УДК 546.226+541.133.1

ЭЛЕКТРОПРОВОДНОСТЬ ФАЗ НА ОСНОВЕ СУЛЬФАТА НАТРИЯ

© 2022 г. Н. И. Сорокин¹, В. Ю. Пройдакова², В. В. Воронов², С. В. Кузнецов², П. П. Федоров^{2, *}

¹Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" Российской академии наук, Ленинский пр., 59, Москва, 119333 Россия

²Институт общей физики им. А.М. Прохорова Российской академии наук, ул. Вавилова, 38, Москва, 119991 Россия

*e-mail: ppfedorov@yandex.ru Поступила в редакцию 10.01.2022 г. После доработки 16.04.2022 г. Принята к публикации 19.04.2022 г.

Синтезированы и исследованы материалы на основе сульфата натрия с ионной проводимостью по катионам Na⁺: Na₂SO₄, Na₂SO₄:3.5% Yb и Na₃Ga(SO₄)₃. Введение гетеровалентных катионов Yb³⁺ приводит к существенному возрастанию электропроводности Na₂SO₄ (в ~240 раз при 573 K) в результате образования вакансий в натриевой подрешетке и стабилизации высокотемпературной гексагональной модификации (пр. гр. *P*6₃/*mmc*). Концентрация вакансий натрия и их подвижность для твердого раствора (Na_{0.895}Yb_{0.035})₂SO₄ равны: $n_{vac} = 7.93 \times 10^{20}$ см⁻³ и $\mu_{vac} = 2.7 \times 10^{-5}$ см²/(с B) (573 K) соответственно.

Ключевые слова: ионная проводимость, фазовый переход, сульфат натрия, гетеровалентный изоморфизм

DOI: 10.31857/S0002337X22080115

введение

Материалы с высокой ионной проводимостью интересны как с фундаментальной точки зрения, так и для разработки различных электрохимических устройств [1, 2]. Материалы с высокой подвижностью катионов натрия рассматриваются как возможная альтернатива литиевых ионных батарей [3–7]. Сульфаты представляют собой оригинальный класс материалов, для которых был предложен специфический механизм "мельничного колеса", когда подвижность катионов дополнительно стимулируется вращательной дина-

микой сульфат-ионов SO₄²⁻ [8, 9].

Особый интерес для исследователей представляет высокотемпературная фаза Na_2SO_4 -I, которая имеет гексагональную сингонию с пр. гр. $P6_3/mmc$ [10]. Несмотря на долгую историю изучения полиморфизма (существуют фазы I–V [11–15]) и ионной проводимости сульфата натрия [16–20], в последнее время с точки зрения ионного транспорта привлекают внимание кристаллические и аморфные материалы на основе Na_2SO_4 [21–23].

Согласно структурным данным [11–15], в режиме нагревания при 513 К фаза V (минерал тенардит, пр. гр. *Fddd*, Z = 8) переходит в фазу I (пр. гр. $P6_3/mmc$, Z = 2). При охлаждении ниже 508 К фаза I переходит в метастабильную фазу II (пр. гр. *Pbnm*, Z = 4), а затем в метастабильную фазу III (пр. гр. *Стст*, Z = 4).

При исследовании поликристаллических образцов сульфата натрия [16, 20] обнаружено, что при нагревании фазы V до 513 К величина проводимости плавно возрастает с температурой, увеличиваясь в 6 раз. При повторном температурном циклировании этого же образца обнаружен скачок проводимости при фазовом переходе III—I. Проводимость фазы V больше, чем фазы III. Карим и Мелландер [19] показали, что абсолютная величина электропроводности сульфата натрия сильно зависит от чистоты поликристаллических образцов и существенный вклад в общее сопротивление образцов вносят границы зерен.

