УДК 546.07.271.882

ВЗАИМОДЕЙСТВИЕ ПЕНТАХЛОРИДА НИОБИЯ С БОРОГИДРИДОМ НАТРИЯ В ИОННЫХ РАСПЛАВАХ

© 2022 г. А. А. Винокуров¹, Д. Ю. Ковалев², Г. Р. Нигматуллина², Н. Н. Дремова¹, С. П. Шилкин^{1, *}

¹Институт проблем химической физики Российской академии наук, пр. Академика Семенова, 1, Черноголовка, Московская обл., 142432 Россия ²Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова Российской академии наук, ул. Академика Осипьяна, 8, Черноголовка, Московская обл., 142432 Россия *e-mail: ssp@icp.ac.ru

Поступила в редакцию 08.02.2022 г. После доработки 16.05.2022 г. Принята к публикации 18.05.2022 г.

Исследовано взаимодействие предварительно активированных механохимическим способом порошков NbCl₅ и NaBH₄, взятых в мольном соотношении 1 : 2.4, в ионных расплавах Na₂B₄O₇, KCl, KBr, а также в эвтектических смесях мол. %: 50NaCl + 50KCl или 58LiCl + 42KCl – в течение 8–15 ч при температурах 873–1073 К под давлением аргона 4 МПа. Показано, что применение ионных расплавов позволяет получать близкие к сферическим наночастицы диборида ниобия со средним размером в зависимости от температуры ~12–17 нм, кристаллизующиеся в гексагональной сингонии, пр. гр. *P*6/*mmm*, с периодами элементарной ячейки NbB₂ a = 0.3105-0.3125 нм, c = 0.3269-0.3294 нм.

Ключевые слова: диборид ниобия, наночастицы, механохимическая обработка, NbCl₅, NaBH₄, ионный расплав, реактор-автоклав

DOI: 10.31857/S0002337X22080140

введение

В силу высоких температур плавления, твердости, прочности, модуля упругости, износоустойчивости, широкого спектра электрических свойств, низкой скорости испарения, химической и коррозионной инертности бориды металлов IV–VI групп находят применение в различных областях промышленности [1–4]. Типичным представителем боридов V группы является диборид ниобия NbB₂.

Создание тугоплавких материалов в наноструктурном состоянии с физико-химическими, механическими и другими свойствами, превосходящими таковые для микрокристаллических аналогов, обещает значительное расширение сферы их применения и стимулирует работы, направленные на разработку новых методик синтеза наноразмерных тугоплавких соединений [5]. В этой связи актуальными становятся исследования по изучению взаимодействия различных солей ниобия с борсодержащими реагентами с целью разработки новых эффективных методик получения наночастиц диборида ниобия.

Для синтеза наночастиц NbB2 обычно используют методики, разработанные для получения диборидов переходных металлов IV, VI групп, которые условно можно свести к нескольким основным типам: высокотемпературный твердофазный синтез из элементов; "бестоковый" метод синтеза при взаимодействии бора и ниобия в ионных расплавах; боротермическое или карботермическое восстановление различных оксидов и солей металлов бором (аморфным или кристаллическим), углеродом в той или иной форме (сажа, нановолокна, графит); восстановление оксидов металлов и бора магнием, натрием или оловом; механохимический синтез из элементов: химическое осажление из паровой фазы (CVD); термолиз соответствующих борогидридов металлов или их комплексных производных; взаимодействие хлоридов переходных металлов с борогидридами щелочных металлов без стадии выделения борогидридных производных переходных металлов при повышенных температурах и давлениях; синтез в плазме [6-23].

В [6] отмечено, что при высокотемпературном твердофазном взаимодействии порошкообразных ниобия и аморфного бора NbB₂ образуется с

высокой скоростью, но в оригинальной работе отсутствуют данные о чистоте и размере частиц (кристаллитов) полученного диборида ниобия. В [7, 8] синтезированы близкие к сферическим наноразмерные частицы диборида ниобия со средним диаметром 65 нм при взаимодействии аморфного бора с порошком ниобия в аргоне при температуре 1073 К в ионных расплавах буры или галогенидов щелочных металлов. В [9, 10] установлено, что при взаимодействии NbO2 с бором при 1573 К в аргоне образуются агломерированные наностержни NbB₂ диаметром 40 и длиной до 800 нм. При 1923 К карботермическим восстановлением смеси аморфного бора и оксидов ниобия углеродом могут быть получены наночастицы NbB₂ (~50 нм) [11]. В [12] получены наностержни NbB₂ диаметром 50-60 и длиной до 600 нм при взаимодействии NbCl₅ с NaBH₄ в аргоне при температурах 823-1173 K.

