + 1/2; (IV) -y + 1, x - y, -z + 1/2; (V) y, -x + y, -z; для x = 1: (I) -x + 1, -y + 1, z - 1/2; (II) -x + 1, -y + 1, -z; (III) -y + 1, x - y, z; (IV) y, -x + y, z + 1/2.

Таблица 4. Термодинамические свойства Pb₉Sm(GeO₄)₃(VO₄)₃

· · · ·) (+/J(+/J		
Т, К	C_p ,	$H^{\circ}(T) - H^{\circ}(350 \text{ K}),$	$S^{\circ}(T) - S^{\circ}(350 \text{ K}),$	$-\Delta G/T^*$,
	Дж/(моль К)	кДж/моль	Дж/(моль К)	Дж/(моль К)
350	904.8	_	_	_
400	919.2	45.61	121.8	7.76
450	932.7	91.91	230.8	26.59
500	945.4	138.9	329.8	52.04
550	957.4	186.4	420.4	81.46
600	968.9	234.6	504.2	113.2
650	980.0	283.3	582.2	146.4
700	990.8	332.6	655.2	180.1
750	1001	382.4	724.0	214.1
800	1012	432.7	788.9	248.0
850	1023	483.6	850.6	281.7
900	1034	535.1	909.4	314.9
950	1046	587.1	965.6	347.7
1000	1058	639.6	1020	380.0

* $-\Delta G/T^* = [H^{\circ}(T) - H^{\circ}(350 \text{ K})]/T - [S^{\circ}(T) - S^{\circ}(350 \text{ K})].$

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 58 № 8 2022

Рис. 4. Влияние температуры на молярную теплоемкость $Pb_{10-x}Sm_x(GeO_4)_{2+x}(VO_4)_{4-x}$: x = 1.0 (*1*), 0.7(*2*), 0.5 (*3*), 0.2 (*4*), 0 [15] (*5*).

ЗАКЛЮЧЕНИЕ

Из исходных оксидов твердофазным синтезом получены твердые растворы $Pb_{10-x}Sm_x(GeO_4)_{2+x}(VO_4)_{4-x}$ (x = 0.2, 0.5, 0.7, 1.0). Впервые определена их кристаллическая структура (координаты атомов и их изотропные тепловые параметры, основные длины межатомных связей). Методом дифференциальной сканирующей калориметрии измерены их высокотемпературные теплоемкости. На основании экспериментальных данных рассчитаны термодинамические свойства фазы состава $Pb_9Sm(GeO_4)_3(VO_4)_3$.

БЛАГОДАРНОСТЬ

Авторы благодарят Красноярский региональный центр коллективного пользования ФИЦ КНЦ СО РАН.

Работа выполнена при частичной финансовой поддержке в рамках государственного задания на науку ФГАОУ ВО "Сибирский федеральный университет", номер проекта FSRZ-2020-0013.

СПИСОК ЛИТЕРАТУРЫ

- Каназава Т. Неорганические фосфатные материалы. Киев: Наук. Думка, 1998. 298 с.
- Yano T., Nabeta Y., Watanabe A. A New Crystal Pb₅(GeO₄)(VO₄)₂ for Acousto-optic Device Applications // Appl. Phys. Lett. 1971. V. 18. № 12. P. 570–571.
- Gospodinov M., Sveshtarov P. Growth of Large Pb₅(GeO₄)(VO₄)₂ Crystals // Cryst. Res. Technol. 1990. V. 25. № 3. P. K58–K61.
- Игнатов А.В., Савинкова Г.М., Дидоренко Е.Г. и др. Изоморфное замещение в системе Pb_(8-x)Gd_{x-} Na₂(VO₄)₆O_(x/2) // Вести. Донец. нац. ун-та. Сер. А. Естеств. науки. 2014. № 1. С. 152–156.

- Kovács L., Péter Á., Gospodinov M., Capelleti R. Hydroxyl Ions in Acousto-optic Pb₅(GeO₄)(VO₄)₂ and Bi₂(MoO₄)₃ Single Crystals // Phys. Status. Solid. 2005. V. 2. № 1. P. 689–692. https://doi.org/10.1002/pssc.200460267
- 6. *Журавлев В.Д., Великодный Ю.А.* Ванадатогерманаты свинца-лантана и стронция-лантана со структурой апатита и оксоапатита // Журн. неорган. химии. 2009. Т. 54. № 10. С. 1626–1627.
- Savankova T.M., Akselrud L.G., Ardanova L.I. et al. Synthesis, Crystal Structure Refinement and Electrical Conductivity of Pb_(8-x)Na₂Sm_x(VO₄)₆O_(x/2) // J. Chem. 2014. P. 1–7. https://doi.org/10.1155/2014/263548
- Chakroun-Ouadhour E., Ternane R., Ben Hassen-Chehimi D., Trabelsi-Ayadi M. Synthesis, Characterization and Electrical Properties of a Lead Sodium Vanadate Apatite // Mater. Res. Bull. 2008. V. 43. P. 2451–2456. https://doi.org/10.1016/j.materresbull.2007.07.030
- Pasero M., Kampf A.R., Ferraris C. et al. Nomenclature of the Apatite Super Group Minerals // Eur. J. Mineral. 2010. V. 22. P. 163–179. https://doi.org/10.1127/0935-1221/2010/0022-2022
- Ptáćek P., Opravil T., Šoukal F. et al. Formation of Strontium-Yttrium Germanium Anionic Lacunar Apatite (Sr_{2+δ}Y_{6.67+(2δ/3)}[GeO₄]₆O_{2δ}) as the Intermediate Phase of Oxygen-Rich Yttrium-Germanium Apatite (Y_{9.333+ε}[GeO₄]₆O_{2+3/2ε}) // Ceram. Int. 2017. V. 43. P. 7827-7838. https://doi.org/10.1016/j.acramint.2017.03.007