Фазу Na₂SO₄-I можно стабилизировать, если в анионную подрешетку вводить анионы больших размеров или в катионную подрешетку вводить одно-, двух- и трехвалентные катионы. В [10] сообщается, что ионная проводимость твердых растворов на основе стабилизированной гексагональной высокотемпературной модификации Na₂SO₄-I определяется концентрацией вакансий натрия (дефектов V'_{Na}) и практически не зависит от природы модифицирующих катионов. Проводимость твердых растворов возрастает, если в подрешетке Na⁺ увеличить концентрацию катионов Zn²⁺, Ni³⁺, Sr²⁺ или Y³⁺ до 7%. Максимальная ионная проводимость твердых растворов составляет 1.5 × $\times 10^{-2}$ См/см при 773 К [10], что в два раза выше, чем у чистого сульфата натрия.

При низкой концентрации вакансий натрия существует линейная зависимость между величиной проводимости и концентрацией вакансий $V'_{\rm Na}$, поскольку нет значительного взаимодействия между подвижными катионами Na⁺ и кристаллической решеткой.

Существенно более высокая ионная проводимость зафиксирована для монокристаллов Na₂SO₄:Nd³⁺ [24]. Шаши и Пракаш [25] изучали твердые растворы в системах $Na_2SO_4 - M_2(SO_4)_3$ с $M^{3+} = La^{3+}$, Dy³⁺ и Sm³⁺. Гетеровалентными замещениями удалось стабилизировать высокотемпературную фазу I сульфата натрия. Наибольшая проводимость твердого раствора была получена при содержании 4 мол. % La₂(SO₄)₃. В [26, 27], частично замещали сульфат-анионы изовалентными анионами CO_3^{2-} , MoO_4^{2-} , WO_4^{2-} , SiO_4^{2-} и катионы Na^+ катионами Cd^{2+} , Rb^+ , K^+ с целью выяснить механизм ионной проводимости высокотемпературной модификации (фазы I) сульфата натрия. Большинство полученных твердых растворов демонстрировали повышение ионной проводимости. Максимальная проводимость получена при введении гетеровалентных катионов Cd²⁺. В отличие от катионов K⁺ и Rb⁺ при введении Cd²⁺ образуются вакансии $V'_{\rm Na}$.

Также увеличение проводимости и стабилизация фазы I при комнатной температуре обнаружены при замещениях анионов SiO_4^{2-} на WO_4^{2-} и MoO_4^{2-} . Предполагается [26, 27], что на величину проводимости не влияет вращательное движение тетраэдрических анионов [SO_4]²⁻, поскольку при введении более тяжелых анионов это движение затрудняется. Существенным фактором является то, что анионы [MoO_4]²⁻ и [WO_4]²⁻ больше по размеру, чем [SO_4]²⁻. Тем самым при образовании твердого раствора увеличивается свободный объем кристаллической решетки, что облегчает миграцию катионов Na⁺ в соответствии с перколяционной моделью [28].

Дхармасена и Фреч [29] при замещении катионов в Na_2SO_4 обнаружили, что даже при их низких концентрациях наиболее стабильными фазами Na_2SO_4 при комнатной температуре являются I и III (тип фазы зависит от концентрации дефектов). Обнаружено, что стабилизация конкретной фазы, по-видимому, не зависит от заряда замещающих катионов. Все примесные катионы с ионными радиусами, аналогичными натриевому, стабилизируют обе фазы — I и III. При замещении натрия на кальций в сульфате натрия при комнатной температуре стабилизируется фаза III. Если рассмотреть общий аспект изоморфизма и аллотропии соединений A_2XO_4 (A – катион и X – анион), то к высокой подвижности катионов Na⁺ приводит высокая концентрация V'_{Na} (до ~30%), образующаяся в гетеровалентных твердых растворах на основе высокотемпературной фазы Na₂SO₄-I

В [30] предложено использовать твердые электролиты на основе Na₂SO₄ для сенсоров на определение SO_x. Леушина и Мамонтова [31] использовали транспортные свойства твердого раствора сульфата галлия в Na₂SO₄ для электрохимического легирования теллурида свинца галлием.

