УДК 661.68654.057544.582.4

ПОЛУЧЕНИЕ ВЫСОКОЧИСТОГО ТЕТРАХЛОРИДА КРЕМНИЯ-28 ИЗ ТЕТРАФТОРИДА КРЕМНИЯ-28

© 2022 г. О. Ю. Трошин^{1, 2, *}, А. Д. Буланов^{1, 2}, Ю. П. Кириллов¹, А. М. Потапов¹, П. А. Отопкова¹, М. Е. Комшина^{1, 2}, К. Ф. Игнатова¹, А. А. Ермаков¹

¹Институт химии высокочистых веществ им. Г.Г. Девятых Российской академии наук, ул. Тропинина, 49, БОКС-75, Нижний Новгород, 603951 Россия ²Национальный исследовательский Нижегородский государственный

университет им. Н.И. Лобачевского, пр. Гагарина, 23, Нижний Новгород, 603022 Россия

*e-mail: troshin@ihps-nnov.ru

Поступила в редакцию 25.02.2022 г. После доработки 20.05.2022 г.

Принята к публикации 23.05.2022 г.

Изучено взаимодействие тетрафторида кремния с хлоридом алюминия(III) в закрытом реакторе в интервале температур 473–543 К, протекающее в форме последовательных реакций SiF₄ \rightarrow SiCl₃ \rightarrow \rightarrow SiCl₂F₂ \rightarrow SiCl₃F \rightarrow SiCl₄. Определены значения эффективных констант скоростей и энергия активации последовательных реакций превращения тетрафторида кремния в тетрахлорид кремния. Разработана методика получения изотопно обогащенного ²⁸SiCl₄ из ²⁸SiF₄, включающая стадии синтеза и дистилляционной очистки ²⁸SiCl₄. Содержание примесей химических элементов в высокочистом ²⁸SiCl₄, по данным масс-спектрометрии с индуктивно связанной плазмой, находится на уровне $n \times 10^{-1}$ – $n \times 10^{-4}$ мкг/г, содержание изотопа кремния-28 в составе кремния составляет 99.99757 ± 0.00060 ат. %.

Ключевые слова: кремний, фторид, хлорид, изотопы, получение, очистка **DOI:** 10.31857/S0002337X22080127

ВВЕДЕНИЕ

Одним из активно развивающихся направлений фундаментальных и прикладных исследований является получение, характеризация свойств и практическое применение изотопно модифицированных веществ с высокой степенью химической и изотопной чистоты [1]. Особый интерес вызывает получение и изучение влияния изотопного состава на свойства оптических материалов. таких как кварцевое стекло. В ряде работ [2-5] на основании теоретической оценки отмечается возможность снижения оптических потерь и расширения окна прозрачности оптического волокна за счет светопроводящей сердцевины на основе ³⁰Si¹⁸O₂ и оболочки на основе ²⁸Si¹⁶O₂. Также отмечается возможность обеспечения эффекта полного внутреннего отражения в такой кварцевой световодной структуре за счет различия в изотопном составе кремния и кислорода без использования легирующих добавок [6].

Для получения высокочистого кварцевого стекла различными способами (осаждение из паровой фазы, золь—гель-метод) используется тетрахлорид кремния, а в качестве исходного вещества для разделения изотопов кремния методом газового центрифугирования используется его тетрафторид [7]. Поэтому разработка методики получения изотопно обогащенного тетрахлорида кремния из тетрафторида кремния представляется актуальной задачей. Следует отметить, что центробежное разделение изотопов кремния можно проводить с использованием тетрахлорида кремния или трихлорсилана [8], однако недостатком этого способа является низкий выход целевого продукта. В литературе описано получение небольших количеств ²⁸SiCl₄ [9] и ²⁹SiCl₄ [10] путем хлорирования дефицитных изотопов кремния; сведения о степени изотопной и химической чистоты веществ в этих работах отсутствуют. В патенте [11] разработана методика получения ${}^{28}SiCl_4$ со степенью обогащения по ²⁸Si на уровне 99.9% из тетрафторида кремния-28.

В работе [12] изучена конверсия летучих фторидов углерода, кремния, германия в хлориды при помощи хлоридов магния, кальция, железа(III), алюминия(III). Практический выход SiCl₄ по SiF₄ в статических условиях составил 83% при использовании избытка хлорида алюминия(III), начальном давлении тетрафторида кремния около 9 атм, температуре 195–244°С; кинетические закономерности превращения SiF₄ в SiCl₄ в работе не рассматривались. Отмечается наличие фторидов-хлоридов кремния SiCl₃F, SiCl₂F₂, SiClF₃ в полученном SiCl₄ [12]. Эффективным способом очистки SiCl₄ от примесей фторидов-хлоридов кремния является дистилляция [13].

