ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 544.016.2(546.42'221.1+546.682'221.1)

ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМЕ SrS-In₂S₃

© 2019 г. А. В. Кертман^{1, *}

¹Тюменский государственный университет, Россия, 625003 Тюмень, ул. Семакова, 10 *e-mail: akertman@utmn.ru Поступила в редакцию 05.02.2018 г. После доработки 07.05.2018 г. Принята к публикации 04.07.2018 г.

Установлено, что система SrS–In₂S₃ эвтектического типа с инконгруэнтно плавящимся соединением состава SrIn₂S₄ и ограниченными областями твердых растворов на основе полиморфных модификаций In₂S₃. Соединение SrIn₂S₄ кристаллизуется в ромбической сингонии (пр. гр. *Fddd*) с параметрами элементарной ячейки a = 2.090, b = 2.113, c = 1.302 нм. Температура инконгруэнтного плавления SrIn₂S₄ составляет 1220 К, микротвердость H = 2650 МПа. Состав эвтектики – 73 мол. % In₂S₃, $t_{пл} = 1170$ К. Растворимость SrS в α -In₂S₃ при 1070 К достигает 6 мол. % SrS.

Ключевые слова: сульфиды AIn₂S₄ (А – щелочноземельный металл), фазовая диаграмма, эвтектика, твердый раствор

DOI: 10.1134/S0044457X19010136

введение

Сульфиды состава AIn_2S_4 (A — щелочноземельный металл), образующиеся в системах $AS-In_2S_3$, в последние годы вызывают повышенный интерес, так как обладают специфическими (оптическими и электрофизическими) свойствами и используются в качестве материалов инфракрасной и нелинейной оптики [1, 2].

Ранее [1, 3] были изучены фазовые равновесия в системе SrS-In₂S₃ в концентрационном диапазоне 50-100 мол. % In₂S₃. В литературе имеются сведения о том, что в системе при эквимолярном соотношении исходных сульфидов образуется соединение состава SrIn₂S₄, кристаллизующееся в ромбической сингонии с параметрами элементарной ячейки (э. я.): *a* = 2.0901(7), *b* = 2.1120(7), *c* = 1.3020(6) нм, *V* = 5.7474 нм³, *Z* = 32, пр. гр. *Fddd* [3]. По данным [1], соединение $SrIn_2S_4$ плавится конгруэнтно при температуре 1343 К, между фазами $SrIn_2S_4$ и In_2S_3 образуется эвтектика состава 73 мол. % In₂S₃ с температурой плавления 1223 К. Сульфид стронция SrS плавится конгруэнтно при 2590 К, кристаллизуется в кубической сингонии типа NaCl с параметром э. я. a = 0.6015 нм, пр. гр. Fm3m, микротвердость H = 2070 МПа [4]. Температура конгруэнтного плавления In₂S₃, по данным разных авторов, составляет 1360 [5] и 1370 К [6].

Несмотря на многочисленные исследования, фазовая диаграмма системы In—S характеризуется противоречивой информацией по общему количеству фаз, их стехиометрии и полиморфизму [7–14].

Авторы [7, 8] указывают на низкотемпературную модификацию α -In₂S₃, кристаллизующуюся в кубической сингонии типа сфалерита с параметром э. я. *a* = 0.5360 нм, которая при 573 К переходит в β-модификацию тетрагональной сингонии с параметрами э. я. *a* = 0.762 и *c* = 3.232 нм (пр. гр. *I*4₁/*amd*), сохраняющуюся до 1023 К.

Согласно [9–11], In_2S_3 существует в низкотемпературной модификации тетрагональной сингонии, которая при 688 К распадается по твердофазной реакции $In_2S_3 \leftrightarrow L_{(Ha \text{ основе серы)}} + In_{3-x}S_4$. Высокотемпературная модификация In_2S_3 фиксируется от 1023 К до температуры плавления. Между этими модификациями существует широкогомогенное соединение $In_{3-x}S_4$ с кубической структурой типа шпинели, пр. гр. *Fd*3m.

В [12–14] описаны три полиморфные модификации In₂S₃. Низкотемпературная β-модификация кристаллизуется в тетрагональной сингонии с параметрами э. я. a = 0.76231(4) и c = 3.2358(3) нм, пр. гр. $I4_1/amd$. При 717 ± 5 К β-In₂S₃ переходит в среднетемпературную модификацию α -In₂S₃ кубической сингонии с параметром э. я. a == 1.08315(2) нм, пр. гр. $Fd\overline{3}$ m. При температуре 1084 К наблюдается переход α -In₂S₃ в высокотемпературную модификацию γ -In₂S₃ тригональной (гексагональной, по данным [13, 14]) сингонии с параметрами э. я. a = 0.38656(2), c = 0.91569(5) нм,

Рис. 1. Рентгенограммы образцов состава: $a - \alpha$ -In₂S₃ (кубическая сингония), $\delta - SrIn_2S_4$ (ромбическая сингония), закаленных от 1070 К (дифрактометр ДРОН-3М, Си K_{α} -излучение, Ni-фильтр).

 $\gamma = 120^{\circ}$, пр. гр. *P*3ml [12]. В настоящей работе использованы обозначения полиморфных модификаций In₂S₃, принятые в [12–14].