Целью работы является исследование электропроводности фаз на основе сульфата натрия с добавками гетеровалентных катионов Yb^{3+} и Ga³⁺ на примере твердого раствора $(Na_{1-3x}Yb_x)_2SO_4$ и соединения $Na_3Ga(SO_4)_3$.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реактив сульфата натрия Na₂SO₄ квалификации "х. ч." (Химмед, Россия) дополнительно очищали перекристаллизацией из воды. Двойную перекристаллизацию проводили по методике, описанной в [32, 33]. Для выращивания монокристаллов Na₂SO₄:Yb³⁺ была использована механическая смесь сульфата натрия (96.5 мол. %) и сульфата иттербия (3.5 мол. %). Реактив Yb₂(SO₄)₃ был получен по методике, описанной ниже. Для синтеза безводного сульфата иттербия были использованы оксид иттербия "х. ч.", серная кислота "х. ч." и бидистиллированная вода. В стакан объемом 200 мл с мешалкой помещали 10 г (0.01576 моля) оксида иттербия и 10 мл H₂O, затем постепенно прикапывали 10%-ную серную кислоту до почти полной нейтрализации (~31.5 мл H₂SO₄). После нейтрализации раствор отстаивали и фильтровали. Фильтрат упаривали до объема 20 мл. Выпавшие кристаллы Yb₂(SO₄)₃·8H₂O отделяли на воронке Бюхнера и сушили при 400°С.

Монокристаллы гетеровалентного твердого раствора Na_2SO_4 : Yb³⁺ были выращены на воздухе методом Чохральского [34]. Соединение $Na_3Ga(SO_4)_3$ получено по методике, описанной в [35].

Полученные образцы исследовали методом рентгенофазового анализа на дифрактометре Bruker D8 Advanced (Си*К*-излучение) в интервале углов $2\theta = 10^{\circ}-75^{\circ}$ (шаг сканирования 0.01°, время выдержки на шаге 0.3 с). Спектры обрабатывали с помощью программы EVA (версия 2.1). Расшифровку рентгенограмм проводили с помощью базы данных PDF-2 (версия 2011 г.). Параметры решетки рассчитывались в программе TOPAS v.4.2.

Электропроводность σ образцов измеряли методом импедансной спектроскопии на приборе Tesla BM-507 на частотах 5 Гц—500 кГц в вакууме

Рис. 1. Дифрактограммы образца Na₂SO₄ при 298 К: а – JCPDS card 00-037-1465, б – до измерения ионной проводимости, в – после измерения ионной проводимости при нагреве до 705 К.

~1 Па в интервале температур 298–705 К. Погрешность при определении значений σ составляла 5%. Керамические образцы представляли собой поликристаллические таблетки толщиной 1 и диаметром 5 мм ((Na_{0.895}Yb_{0.035})₂SO₄) и 9 мм (Na₂SO₄-V, Na₃Ga(SO₄)₃). Монокристалл перед измерением измельчали в агатовой ступке. Керамические образцы готовили прессованием при комнатной температуре. В качестве электродов использовали графитовую пасту DAG-580.

Наличие в спектрах импеданса блокирующего эффекта от инертных (графитовых) электродов на низких частотах указывает на ионную природу электротранспорта в исследуемых образцах. Объемное сопротивление R_{cer} образцов находили из частотных зависимостей комплексного импеданса электрохимических ячеек С|керамика|С по пересечению годографа импеданса с осью активных сопротивлений.

Электропроводность на постоянном токе керамических образцов рассчитывали по формуле

$$\sigma = h/(R_{cer}S), \tag{1}$$

где *h* — толщина образца, *S* — площадь электрода. Величина σ включает в себя в целом все процессы электропереноса внутри кристаллических зерен и на межзеренных границах. Температурные зависимости образцов обрабатывали в соответствии с уравнением Аррениуса-Френкеля

$$\sigma T = A \exp(-E_a/kT), \qquad (2)$$

где *А* – предэкспоненциальный множитель электропроводности, *E_a* – энергия активации ионного переноса.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Результаты рентгенофазового исследования сульфата натрия представлены на рис. 1. При комнатной температуре (298 К) кристаллическая структура образца Na_2SO_4 относится к ромбической сингонии (пр. гр. *Fddd*), что согласуется с большинством работ [12, 15]. При измерении ионной проводимости образца Na_2SO_4 с нагревом до 705 К и с последующим охлаждением не наблюдается существенных изменений на дифрактограмме (рис. 1в). Индицирование показывает присутствие двух фаз: тенардита — основная фаза и графита — примесная фаза (помечена стрелками).