Целью данной работы является изучение кинетики взаимодействия тетрафторида кремния с хлоридом алюминия(III) в статических условиях, разработка методики получения ²⁸SiCl₄ с высокой химической и изотопной чистотой из ²⁸SiF₄, исследование примесного состава ²⁸SiCl₄ и изотопного состава кремния в ²⁸SiCl₄.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Опыты по изучению кинетики взаимодействия тетрафторида кремния с хлоридом алюминия(III) в статических условиях проводили на установке, которая включает в себя газораспределительную гребенку с вакуумным насосом, горизонтально установленный фланцевый реактор из нержавеющей стали 12Х18Н10Т с резистивным нагревателем и регулятором температуры "Метакон", баллон с тетрафторидом кремния, приемный баллон для тетрахлорида кремния. Давление в установке контролировали по показаниям образцового вакуумметра ВО и образцового манометра МО 11201. В опытах использовали хлорид алюминия(III) (ультрасухой, 99.99%; ООО "Ланхит", г. Москва) и тетрафторид кремния, полученный путем термического разложения Na₂SiF₆ [14].

Методика проведения опытов состояла из следующих этапов. В реактор загружали навеску хлорида алюминия(III), реактор вакуумировали и заполняли тетрафторидом кремния до расчетного давления, обеспечивающего соотношение количеств веществ $n(SiF_4) : n(AlCl_3) = 3 : 8$ (двухкратный избыток AlCl₃ относительно стехиометрического). Реактор с реагентами нагревали до заданной температуры (скорость нагрева 10 К/мин) и выдерживали до выхода концентрации тетрахлорида кремния в газовой смеси на плато. Опыты проводили при 200, 235, 270°С. Состав газообразных продуктов реакции определяли хроматографическим методом (газовый хроматограф "Цвет 500" с детектором по теплопроводности) по методике, приведенной в работе [15]; газовые пробы отбирали в стеклянные ампулы с фторопластовыми штоками. На основании результатов газохроматографического анализа получали кинетические кривые для веществ-участников последовательной реакции

$$SiF_{4} \xrightarrow{k_{1}} SiClF_{3} \xrightarrow{k_{2}}$$

$$\rightarrow SiCl_{2}F_{2} \xrightarrow{k_{3}} SiCl_{3}F \xrightarrow{k_{4}} SiCl_{4}.$$
(1)

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 58 № 8 2022

Значения эффективных констант скоростей указанных последовательных реакций k_i определяли на основании кинетических кривых для галогенидов кремния в газовой смеси (т.н. обратная задача химической кинетики) путем решения системы дифференциальных уравнений для последовательной необратимой четырехстадийной реакции [16] с применением пакета прикладных программ MATLAB 8. На основании температурной зависимости эффективных скоростей последовательных реакций k_i рассчитывали значения эффективной энергии активации стадий и общее значение энергии активации последовательной реакции (1).

Изотопно обогащенный тетрахлорид кремния-28 получали по реакции ²⁸SiF₄ (обогащение по изотопу ²⁸Si 99.99769 ± 0.00026 ат. %, АО "ПО "Электрохимический завод", г. Зеленогорск) и хлорида алюминия(III) по описанной выше методике при 270°С. Полученный ²⁸SiCl₄ очищали методом изотермической дистилляции в кварцевой аппаратуре [17] со средней скоростью перегонки 1.5 × 10⁻³ см/мин.

Содержание примесей фторидов-хлоридов кремния и примесей HF, HCl, Si₂OF₆, Si₂OCl₆, которые образуются в результате гидролиза галогенидов кремния, в ²⁸SiCl₄ определяли методом ИК-спектроскопии на приборе BrukerVertex 80v с детектором DTGS в диапазоне 450-7000 см⁻¹. Разрешение и апертура составляли 1 см⁻¹ и 5 мм соответственно. Пробы отбирали в кювету из нержавеющей стали с окнами из ZnSe (длина оптического пути 10 см), давление пробы 20 мм. рт. ст. Концентрацию примесей фторидов-хлоридов кремния в тетрахлориде кремния рассчитывали по методике, приведенной в работе [18]. Интегральные коэффициенты поглощения для фторидов-хлоридов кремния рассчитывались ab initio неэмпирическим методом SCF с учетом электронной корреляции по теории возмущений Меллера-Плесета (МР2) с использованием базисного набора 6-311G(3df, 3pd) [19].