Наноразмерный диборид ниобия с размером частиц ~30 нм может быть получен при 1173 К взаимодействием Mg, Nb₂O₅ и H_3BO_3 в расплавах смесей NaCl + MgCl₂ или LiCl + KCl [13, 14]. Наночастицы диборида ниобия образуются при взаимодействии NbCl₅ с порошками бора и олова при температуре 923 К в атмосфере азота [15]. Порошкообразный NbB2 с размером частиц ~100 нм получали при 1073 К взаимодействием предварительно активированной механохимическим способом смеси порошков магния и ниобия с оксидом бора [16]. Для выделения из реакционной смеси диборида ниобия полученный спек последовательно обрабатывали соляной кислотой, водой и этиловым спиртом. Достаточно крупнозернистые частицы NbB₂ (~200 нм) могут быть получены магнийтермическим восстановлением смеси оксидов ниобия и бора [17]. Наноразмерный диборид ниобия получали также осаждением из газовой фазы, содержащей NbCl₅, BCl₃ и H₂, на кварцевую подложку в виде гомогенной пленки при 1223-1323 К и в виде кристаллической фазы при 1323-1473 К [18]. Наноразмерный NbB₂ с размером частиц ~38 нм получен при взаимодействии Nb₂O₅ с порошком Mg и Na₂B₄O₇·10H₂O в автоклаве при 1073 К [19]. По методикам, разработанным для синтеза наночастиц диборида циркония разложением соответствующих борогидридных производных, можно также получать и наночастицы NbB₂ [20, 21]. В [22] показана принципиальная возможность получения наночастиц боридов ниобия в RF-термической плазме. Наночастицы NbB₂ образуются также при взаимодействии NbO₂

с бором в присутствии серы и металлического натрия [23].

В настоящей работе рассматривается методика синтеза наночастиц NbB₂, основанная на взаимодействии активированных в высокоэнергетической планетарной шаровой мельнице пентахлорида ниобия и борогидрида натрия в ионных расплавах (L) различного состава и химической природы ($L = Na_2B_4O_7$, KCl, KBr, эвтектические смеси (мол. %): 50NaCl + 50KCl или 58LiCl + 42KCl)

$$NbCl_{5} + 2NaBH_{4} \xrightarrow{t} NbB_{2} + + 2NaCl + 3HCl + 2.5H_{2}.$$
 (1)

Эта работа является непосредственным продолжением работы [24].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходные реагенты. Борогидрид натрия с чистотой >99.5% получали перекристаллизацией технического препарата из 1N раствора NaOH и сушили в вакууме 0.13 Па при 373 К, в работе использовали NbCl₅ квалификации "х. ч.", аргон высокой чистоты - 99.998% (ТУ 2114-005-0024760-99). Источником водорода с чистотой не менее 99.999% служил автономный лабораторный генератор, солержаший в качестве рабочего материала гидрилные фазы на основе LaNi₅ и TiFe, принцип действия которого подробно описан в [25]. Хлориды и бромиды лития, калия, натрия квалификации "х. ч." или их смеси непосредственно перед синтезом вакуумировали до остаточного давления 0.13 Па при температуре 573 К. Безводный Na₂B₄O₇ получали вакуумированием товарного Na₂B₄O₇·5H₂O квалификации "х. ч.", в вакууме 0.13 Па при температуре 623 К.