Результаты рентгенофазового исследования $(Na_{0.895}Yb_{0.035})_2SO_4$ (рис. 2а) показали, что он относится к гексагональной высокотемпературной модификации типа Na_2SO_4 -I (пр. гр. *P*6₃/*mmc*). Рас-

Рис. 2. Дифрактограммы образцов (Na $_{0.895}$ Yb $_{0.035}$) $_2$ SO $_4$ (a) и Na $_3$ Ga(SO $_4$) $_3$ (б).

считанные параметры решетки равны: a = 5.3381(1)и c = 7.156(4) Å. Параметры решетки монокристалла (Na_{0.895}Yb_{0.035})₂SO₄ меньше, чем чистого сульфата натрия (JCPDS, Card 86-0800: a = 5.393 Å, c = 7.246 Å), что свидетельствует о вхождении иттербия в решетку с образованием твердого раствора. Уменьшение параметров *a* и *c* можно объяснить меньшим ионным радиусом Yb³⁺ по сравнению с Na⁺ ($r_{Na^+} = 0.116$ нм, $r_{Yb^{3+}} = 0.1008$ нм для к.ч. 6 [36]) и образованием катионных вакансий.

Наши результаты по стабилизации высокотемпературной α-модификации Na₂SO₄-I согласуются с фазовой диаграммой системы Na₂SO₄-

Рис. 3. Температурные зависимости проводимости Na₂SO₄: *1* – нагрев, *2* – охлаждение.

 $Yb_2(SO_4)_3$ [37, 38], согласно которой стабилизировать высокотемпературную фазу I можно в области твердого раствора $(Na_{1-3x}Yb_x)_2SO_4$ при x = 0.02-0.08 (от 2 до 8 мол. % $Yb_2(SO_4)_3$).

Результаты рентгенофазового исследования Na₃Ga(SO₄)₃ показаны на рис. 26. Это соединение относится к тетрагональной сингонии с параметрами решетки a = 9.451(3) и c = 7.097(3) Å. Результаты индицирования приведены в [35].

На рис. 3 показана температурная зависимость ионной проводимости Na₂SO₄ в координатах lg(σT)–1/T. При нагревании на графике (кривая I) имеет место перегиб при 514 ± 5 K, связанный с фазовым переходом из фазы V в фазу I, что хорошо согласуется с данными [10, 11, 13]. В этот момент начинает кардинально перестраиваться кристаллическая структура сульфата натрия за счет разупорядочения натриевой подрешетки. Величина σ при 573 K равна 4.0 × 10⁻⁷ См/см и энергия активации ионного переноса составляет $E_a = 0.30$ эВ (530–650 K). Выше 650 K проводимость образца резко увеличивается, достигая 8.3 × 10⁻⁵ См/см при 705 К. По-видимому, это связано с высокотемпературным отжигом керамики.

При охлаждении сульфата натрия (кривая 2) на графике присутствует неявный перегиб при 509 ± 5 K, который может свидетельствовать о начале фазового перехода из фазы I в фазу II, что со-

Рис. 4. Температурная зависимость проводимости соединения Na₃Ga(SO₄)₃ (режим охлаждения).

гласуется с нашими термоаналитическими исследованиями [32]. При охлаждении для фазы I величина σ при 573 K равна 1.4 × 10⁻⁵ См/см и энергия активации ионного переноса составляет $E_a = 0.49$ эВ (509–705 K).