Содержание примесей химических элементов в 28 SiCl₄ и изотопный состав кремния в составе 28 SiCl₄ определяли методом масс-спектрометрии (масс-спектрометр высокого разрешения с индуктивно связанной плазмой ELEMENT 2 Thermo Scientific) по методике, приведенной в работе [20].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 приведены кинетические кривые для галогенидов кремния SiF_4 , $SiCl_3$, $SiCl_2F_2$, $SiCl_3F$, $SiCl_4$, полученные при температуре 270°С. Значками обозначены экспериментальные данные по содержанию веществ, линиями – расчет содержания веществ по кинетическому уравнению перво-

Рис. 1. Кинетические кривые для SiF₄, SiCl₃, SiCl₂F₂, SiCl₃F, SiCl₄ в составе газообразных продуктов реакции ²⁸SiF₄ с AlCl₃ при температуре 270°С (сплошные линии – расчет по кинетическому уравнению).

го порядка. Из рис. 1 видно, что экспериментальные данные удовлетворительно соответствуют расчетных; наблюдаемое различие опытных и расчетных данных по содержанию SiF₄, SiClF₃ в начале опыта (0–3 ч), по-видимому, обусловлено конечной скоростью процессов нагрева реактора, перехода хлорида алюминия(III) в паровую фазу и взаимодействия его с тетрафторидом кремния. В ходе процесса содержание SiF₄ в смеси снижается, образуются промежуточные фториды-хлориды кремния SiClF₃, SiCl₂F₂, SiCl₃F и накапливается SiCl₄: подобная зависимость характерна для последовательных (консекутивных) реакций, в которых продукт одной стадии является исходным веществом для последующей [21].

Расчетные значения эффективных констант скоростей последовательных реакций (1) при температуре 473 К составляют (ч⁻¹): $k_1 = 0.11$, $k_2 = 0.30$, $k_3 = 0.19$, $k_4 = 0.04$; при 543 К (ч⁻¹): $k_1 = 0.32$, $k_2 = 0.57$, $k_3 = 0.42$, $k_4 = 0.16$.

При сопоставлении значений эффективных констант скоростей последовательных реакций $k_1 - k_4$ видно, что лимитирующей стадией процесса синтеза SiCl₄ является реакция образования Si-Cl₄ из SiCl₃F.

На основании температурной зависимости k определяли значения эффективной энергии активации последовательных реакций (1) (кДж/моль): $E_{a,1} = 32.6, E_{a,2} = 19.6, E_{a,3} = 24.2, E_{a,4} = 42.3$; общая

эффективная энергия активации реакции (1) составляет 118.7 кДж/моль.

Отметим, что хлорид алюминия(III) при повышенной температуре обладает заметной летучестью (тройная точка при 192.6°С, 0.228 МПа [22]), что увеличивает скорость реакции тетрафторида кремния с хлоридом алюминия(III). Пары́ непрореагировавшего хлорида алюминия(III) конденсируются на фланце реактора, что позволяет отделять его от нелетучего фторида алюминия. Практический выход ²⁸SiCl₄ по ²⁸SiF₄ составляет 94 ± 2%.

На рис. 2 приведен ИК-спектр ²⁸SiCl₄, полученного по реакции ²⁸SiF₄ с хлоридом алюминия(III).

В спектре присутствуют полосы поглощения галогенидов кремния SiF_4 , $SiClF_3$, $SiCl_2F_2$, $SiCl_3F$, $SiCl_4$, а также хлороводорода.

В табл. 1 приведены результаты ИК-спектроскопического определения содержания фторидов-хлоридов кремния, HF, HCl, Si₂OF₆, Si₂OCl₆ в образцах синтезированного и дистиллированного тетрахлорида кремния-28, а также значения пределов обнаружения указанных веществ. Видно, что в полученном образце тетрахлорида кремния-28 присутствуют примеси SiF₄, SiCl₃F, SiCl₂F₂, SiClF₃ и HCl на уровне $n \times 10^{-3}$ – $n \times 10^{-2}$ мол. %. В дистиллированном ²⁸SiCl₄ содержание примесей SiCl₂F₂, SiClF₃ и HCl находится

Рис. 2. ИК-спектр 28 SiCl₄, полученного по реакции 28 SiF₄ с хлоридом алюминия(III).