Методы анализа. Рентгенофазовый анализ (**РФА**) полученных наночастиц NbB₂ проводили на дифрактометре ДРОН-3 с монохроматором на вторичном пучке. Регистрацию дифрактограмм вели в режиме пошагового сканирования на излучении Cu K_{α} в интервале углов 20 20°–90° с шагом съемки 0.02° и экспозицией 4 с в точке. Профильный анализ дифрактограмм осуществляли в программном пакете "Буревестник". Расчет метрики ячейки и параметров тонкой структуры проводили по 8 рефлексам. Инструментальное уширение учитывали по уширению линий эталона LaB₆ (SRM 660b). Для расчета областей когерентного рассеяния (**OKP**) использовали метод вторых моментов.

Термические исследования выполняли методом синхронного термического анализа с масс-

Т, К	ΔH , кДж/моль	ΔS , Дж/(моль K)	ΔG , кДж/моль
673	-119.8	547.7	-488.4
723	-123.4	542.4	-515.6
773	-126.8	538.0	-542.6
823	-185.7	465.5	-568.9
873	-186.4	465.0	-592.3
923	-187.0	464.4	-615.7
973	-187.7	463.9	-639.1
1023	-188.2	463.5	-662.4
1073	-188.7	463.2	-685.7
1123	-189.0	463.0	-708.9
1173	-189.2	462.8	-732.1

Таблица 1. Результаты расчета термодинамических параметров реакции (1) в температурном интервале 673–1173 К

спектрометрическим анализом газовой фазы на термоанализаторе Netzch STA 409 PC Luxx и масс-спектрометре QVS 403 C Aeolos при линейном нагреве навески образца со скоростью 10° C/мин в потоке аргона высокой чистоты.

Электронно-микроскопические исследования и энергодисперсионный анализ (ЭДА) осуществляли на комплексе приборов, состоящем из автоэмиссионного сканирующего электронного микроскопа (СЭМ) Zeiss Supra 25 и рентгеноспектральной приставки INCA X-sight. Микрофотографии получали при низких ускоряющих напряжениях электронного пучка (~4 кВ). При таких ускоряющих напряжениях вклад в регистрируемый сигнал от подложки минимален либо отсутствует вовсе. ЭДА осуществляли при ускоряющем напряжении ~8 кВ.

Удельную поверхность образцов находили при температуре жидкого азота с использованием анализатора Quadrasorb SI. Из данных измерений удельной поверхности (S_{ya}) проводили оценку диаметра частиц NbB₂ в предположении их сферической формы по известной формуле: $d_x = 6/(\gamma S_{ya})$, где d_x – размер частиц, γ – рентгеновская плотность NbB₂, равная 6.93 г/см³.

Содержание бора, ниобия, хлорид- и бромид-ионов определяли по стандартным аналитическим методикам, а также методом ЭДА. Содержание водорода и кислорода определяли на CHNS/O-элементном анализаторе Vario EL cube Elementar.

Методика эксперимента. Смесь NbCl₅ + NaBH₄ в мольном соотношении 1 : 2.4 активировали в шаровой планетарной мельнице Pulverisette 6 (шары из ZrO₂ диаметром 10 мм, шаровая загрузка 1 : 10, скорость вращения 400 об./мин, время обработки 2 мин) в атмосфере аргона при комнатной температуре. Активированную смесь порошков 3.25 г NbCl₅ (0.012 моля) и 1.10 г NaBH₄ (0.029 моля) вместе с навесками (по 15.0 г) KCl, KBr, Na₂B₄O₇ или эвтектической смеси (мол. %): 50NaCl + 50KCl, 58LiCl + 42KCl засыпали в кварцевую ампулу, а затем помещали в реактор-автоклав из нержавеющей стали в атмосфере аргона высокой чистоты.

Температуры синтеза выбирали выше температур плавления используемых ионных расплавов. Давление аргона в реакторе над расплавом реагентов (4 МПа) гарантировало в экстренных ситуациях отсутствие возможного контакта расплава со следами кислорода и азота воздуха.