Температурная зависимость ионной проводимости для соединения Na₃Ga(SO₄)₃ показана на рис. 4. В температурном интервале 412–682 К электропроводность увеличивается от 3.1 × 10⁻⁸ до 1.2 × 10⁻⁴ См/см (3.9 × 10³ раз), кондуктометрические данные удовлетворяют уравнению Френкеля–Аррениуса. График демонстрирует линейную зависимость в координатах lg(σT)–1/*T*. При 573 К ионная проводимость Na₃Ga(SO₄)₃ равна 1.4 × × 10⁻⁵ См/см и совпадает со значением σ для керамического образца Na₂SO₄. Энергия активации электропереноса в Na₃Ga(SO₄)₃ равна *E_q* = 0.76 эВ.

Температурная зависимость σ для твердого раствора (Na_{0.895}Yb_{0.035})₂SO₄ показана на рис. 5. В температурном интервале 341—669 К электропроводность увеличивается от 1.7 × 10⁻⁷ до 4.0 × 10⁻² См/см, т.е. более чем на 5 порядков. График демонстрирует линейную зависимость в координатах lg(σT)–1/T, кондуктометрические данные удовлетворяют уравнению Френкеля—Аррениуса. Величина σ при 573 К для (Na_{0.895}Yb_{0.035})₂SO₄ равна 3.4 × 10⁻³ См/см, что превышает значение σ для Na₂SO₄ в ~240 раз.

Рис. 5. Температурная зависимость ионной проводимости твердого раствора (Na_{0 895}Yb_{0 035})₂SO₄ (режим нагрева).

Энергия активации электропереноса в $(Na_{0.895}Yb_{0.035})_2SO_4$ равна $E_a = 0.76$ эВ и совпадает со значением E_a для образца Na₃Ga(SO₄)₃.

Изученные сульфаты, как и фосфаты, арсенаты и молибдаты, обладают гетеродесмическими структурами. В структуре сульфата натрия изолированные тетраэдры [SO₄] соединяются через искаженные октаэдры [NaO₆]. Наиболее прочными являются химические связи в тетраэдрических анионах $[SO_4]^{2-}$, что связано с высокой валентностью центрального катиона S⁶⁺. Ионные связи между катионами натрия и сульфат-анионами оказываются относительно слабыми, что обуславливает подвижность катионов Na⁺ и значительное тепловое расширение сульфатов [33, 39].

При гетеровалентном замещении Na⁺ на Yb³⁺ в сульфате натрия образуются две вакансии натрия $V_{\rm Na}^{'}$. Структурную формулу твердого раствора можно записать в виде

$$\left(\mathrm{Na}_{1-3x}\mathrm{Yb}_{x}\Box_{2x}\right)_{2}\mathrm{SO}_{4},\tag{3}$$

где \square_{2x} – вакансии натрия. Концентрация вакансий V'_{Na} в гетеровалентном твердом растворе (Na_{0 895}Yb_{0 035})₂SO₄ равна

$$n_{vac} = 2xZ/0.866a^2c = 7.93 \times 10^{20} \text{ cm}^{-3},$$
 (4)

где x = 0.035, Z = 2, a = 5.3381 и c = 7.156 Å. Подвижность вакансий натрия при 573 К составляет

$$\mu_{vac} = \sigma/qn_{vac} = 2.7 \times 10^{-5} \text{ cm}^2/(\text{c B}).$$
 (5)

В системе Na₂SO₄-Yb₂(SO₄)₃ на кривых плавления твердого раствора (Na₁₋₃, Yb₁, 2), SO₄ имеет место максимум [37, 38]. Как отмечено в [40-42], такое явление, присущее только гетеровалентным твердым растворам с изменением числа ионов элементарной ячейке, коррелирует с высокой ионной проводимостью. Проведенное исследование полтверждает эту корреляцию.

ЗАКЛЮЧЕНИЕ

Для проведения рентгенографического и электрофизического исследований синтезированы керамические образцы Na_2SO_4 , $Na_3Ga(SO_4)_3$ и (Na_{0.895}Yb_{0.035})₂SO₄ (Na₂SO₄:3.5% Yb).