ниже уровня ПО методики ИК-спектроскопического анализа ((1–3) × 10^{-3} мол. %), содержание SiCl₃F находится на уровне ПО методики. Практический выход очищенного ²⁸SiCl₄ составил 90 ± 2%.

В табл. 2 приведены результаты определения содержания примесей химических элементов в ${}^{28}\text{SiCl}_4$, полученном по реакции ${}^{28}\text{SiF}_4$ с хлоридом алюминия(III), и в ${}^{28}\text{SiCl}_4$, очищенном методом изотермической дистилляции, методом масс-спектрометрии с индуктивно связанной плазмой. Из табл. 2 видно, что основной вклад в примесный

состав полученного ²⁸SiCl₄ вносят примеси алюминия, кальция и железа, содержание которых находится на уровне 1–2 мкг/г ²⁸SiCl₄. Дистилляционная очистка позволяет снизить содержание распространенных химических элементов до уровня $n \times 10^{-1}$ мкг/г; содержание примесей металлов (хром, никель, железо, медь, натрий, магний и др.) находится ниже уровня ПО данной методики ($n \times 10^{-1}$ – $n \times 10^{-3}$ мкг/г).

В табл. 3 приведены результаты определения изотопного состава кремния в исходном $^{28}\rm{SiF}_4$ и

Примесь	V, см ⁻¹		Содержание примеси, мол. %	
		по, мол. %	²⁸ SiCl ₄ исходный	²⁸ SiCl ₄ дистиллят
SiCl ₃ F	947	3×10^{-3}	$(4.7 \pm 1.0) \times 10^{-2}$	$(4.3 \pm 1.0) \times 10^{-3}$
SiCl ₂ F ₂	915	1×10^{-3}	$(9.0 \pm 1.0) \times 10^{-3}$	<ПО
SiClF ₃	880	1×10^{-3}	$(1.4 \pm 0.2) \times 10^{-3}$	<ПО
SiF_4	1031	1×10^{-4}	$(5.0 \pm 1.0) \times 10^{-3}$	<ПО
HCl	2887	2×10^{-3}	$(2.5 \pm 0.4) \times 10^{-3}$	<ПО
HF	4038	1×10^{-2}	<по	<ПО
Si ₂ OF ₆	838	2×10^{-3}	<ПО	<ПО
Si ₂ OCl ₆	1115	1×10^{-3}	<ПО	<ПО

Таблица 1. Значения пределов обнаружения (ПО) и содержание ряда примесей в образцах ${}^{28}SiCl_4$ по данным ИК-спектроскопии

Примечание. <ПО – содержание вещества ниже предела обнаружения методики.

ТРОШИН и др.

	Содержание примеси в образце, мкг/г			
Примесь	²⁸ SiCl ₄ после синтеза	²⁸ SiCl ₄ дистиллят		
Al	1.4 ± 0.6	0.20 ± 0.05		
As	<0.1	<0.1		
В	0.22 ± 0.05	<0.06		
Ba	<0.003	<0.003		
Ca	1.0 ± 0.4	0.24 ± 0.07		
Cd	0.005 ± 0.001	<0.0002		
Со	<0.001	<0.001		
Cr	0.011 ± 0.004	<0.001		
Cu	0.03 ± 0.01	<0.003		
Fe	1.9 ± 0.5	<0.2		
K	0.08 ± 0.01	<0.02		
Li	<0.002	<0.002		
Mg	0.052 ± 0.007	<0.04		
Mn	0.012 ± 0.004	<0.005		
Na	0.21 ± 0.08	<0.02		
Ni	<0.03	<0.03		
Р	<0.05	<0.05		
Pb	0.0030 ± 0.0005	0.0008 ± 0.0001		
Sn	0.5 ± 0.1	<0.006		
Sr	0.0024 ± 0.0003	0.0011 ± 0.0003		
Те	<0.004	<0.004		
Ti	0.011 ± 0.003	0.005 ± 0.001		
Tl	<0.003	<0.003		
V	<0.002	<0.002		
Zn	0.08 ± 0.02	0.09 ± 0.02		

Таблица 2. Содержание примесей химических элементов в образцах ²⁸SiCl₄ по данным масс-спектрометрии с индуктивно связанной плазмой