Реакционную смесь вакуумировали до остаточного вакуума 0.13 Па, заполняли аргоном под давлением 4 МПа и нагревали в течение 8-15 ч в интервале температур 873-1073 К. В ходе синтеза давление в реакторе повышалось до ~10 МПа за счет выделения газообразных продуктов реакции (1). Затем температуру в реакторе доводили до комнатной и понижали давление до атмосферного. После вскрытия реактора полученную реакционную массу последовательно обрабатывали охлажденной до 277 К дистиллированной водой, ацетоном, этиловым спиртом и вакуумировали при 313 К до остаточного вакуума 0.13 Па. Затем полученный порошок снова помещали в реактор, вакуумировали и обрабатывали H₂ из водородного аккумулятора в проточном режиме под давлением Н₂ 5 МПа при 373 К по методике [26]. После обработки водородом реактор вновь вакуумировали при комнатной температуре до остаточного вакуума 0.13 Па, заполняли аргоном до атмосферного давления и выгружали из реактора полученное вещество.

Рис. 1. Дифрактограммы наночастиц NbB₂, полученных при 1073 К в ионном расплаве KBr (а), при 1023 К в ионном расплаве (мол. %) 50NaCl – 50KCl (б), при 873 К в ионном расплаве 58LiCl – 42KCl (в) и подвергнутых термообработке в политермическом режиме в аргоне до 1273 К (г).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В табл. 1 приведены результаты расчета термодинамических параметров реакции (1). Как следует из этих данных, в рассматриваемом интервале температур взаимодействие характеризуется высокой термодинамической вероятностью образования диборида ниобия. Реакция является экзотермической. Расчеты изменения энергии Гиббса указывают на то, что реакция в данном температурном интервале энергетически выгодна, а повышение температуры способствует ее протеканию. Термодинамические данные для NbB₂ взяты из работы [27], для остальных веществ – из справочника NIST Chemistry Webbook [28].

На рис. 1 и в табл. 2 представлены результаты и условия взаимодействия $NbCl_5$ с $NaBH_4$ по реакции (1) при различных температурах и времени взаимодействия в соответствующих ионных расплавах. Как видно из этих данных, образование наночастиц диборида ниобия наблюдается при температурах, превышающих температуру интенсивного разложения борогидрида натрия, которая равна 868 К [29]. Выделенный из реакционной смеси наноразмерный NbB_2 , по результатам химического анализа и ЭДА, независимо от используемого ионного расплава имеет валовый химический состав $NbB_{1.99-2.02}O_{0.01-0.02}$. Следов галогенид-ионов и водорода в нем не обнаружено.

Из дифрактограмм, полученных при различных температурах (рис. 1а-1в), видно, что материал является однофазным и содержит наноразмерный диборид ниобия (пр. гр. Р6/ттт). Значимого количества примесных фаз не обнаружено. Параметры элементарной ячейки наночастиц NbB₂ (табл. 2) согласуются с результатами [30] и соответствуют дифракционной базе данных ICDD (PDF-2, Card 000-35-0742). Как было отмечено выше, повышение температуры реакции (1) способствует образованию наночастиц NbB₂, однако при этом происходит увеличение их размера (табл. 3). По данным СЭМ, полученные в температурном интервале 873-1073 К наночастицы NbB₂ имеют различную форму, но преобладающая их часть имеет форму, близкую к сферической (рис. 2а-2в). Наночастицы NbB₂ заметно агломерированы, о чем свидетельствует сравнение их размеров из данных СЭМ и из величин удельной поверхности.

В табл. 3 сопоставлены средние размеры частиц (кристаллитов) NbB₂, оцененные из данных СЭМ, профильного анализа дифрактограмм и величин удельной поверхности. Видно, что незави-

ВИНОКУРОВ и др.

Ионный расплав	<i>Т</i> , К	τ, ч	Химический состав*	Фазовый состав	а, нм	С, НМ
KCl	1073	15	NbB _{1.99} O _{0.02}	NbB ₂	0.3115	0.3278
KBr	1023	8	NbB _{2.01} O _{0.02}	NbB ₂	0.3117	0.3271
	1073	15	$NbB_{2.00}O_{0.02}$	NbB ₂	0.3125	0.3294
50NaCl-50KCl	948	10	NbB _{1.99} O _{0.01}	NbB ₂ **	_	_
	1023	8	NbB _{2.02} O _{0.02}	NbB ₂	0.3110	0.3281
	1073	8	$NbB_{2.01}O_{0.02}$	NbB ₂	0.3107	0.3269
58LiCl-42KCl	873	10	NbB _{2.02} O _{0.01}	NbB ₂ **	_	_
	923	8	NbB _{1.99} O _{0.01}	NbB ₂ **	—	_
	1073	8	NbB _{2.02} O _{0.02}	NbB ₂	0.3121	0.3290
Na ₂ B ₄ O ₇	1073	8	NbB _{2.01} O _{0.02}	NbB ₂	0.3105	0.3294
_	923	12	_	NbB ₂ ***	0.3105	0.3277