Для соединения $Na_3Ga(SO_4)_3$ введение гетеровалентных катионов Ga³⁺ не приводит к существенному возрастанию электропроводности по сравнению с Na₂SO₄.

Введение гетеровалентных катионов Yb³⁺ приводит к возрастанию электропроводности Na₂SO₄ при 573 К в ~240 раз. Причинами этого являются образование вакансий в натриевой подрешетке и стабилизация высокотемпературной гексагональной модификации (пр. гр. Р6₃/*mmc*). Для твердого раствора (Na_{0.895}Yb_{0.035})₂SO₄ рассчитаны концентрация вакансий натрия и их подвижность.

БЛАГОДАРНОСТЬ

Работа выполнена в соответствии с планом научных работ ИОФ РАН и ИКРАН.

Исследования проведены с использованием оборудования ЦКП ИОФ РАН и ИКРАН им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника".

СПИСОК ЛИТЕРАТУРЫ

- 1. Иванов-Щиц А.К., Мурин И.В. Ионика твердого тела. СПб: Изд-во. СПбУ, 2010.
- 2. Ярославцев А.Б. Основные направления разработки и исследования твердых электролитов // Успехи химии. 2016. Т. 85. № 11. С. 1255-1276.
- 3. Скундин А.М., Кулова Т.Л., Ярославцев А.Б. Натрийионные аккумуляторы // Электрохимия. 2018. T. 54. № 2. C. 131–174.
- 4. Новикова С.А., Ларкович Р.В., Чеканников А.А., Кулова Т.Л., Скундин А.М., Ярославцев А.Б. Проводимость и электрохимические характеристики материалов на основе Na₃V₂(PO₄)₃ со структурой

NASICON // Неорган. материалы. 2018. Т. 54. № 8. С. 839–849.

- Buzlukov A.L., Baklanova Y.V., Arapova I.Yu., Savina A.A., Morozov V.A., Bardet M., Lazoryak B.I., Khaikina E.G., Denisova T.A., Medvedeva N.I. Na₉In(MoO₄)₆: Synthesis, Crystal Structure, and Na⁺ Ion Diffusion // Ionics. 2021. V. 27. P. 4281–4293. https://doi.org/10.1007/s11581-021-04226-3
- Солодовников С.Ф., Гуляева О.А., Савина А.А., Юдин В.Н., Бузлуков А.Л., Солодовникова З.А., Золотова Е.С., Спиридонова Т.С., Хайкина Е.Г., Стефанович С.Ю., Медведева Н.И., Бакланова Я.В., Денисова Т.А. Молибдаты и вольфраматы семейства аллюдита: кристаллохимия, состав и ионная подвижность // Журн. структур. химии. 2022. Т. 63. № 7. С. 975–1010. https://doi.org/10.26902/JSC_id96516
- Heed B., Lunden A., Schroeder K. Sulphate-Based Solid Electrolytes: Properties and Applications // Electrochem. Acta. 1977. V. 22. P. 705–707.
- Lunden A. Ion Transport in Lithium, Sodium, and Silver Sulphates // Solid State Ionics: New Developments / Eds. Chowdari B.V.R. et al. Singapure: World Scientific, 1996. P. 23–42.
- Lunden A. Enhancement of Cation Mobility in Some Sulphate Phases Due to a Paddle Wheel Mechanism // Solid State Ionics. 1998. V. 28–30. P. 163–167. https://doi.org/10.1016/S0167-2738(98)80026-2
- Eysel W., Hofer H.H., Keester K.L., Hahn Th. Crystal Chemistry and Structure of Na₂SO₄(I) and its Solid Solutions // Acta Crystallogr., Sect. B. 1985. V. 41. P. 5–11.
- Bobade S.M., Gopalan P., Kulkarni A.R. Phase Transition in Na₂SO₄: All Five Polymorphic Transformations in DSC // Ionics. 2009. V. 15. P. 353–355.
- Rasmussen S.E., Jorgensen J.-E., Lundtoft B. Structures and Phase Transitions of Na₂SO₄ // J. Appl. Crystallogr. 1996. V. 29. P. 42–47.
- Kracek F.C., Ksanda C.J. The Polymorphism of Sodium Sulfate: X-ray Analysis // J. Phys. Chem. 1930. V. 34. P. 1741–1744.
- Mehorta B.N. The Crystal Structure of Na₂SO₄ III // Z. Kristallogr. 1981. B. 155. S. 159–163.
- Nord A.G. Refinement of the Crystal Structure of Thenardite Na₂SO₄(V) // Acta Chem. Scand. 1973. V. 27. P. 814–822.
- Ahmad M.M. Ionic Conduction and Dielectric Relaxation in Polycrystalline Na₂SO₄ // Solid State Ionics. 2006. V. 177. P. 21–28. https://doi.org/10.1016/j.ssi.2005.10.007
- Choi B.C. Ionic Conductivity of Na₂SO₄(I) Crystals // Solid State Ionics. 1992. V. 58. P. 133–138. https://doi.org/10.1016/0167-2738(92)90020-P
- Choi B.C., Lockwood D.J. Ionic Conductivity and the Phase Transitions in Na₂SO₄ // Phys. Rev. B. 1989. V. 40. P. 4683–4689.
- Careem M.A., Mellander B.E. Electrical Conductivity of Na₂SO₄(I) // Solid State Ionics. 1985. V. 15. P. 327–330. https://doi.org/10.1016/0167-2738(85)90136-5