Таблица 3.	Изотопный состав кремния в составе	²⁸ SiF ₄ ,	, ²⁸ SiCl ₄ по данным	масс-спектрометрии	с индуктивно
связанной	плазмой				

т

Maaran koongug	Содержание изотопа кремния в составе Si, ат. %			
изотоп кремния	исходный ²⁸ SiF ₄	²⁸ SiCl ₄ дистиллят		
²⁸ Si	99.99769 ± 0.00026	99.99757 ± 0.00060		
²⁹ Si	0.00226 ± 0.00024	0.00223 ± 0.00055		
³⁰ Si	0.00005 ± 0.00003	0.00020 ± 0.00006		

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ

том 58

<u>№</u> 8

2022

дистиллированном ²⁸SiCl₄ методом масс-спектрометрии с индуктивно связанной плазмой.

При сопоставлении данных табл. 3 видно, что содержание изотопов ²⁸Si и ²⁹Si в составе исходного ²⁸SiF₄ и дистиллированного ²⁸SiCl₄ в пределах погрешности определения не изменяется, различие в содержании изотопа ³⁰Si в этих веществах выходит за рамки погрешности определения. Вероятной причиной этого различия является небольшое изотопное разбавление кремния на стадиях синтеза и очистки в кварцевой аппаратуре.

ЗАКЛЮЧЕНИЕ

Изучено взаимодействие тетрафторида кремния с хлоридом алюминия(III) в закрытом реакторе в интервале температур 200–270°С, протекающее в форме последовательных реакций SiF₄ \rightarrow SiClF₃ \rightarrow SiCl₂F₂ \rightarrow SiCl₃F \rightarrow SiCl₄. Определены значения эффективных констант скоростей этих реакций при 473 и 543 К и энергии активации последовательных реакций превращения тетрафторида кремния в тетрахлорид кремния: $E_{a,1} = 32.6, E_{a,2} = 19.6, E_{a,3} = 24.2, E_{a,4} = 42.3$; общая эффективная энергия активации 118.7 кДж/моль.

Разработана методика получения изотопно обогащенного ²⁸SiCl₄ из ²⁸SiF₄, включающая стадии синтеза и дистилляционной очистки ²⁸SiCl₄. Практический выход ²⁸SiCl₄ по ²⁸SiF₄ на стадии синтеза составляет 94 ± 2%; практический выход высокочистого ²⁸SiCl₄ на стадии очистки – 90 ± 2%. Содержание SiCl₃F в ²⁸SiCl₄, по данным ИК-спектроскопии составляет (4.3 ± 1.0) × 10⁻³ мол. %, SiCl₂F₂ и SiClF₃ – менее 1 × 10⁻³ мол. %. Содержание примесей химических элементов в высокочистом ²⁸SiCl₄, по данным масс-спектрометрии с индуктивно связанной плазмой, находится на уровне $n × 10^{-1}$ — $n × 10^{-4}$ мкг/г, содержание изотопа кремния-28 в составе кремния составляет 99.99757 ± 0.00060 ат. %.

БЛАГОДАРНОСТЬ

Авторы благодарят научного руководителя Института химии высокочистых веществ им. Г.Г. Девятых Российской академии наук академика М.Ф. Чурбанова за детальное обсуждение работы.

Работа выполнена по Программе НИР Госзадания FFSR-2022-0003.

СПИСОК ЛИТЕРАТУРЫ

 Андреев Б.М., Арефьев Д.Г., Баранов В.Ю. и др. Изотопы: свойства, получение, применение. М.: Физматлит, 2005. Т. 2. 728 с.