Таблица 2. Результаты исследования взаимодействия NbCl₅ с NaBH₄ по реакции (1) при различных температурах и времени в атмосфере аргона в ионных расплавах (мол. %) или без них

* По данным РФЭС, кислород находится в поверхностных слоях наночастиц NbB₂ в виде оксидов ниобия (V) и бора [24]. ** Периоды кристаллической решетки не рассчитывались ввиду недостаточного количества рефлексов. *** Взаимодействие NbCl₅ с NaBH₄ по реакции (1) осуществлялось в отсутствие ионных расплавов [12].

Таблица 3. Средний диаметр наночастиц NbB₂, полученных при взаимодействии NbCl₅ с NaBH₄ по реакции (1) в ионных расплавах (мол. %) или без них при различных температурах

*	· /	1 1	1 11	
Ионный расплав	<i>Т</i> , К	<i>D</i> _{ср} , нм (СЭМ)	Размер ОКР, нм	$D_{ m cp},$ нм (из данных $S_{ m yd}$)
58LiCl-42KCl	873	~12	~3	$\sim 16(S_{yg} = 53 \text{ m}^2/\text{r})$
50NaCl-50KCl	1023	~17	~9	$\sim 20(S_{yg} = 43 \text{ m}^2/\Gamma)$
KBr	1073	~17	~10	$\sim 19(S_{yg} = 45 \text{ m}^2/\Gamma)$
-	923	~50-600*	—	_

* Наностержни диаметром 50-60 и длиной 600 нм [12].

симо от природы ионного расплава средний размер частиц (кристаллитов) NbB₂ определяется температурой синтеза и составляет от 12 до 17 нм. Применение ионных расплавов в реакции (1) позволяет получать не наностержни, а близкие к сферическим наночастицы NbB2 меньшего размера при более низкой температуре и меньшем времени взаимодействия компонентов по сравнению с рассмотренными выше твердофазными

реакциями в отсутствие ионного расплава, например [12].

Термографические исследования, проведенные в атмосфере аргона в температурном интервале 293-1273 К, указывают на то, что наночастицы NbB2 не испытывают физико-химических превращений, связанных с выделением, поглощением тепла или изменением массы, а также сохраняют фазовый состав (рис. 1г) и морфологию (рис. 2г).

Рис. 2. Электронные микрофотографии наночастиц NbB₂, полученных при 1073 К в ионном расплаве KBr (а), при 1023 К в ионном расплаве (мол. %) 50NaCl-50KCl (б), при 873 К в ионном расплаве 58LiCl-42KCl (в) и подвергнутых термообработке в политермическом режиме в аргоне до 1273 К (г).

ЗАКЛЮЧЕНИЕ

Применение ионных расплавов различного химического состава при взаимодействии предварительно активированных механохимическим способом порошков NbCl₅ и NaBH₄, взятых в мольном соотношении 1 : 2.4, при температурах 873-1073 К и времени реакции 8-15 ч в атмосфере аргона позволяет получать близкие к сферическим наночастицы диборида ниобия со средним размером ~ 12-17 нм в более мягких условиях, чем при отсутствии расплавов.

БЛАГОДАРНОСТЬ

Работа выполнена при поддержке Министерства науки и высшего образования в рамках Государственного задания ИПХФ РАН и ИСМАН РАН, номер государственной регистрации АААА-А19-119061890019-5 и FFSZ-2022-0009 соответсвенно.