- Saito Y., Kobayashi K., Maruyama T. Phase Transition and Electrical Properties of Na₂SO₄ // Solid State Ionics. 1981. V. 3–4. P. 393–396. https://doi.org/10.1016/0167-2738(81)90119-3
- Diosa J., Lara D.P., Vargas R. Origin of Dielectric Relaxations in Na₂SO₄ in the Intermediate Temperature Regime // J. Phys. Chem. Solids. 2013. V. 74. № 7. P. 1017–1020. https://doi.org/1016/j.jpcs.2013.02.024
- Iqbal M.Z., Rafiuddin. Preparation, Characterization, Electrical Conductivity and Dielectric Studies of Na₂SO₄ and V₂O₃ Composite Solid Electrolytes // Measurement. 2016. V. 81. P. 102–112. https://doi.org/10.1016/j.measurement.2015.12.008
- Sujatha B., Viswanatha R., Chethana B., Nagabhushana H., Narayana Reddy C. Electrical Conductivity and Dielectric Relaxation Studies on Mirowave Synthesized Na₂SO₄-NaPO₃-MoO₃ Glasses // Ionics. 2016. V. 24. № 4. P. 563-571. https://doi.org/10.1007/S11581-015-1580-2
- Федоров П.П., Полховская Т.М., Соболев Б.П., Иванов-Щиц А.К., Сорокин Н.И. Выращивание монокристалла Na₂SO₄:Nd³⁺ и исследование его электропроводности // Кристаллография. 1983. Т. 28. № 3. С. 598–599.
- Shahi K., Prakash G. Some Na₂SO₄-Based Fast Ion Conductors // Solid State Ionics 1986. V. 18. P. 544–548. https://doi.org/10.1016/0167-2738(86)90175-X
- 26. Gomathy S., Gopalan P., Kulkarn A.R. Effect of Homovalent Anion Doping on the Conductivity and Phase Transitions in Na₂SO₄ // J. Solid State Chem. 1999. V. 146. № 6. P. 6–12.
- 27. Leblanc M.D., Gundsharma U.M., Secco E.A. Electrical Conductivity of Superionic Solid Solutions of Na₂SO₄ with $M_x(XO_4)_y$ [M = Na, K, Rb, Cd, Gd and X=W, Mo, S, Si; x = 1, 2, 4 and y = 1, 3] // Solid State Ionics. 1986. V. 20. P. 61–68. https://doi.org/10.1016/0167-2738(86)90035-4
- Secco E.A., Usha M.G. Cation Conductivity in Mixed Sulfate-based Composition of Na₂SO₄, Ag₂SO₄, and Li₂SO₄ // Solid State Ionics. 1994. V. 68. P. 213–219. https://doi.org/10.1016/0167-2738(94)90178-3
- 29. *Dharmasena G., Frech R.* The Stabilization of Phase III and Phase I in Sodium Sulfate by Aliovalent Cation Substitution // J. Chem. Phys. 1993. V. 99. P. 8929–8935.
- Rao N., Schoonman J., Sorensen O.T. Na₂SO₄-Based Solid Electrolytes for SO_x Sensors // Solid State Ionics. 1992. V. 57. P. 159–168. https://doi.org/10.1016/0167-2738(92)90079-5
- 31. Леушина А.П., Мамонтова Е.В. Синтез, транспортные свойства твердого электролита (Na₂SO₄)_{1-x}(Ga₂(SO₄)₃)_x и легирование галлием теллурида свинца // Известия вузов. Прикладная химия и биотехнология. 2017. Т. 7. № 2. С. 33–42.
- Пройдакова В.Ю., Воронов В.В., Пыненков А.А., Кузнецов С.В., Зыкова М.П., Нищев К.Н., Федоров П.П. О полиморфизме сульфата натрия // Журн. неорган. химии. 2022. Т. 67. № 7. С. 916–924.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 58 № 8 2022