- Kelsey V., Alexander J.E., Burden S.J. Isotopically Engeneered Optical Materials: Пат. США № 20030039865. Опубл. 27.02.2003.
- 3. *Allan D.C., Brown J.T., Chacon L.C. et al.* Isotopically Altered Optical Fiber: Пат. США № 6810197. Опубл. 26.10.2004.
- 4. *Brown T.G., Painter B.A.* Low Loss Isotopic Optical Waveguides: Пат. США № 20030002834. Опубл. 02.01.2003.
- 5. *Heitmann W., Klein K.F.* Glass for Optical Waveguides or the like: Пат. США № 6490399. Опубл. 03.12.2002.
- 6. Плеханов В.Г. Изотопическая инженерия // Успехи физ. наук. 2003. Т. 173. № 7. С. 711–738. https://doi.org/10.3367/UFNr.0170.200011i.1245
- Abrosimov N.V., Aref'ev D.G., Becker P. et al. A New Generation of 99.999% Enriched ²⁸Si Single Crystals for the Determination of Avogadro's Constant // Metrologia. 2017. № 54. P. 599–609. https://doi.org/10.1088/1681-7575/aa7a62
- Тихомиров А.В. Способ разделения изотопов кремния: Пат. РФ № 2172642. Опубл. 27.09.2001.
- 9. Bracht H., Staskunaite R., Haller E.E., Fielitz P., Borchardt G., Grambole D. Silicon Diffusion in Sol-Gel Derived Isotopically Enriched Silica Glasses // J. Appl. Phys. 2005. № 97. P. 046107 (1–3). https://doi.org/10.1063/1.1857051
- Palmai M., Szalay R., Barczak D., Varga Z., Nagy L.N., Gollwitzer C., Krumrey M. Total Synthesis of Isotopically Enriched Si-29 Silica NPs as Potential Spikes for Isotope Dilution Quantification of Natural Silica NPs // J. Colloid Interface Sci. 2015. № 445. P. 161–165. https://doi.org/10.1016/j.jcis.2014.12.085
- Чурбанов М.Ф., Буланов А.Д., Трошин О.Ю., Гребеньков К.С. Способ получения изотопнообогащенного тетрахлорида кремния: Пат. РФ № 2618265. Опубл. 03.05.2017.
- 12. Schumb W.C., Breck D.W. Some Metathetical Reactions of the Gaseous Fluorides of Group IV // J. Am. Chem. Soc. 1952. № 74(7). P.1754–1760. https://doi.org/10.1021/JA01127A043
- Трошин О.Ю., Буланов А.Д., Чернова О.Ю. Равновесие жидкость-пар в системе SiCl₄ – примеси SiCl_{4 – n}F_n (n = 1-4) // Неорган. материалы. 2018. Т. 54. № 8. С. 888–891. https://doi.org/10.1134/S0002337X1808016X
- Буланов А.Д., Пряхин Д.А., Балабанов В.В. Получение высокочистого тетрафорида кремния термическим разложением Na₂SiF₆ // Журн. прикл. химии. 2003. Т. 76. № 9. С. 1433–1435.
- 15. Сорочкина Т.Г., Чернова О.Ю., Трошин О.Ю., Созин А.Ю., Буланов А.Д., Ермаков А.А. Газохроматографическое определение фторид-хлоридов кремния SiCl_nF_{4-n} (n = 0-4), полученных по реакции тетр афторида кремния с хлоридом алюминия(III) // Аналитика и контроль. 2019. Т. 23. № 4. С. 525–531. https://doi.org/10.15826/analitika.2019.23.4.011
- 16. Родигин Н.М., Родигина Э.Н. Последовательные химические реакции: математический анализ и расчеты. М.: Изд. АН СССР, 1960. 138 с.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 58 № 8 2022

- Мицуике А. Методы концентрирования микроэлементов в неорганическом анализе: Пер. с англ. М.: Химия, 1986. 152 с.
- 18. Чупров Л.А., Сенников П.Г., Тохадзе К.Г., Иенатов С.К., Шремс О. Примеси в тетрафториде кремния и получаемом из него силане по данным ИК-Фурьеспектроскопии высокого разрешения // Неорган. материалы. 2006. Т. 42. № 8. С. 1017–1024.
- Burtsev A.P., Bocharov V.N., Ignatov S.K. et al. Integral Intensities of Absorption Bands of Silicon Tetrafluoride in the Gas Phase and Cryogenic Solution: Experiment and Calculation // Opt. Spectrosc. 2005. V. 98. № 2. P. 227–234. https://doi.org/10.1134/1.1870065
- Отопкова П.А., Потапов А.М., Сучков А.И., Буланов А.Д., Лашков А.Ю., Курганова А.Е. Изотопный анализ высокообогащенного кристаллического ²⁸Si и исходного ²⁸SiF₄ методом масс-спектрометрии высокого разрешения с индуктивно связанной плазмой // Масс-спектрометрия. 2018. Т. 15. № 3. С. 209–215. https://doi.org/10.25703/MS.2018.15.35
- 21. Панченков Г.М., Лебедев В.П. Химическая кинетика и катализ // Уч. пособие для вузов. 3-е изд. испр. и доп. М.: Химия, 1985. 592 с.
- 22. Фурман А.А. Неорганические хлориды (химия и технология). М.: Химия, 1980. 416 с.