Использовалось оборудование АЦКП ИПХФ РАН и ЦКП ИСМАН РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Серебрякова Т.И., Неронов В.А., Пешев П.Д. Высокотемпературные бориды. Челябинск: Металлургия, 1991. 368 с.
- Carenco S., Portehault D., Boissiere C., Mezailles N., Sanchez C. Nanoscaled Metal Borides and Phosphides: Recent Developments and Perspectives // Chem. Rev. 2013. V. 113. № 10. P. 7981–8065. https://doi.org/10.1021/cr400020d
- Андриевский Р.А., Спивак И.И. Прочность тугоплавких соединений и материалов на их основе. Справочник. Челябинск: Металлургия, 1989. 367 с.
- 4. Прохоров А.М., Лякишев Н.П., Бурханов Г.С., Дементьев В.А. Высокочистые бориды переходных металлов – перспективные материалы современной техники // Неорган. материалы. 1996. Т. 32. № 11. С. 1365–1371.
- Andrievski R.A., Khatchoyan A.V. Nanomaterials in Extreme Environments, Fundamentals and Applications. Berlin: Springer, 2016. 107 p. https://doi.org/10.1007/978-3-319-25331-2
- Matsudaira T., Itoh H., Naka S. Synthesis of Niobium Boride Powder by Solid – State Reaction between Niobium and Amorphous Boron // J. Less-Common Met. 1989. V. 155. № 2. P. 207–214. https://doi.org/10.1016/0022-5088(89)90229-4
- Кравченко С.Е., Винокуров А.А., Дремова Н.Н., Надхина С.Е., Шилкин С.П. Синтез наночастиц диборида ниобия взаимодействием аморфного бора с ниобием в ионных расплавах КСІ и Na₂B₄O₇ // ЖОХ. 2021. Т. 91. № 2. С. 326–328.
- Кравченко С.Е., Ковалев Д.Ю., Винокуров А.А., Дремова Н.Н., Иванов А.В., Шилкин С.П. Синтез и термоокислительная устойчивость наноразмерного

диборида ниобия // Неорган. материалы. 2021. Т. 57. № 10. С. 1063–1072.

- Peshev P., Leyarovska L., Bliznakov G. On the Borothermic Preparation of Some Vanadium, Niobium and Tantalum Borides // J. Less Common Met.1968. V. 15. P. 259–267. https://doi.org/10.1016/0022–5088(68)90184–7
- Jha M., Ramanujachary K.V., Lofland S.T., Gupta G., Ganguli A.K. Novel Borothermal Process for the Synthesis of Nanocrystalline Oxides and Borides of Niobium // J. Dalton Trans. 2011. V. 40. P. 7879–7888. https://doi.org/10.1039/c1dt10468c
- Maeda H., Yoshikawa T., Kusakabe K., Morooka S. Synthesis of Ultrafine NbB₂ Powder by Rapid Carbothermal Reduction in a Vertical Tubular Reactor // J. Alloys Compd. 1994. V. 215. P. 127–334. https://doi.org/10.1016/0925-8388(94)90829-X
- Gai P., Yang Z., Shi L., Chen L., Zhao A., Gu Y., Qian Y. Low Temperature Synthesis of NbB₂ Nanorods by a Solid – State Reaction Route // Mater. Lett. 2005. V. 59. P. 3550–3552. https://doi.org/10.1016/j.matlet.2005.07.051
- Ma J., Du Y., Wu M., Li G., Feng Z., Guo M., Sun Y., Song W., Lin M., Guo X. A Simple Inorganic – Solvent Route to Nanocrystalline Niobium Diboride // J. Alloys Compd. 2009. V. 468. P. 473–476. https://doi.org/10.1016/j.jallcom.2008.01.021
- Portehaut D., Devis S., Beaunier P., Gervais C., Giordano C., Sanchez C., Antonietti M. A General Solution Route toward Metal Boride Nanocrystals // Angew. Chem. 2011. V. 50. P. 3262–3265. https://doi.org/10.1002/ange.201006810
- Jothi P.R., Yubuta K., Fokwa B.P.T. A Simple, General Synthetic Route toward Nanoscale Transition Metal Borides // Adv. Mater. 2018. V. 30. № 14. P. 1704181-1–1704181-6. https://doi.org/10.1002/adma.201704181
- Jafari M., Tajizadegan H., Golabgir M.H., Chami A., Torabio O. Investigation on Mechanochemical Behavior of Al/Mg-B₂O₃-Nb System Reactive Mixtures to Synthesize Niobium Diboride // J. Refract. Met. Hard Mater, 2015. V. 50. P. 86-92.
 - https://doi.org/10.1016/j.ijrmhm.2014.10.017
- Balci Ö., Aĝaoĝullari D., Övecoĝlu M.L., Duman I. Synthesis of Niobium Borides by Powder Metallurgy Methods using Nb₂O₅, B₂O₃ and Mg Blends // Trans. Nonferrous Met. Soc. China. 2016. V. 26. P. 747–758. https://doi.org/10.1016/S1003-6326(16)64165-1
- Motojima S., Sugiyama K., Takahashi Y. Chemical Vapor Deposition of Niobium Diborie (NbB₂) // J. Cryst. Growth. 1975. V. 30. P. 233–239. https://doi.org/10.1016/0022-0248(75)90094-9