https://doi.org/10.1016/j.ceramint.2017.03.097

- 11. Яблочкова Н.В. Синтез и уточнение кристаллической структуры Pb₈Pr₂(GeO₄)₄(VO₄)₂ // Журн. неорган. химии. 2013. Т. 58. № 7. С. 871–874. https://doi.org/10.7868/S0044457X1307026X
- 12. *Иванов С.А.* Уточнение кристаллической структуры Pb₅(GeO₄)(VO₄)₂ по профилю порошковых рентгенограмм // Журн. структур. химии. 1990. Т. 31. № 4. С. 80–84.
- Иванов С.А., Заводник В.Е. Особенности кристаллической структуры Pb₅GeV₂O₁₂ // Кристаллография. 1989. Т. 34. № 4. С. 824–828.
- 14. Денисова Л.Т., Каргин Ю.Ф., Голубева Е.О. и др. Синтез, структура и термодинамические свойства апатитов Pb_{10 - x}Pr_x(GeO₄)_{2+x}(VO₄)_{4-x} (x = 0, 1, 2, 3) в области 350-1000 К // Неорган. материалы. 2020. Т. 56. № 10. С. 1081-1087. https://doi.org/10.31857/S0002337X20100036
- Денисова Л.Т., Голубева Е.О., Белоусова Н.В. и др. Высокотемпературная теплоемкость апатитов Pb_{10-x}Nd_x(GeO₄)_{2+x}(VO₄)_{4-x} (x = 0-3) // Физика твердого тела. 2019. Т. 61. № 7. С. 1397–1400. https://doi.org/10.21883/000000000
- 16. Денисова Л.Т., Каргин Ю.Ф., Голубева Е.О. и др. Теплоемкость апатитов Pb_{10-x}La_x(GeO₄)_{2+x}(VO₄)_{4-x} (x = 0, 1, 2, 3) в области 320–1000 К // Неорган. материалы. 2019. Т. 55. № 2. С. 182–186. https://doi.org/10.1134/S0002337X19020027
- 17. *Bruker AXS* TOPAS V4: General profile and structure analysis software for powder diffraction data. Karlsruhe Bruker: 2008.
- 18. Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. Высокотемпературная теплоемкость и термодинами-

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 58 № 8 2022

ческие свойства Tb₂Sn₂O₇ // Неорган. материалы. 2017. Т. 53. № 1. С. 71–73. https://doi.org/S0001331X17010043

- Саванкова Т.М., Игнатов А.В., Уточкин Д.М., Гетьман Е.И. Синтез и исследование твердых растворов Pb_(8-x)Eu_xNa₂(VO₄)₆O_(x/2) // Наук. праці і хім. техн. 2014. № 2. С. 78–82.
- Koumiri M.E., Oishi S., Sato S. et al. The Crystal Structure of Lacunar Apatite NaPb₄(PO₄)₃ // Mater. Res. Bull. 2000. V. 35. P. 503–513.
- Shannon R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distance in Halides and Chalcogenides // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751–767.
- 22. *Чудненко К.В.* Термодинамическое моделирование в геохимии: теория, алгоритмы, программное обеспечение, приложения. Новосибирск: Гео, 2010. 287 с.
- 23. *Maier C.G., Kelley K.K.* An Equation for the Representation of High Temperature Heat Content Data // J. Am. Chem. Soc. 1932. V. 54. № 8. P. 3243–3246. https://doi.org/10.1021/ja01347a029
- 24. Денисова Л.Т., Молокеев М.С., Александровский А.С. и др. Кристаллическая структура, люминесцентные и термодинамические свойства замещенных апатитов Pb_{10-x}Eu_x(GeO₄)_{2+x}(VO₄)_{4-x} (x = 0.1, 0.2, 0.3) // Неорган. материалы. 2021. Т. 57. № 11. С. 1226–1234. https://doi.org/10.31857/S0002337X21110038