- Fedorov P.P., Proydakova V.Yu., Kuznetsov S.V., Voronov V.V., Pynenkov A.A., Nishchev K.N. Phase Diagram of the Li₂SO₄-Na₂SO₄ System // J. Am. Ceram. Soc. 2020. V. 103. № 5. P. 3390-3400. https://doi.org/10.1111/jace.16996
- 34. Цветков В.Б., Пройдакова В.Ю., Кузнецов С.В., Субботин К.А., Лис Д.А., Япрынцев Д.А., Иванов В.К., Федоров П.П. Выращивание монокристаллов Yb:Na₂SO₄ и исследование их спектрально-люминесцентных характеристик // Квантовая электроника. 2019. Т. 49. № 11. С. 1008–1011. https://doi.org/10.1070/QEL17107
- 35. Федоров П.П., Пройдакова В.Ю., Кузнецов С.В., Воронов В.В. Фазовые равновесия в системах сульфата галлия с сульфатами лития и натрия // Журн. неорган. химии. 2017. Т. 62. № 11. С. 1513–1518. https://doi.org/10.1134/S0036023617110067
- 36. Shannon R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides // Acta Crystallogr., Sect. A. 1976. V. 32. № 5. P. 751–767.

- Чижов С.М. Физико-химическое исследование двойных сульфатов натрия и редкоземельных элементов: Дис. ... канд. хим. наук. М.: МГУ, 1980. 171 с.
- Покровский А.Н. Синтез, структуры и свойства безводных двойных сульфатов лантанидов и элементов Іа группы: Дис. ... докт. хим. наук. М.: МГУ, 1981. 327 с.
- Филатов С.К. Высокотемпературная кристаллохимия. Теория, методы и результаты исследований. Л.: Недра, 1990. 288 с.
- 40. Федоров П.П., Соболев Б.П. Об условиях образования максимумов на кривых плавления твердых растворов в солевых системах // Журн. неорган. химии. 1979. Т. 24. № 4. С. 1038–1040.
- Fedorov P.P., Sobolev B.P. Connection of the Fast Ionic Conductivity with the Maxima on the Melting Curves of the Heterovalent Solid Solutions // Abstracts. IV Int. Conf. on Solid State Ionics (July 4–8). Grenoble. 1983. P. 63.
- 42. *Fedorov P.P.* Heterovalent isomorphism and Solid Solutions with a Variable Number of Ions in the Unit Cell // Russ. J. Inorg. Chem. 2000. V. 45. Suppl. 3. P. S268–S291.