- Gupta A., Singhal V., Pandey O.P. Facile in-situ Synthesis of NbB₂ Nanoparticles at Low Temperature // J. Alloys Compd. 2018. V. 736. P. 306–313. https://doi.org/10.1016/j.jallcom.2017.10.257
- 20. *Кравченко С.Е., Торбов В.И., Шилкин С.П.* Наноразмерный диборид циркония: синтез, свойства // Журн. неорган. химии. 2011. Т. 56. № 4. С. 546–549.
- Andrievski R.A., Kravchenko S.E., Shilkin S.P. Some Properties of Ultrafine Zirconium Boride Powders and Films // Jpn. J. Appl. Phys. 1994. V. 10. P. 198–199.
- Cheng Y., Choi S., Watanabe T. Synthesis of Niobium Boride Nanoparticle by RF Thermal Plasma // J. Phys.: Conf. Ser. 2013. V. 441. 012031. https://doi.org/10.1088/1742-6596/441/1/012031
- Chen B., Yang L., Heng H., Chen J., Zhang L., Xu L., Qian Y., Yang J. Additive – Assisted Synthesis of Boride, Carbide and Nitride Micro/Nanocrystals // J. Solid State Chem. 2012. V. 194. P. 219–224. https://doi.org/10.1016/j.jssc.2012.05.032
- 24. Винокуров А.А., Дремова Н.Н., Надхина С.Е., Иванов А.В., Шилкин С.П. Образование наночастиц диборида ниобия при взаимодействии пентахлорида ниобия с борогидридом натрия в ионных расплавах галогенидов щелочных металлов // Журн. общ. химии. 2022. Т. 92. № 2. С. 312–316.
- Фокин В.Н., Фокина Э.Э., Шилкин С.П. Синтез гидридов некоторых металлов в крупнокристаллическом состоянии // Журн. общ. химии. 1996. Т. 66. № 8. С. 1249–1252.
- Семененко К.Н., Шилкин С.П., Бурнашева В.В., Волкова Л.С., Мозгина Н.Г. Взаимодействие некоторых интерметаллических соединений, образованных редкоземельными металлами и металлами триады железа, с азотом в присутствии водорода // Журн. общ. химии. 1987. Т. 57. № 4. С. 729–732.
- Болгар А.С., Сербова М.И., Фесенко В.В., Серебрякова Т.И., Исаева Л.П. Высокотемпературная энтальпия и теплоемкость диборида ниобия // Теплофизика высоких температур. 1980. Т. 18. № 6. С. 1180–1183.
- Burgess D.R., Jr. Thermochemical Data in NIST Chemistry WebBook, NIST Standard Reference Database № 69 / Eds. Linstrom P.J., Mallard W.G. Gaithersburg: National Inst of Standards and Technology. https://doi.org/10.18434/T4D303
- 29. Дымова Т.Н., Елисеева Н.Г., Михеева В.И. Термографическое изучение гидридобората натрия и некоторых родственных веществ // Журн. неорган. химии. 1967. Т. 12. № 9. С. 2317–2320.
- Диаграммы состояния двойных металлических систем. Справочник / Под общ. ред. Лякишева Н.П. Т. 1. М.: Машиностроение, 1996. 992 с.

2022