Цель настоящей работы — изучение равновесий и построение фазовой диаграммы системы $SrS-In_2S_3$.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для построения фазовой диаграммы системы $SrS-In_2S_3$ использовали бинарные сульфиды SrS и In_2S_3 , синтезированные по стандартным методикам [15–17] и идентифицированные при помощи химического и рентгенофазового анализа. Сульфид стронция был получен восстановлением порошка $SrSO_4$ марки "х. ч." в потоке водорода при 1070 К в течение 15–20 ч. Сульфид индия In_2S_3 синтезировали из соответствующего оксида в потоке H_2S и CS₂ при 1270 К. По данным рентгенофазового анализа (**РФА**), синтезированные сульфиды однофазны, в пределах погрешности химического анализа (±0.2 мас. %) имеют стехиометрический состав. Полученный In₂S₃ кристаллизуется в среднетемпературной α-модификации кубической сингонии (рис. 1а) с параметром э. я. *a* = = 1.0729 нм.

В системе $SrS-In_2S_3$ было синтезировано 14 образцов различного химического состава. Литые образцы получали плавлением в парах серы соответствующих смесей порошков исходных сульфидов, находящихся в графитовых тиглях. Для получения гомогенных образцов использовали метод отжига и закалки. Гомогенизирующий отжиг плавленых образцов проводили в вакуумированных до остаточного давления 0.13–0.013 Па и запаянных кварцевых ампулах по двум изотермическим сечениям при температурах 1070 и 870 К. Время отжига составляло 700 и 1000 ч соответственно. Температуру отжига в муфельной печи задавали с точностью ± 5 К при помощи терморегулятора "Термолюкс". На основании результатов микроструктурного (**MCA**) и рентгенофазового анализа образцов в процессе отжига сделан вывод о достижении равновесного состояния образцов.

Дифференциальный термический анализ (ДТА) проводили на установке с термопарой ВР 5/20 при скорости нагрева образца 15 град/мин и нахождении пробы в вакуумированной и запаянной кварцевой ампуле с погрешностью 0.4% от измеряемой величины. Визуальный термический анализ (ВТА) выполняли на термопаре ПП-1 при нахождении пробы в молибденовом тигле. Погрешность определения температуры составляла 0.7% от измеряемой величины. Порошковые рентгенографические данные получены на рентгеновском дифрактометре ДРОН-3М в CuK_{α} -излучении (Ni-фильтр). Параметры э. я. в отожженных образцах для веществ с кубической сингонией определены с точностью ± 0.0001 нм, а с более низкой сингонией — с точностью ± 0.001 нм с помошью программы POWDER2 и рентгенометрической картотеки PDF-2. МСА проводили на полированных и протравленных шлифах на металлографическом микроскопе МЕТАМ ЛВ 31, дюрометрический анализ (ДМА) - на микротвердомере ПМТ-3М методом Виккерса с погрешностью определения величины микротвердости 5-7%, нагрузка на индентор составляла 0.02 кг.

Графические построения выполнены с использованием программы Edstate 2D.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Фазовая диаграмма системы SrS-In₂S₃ (рис. 2) построена с применением комплекса методов физико-химического анализа и характеризуется наличием инконгруэнтно плавящегося соединения состава SrIn₂S₄, эвтектики между фазами $SrIn_2S_4$ и α - In_2S_3 , ограниченной области твердого раствора на основе α -In₂S₃. Вследствие полиморфизма полуторного сульфида индия на представленной диаграмме возможно существование узких областей гомогенности на основе β - и γ -In₂S₃, которые выделены на диаграмме пунктирными линиями. Наличие полиморфных превращений $\beta \leftrightarrow \alpha$ и $\alpha \leftrightarrow \gamma$ также должно привести к реализации трехфазных равновесий, что позволяет считать данный разрез вблизи координаты In₂S₃ неквазибинарным.

В системе $SrS-In_2S_3$ при эквимолярном соотношении исходных сульфидов образуется индивидуальное соединение состава $SrIn_2S_4$, что подтверждают данные рентгенофазового, микро-

структурного и дюрометрического анализа. На рентгенограмме (рис. 16) образцов состава 50 мол. % SrS-50 мол. % In_2S_3 , отожженных и закаленных от 870 и 1070 К, наблюдаются рефлексы фазы SrIn₂S₄, кристаллизующейся в ромбической сингонии (пр. гр. *Fddd*) с параметрами a = 2.090, b = 2.113, c = 1.302 нм (рис. 3). Рефлексов фаз SrS и α -In₂S₃, а также непроиндицированных рефлексов не обнаружено. На микроструктуре образца данного состава наблюдали однородное светло-серое поле одной фазы без посторонних включений.

В настоящей работе, в отличие [1], определен инконгруэнтный характер плавления соединения SrIn₂S₄, что подтверждается данными термического анализа, а также микроструктурой образцов из области существования фаз SrS и SrIn₂S₄. При MCA образца, содержащего 50 мол. % SrS и 50 мол. % In_2S_3 , охлажденного из расплава, обнаружены микровключения фазы SrS, которые исчезают при гомогенизирующем отжиге. На шлифах образцов из области 10-40 мол. % In₂S₃, отожженных при 870 и 1070 К, присутствуют овальные зерна коричневого цвета фазы SrS (H == 2070 МПа), расположенные в поле светло-серой фазы SrIn₂S₄ (*H* = 2650 МПа, (рис. 4)). На термограммах указанных выше образцов фиксируются остановки нагрева, что, как установлено визуально при проведении ВТА, вызвано интенсивным плавлением основной части пробы. Температура начала протекания реакции инконгруэнтного плавления проб образцов, содержащих 10–50 мол. % In_2S_3 , определенная по результатам ДТА, остается практически постоянной и составляет 1220 К. Все свойства (параметры э. я. и микротвердость) сопряженных фаз — SrS и SrIn₂S₄ — в области двухфазности остаются постоянными (рис. 3, 4).

Образование эвтектики между соединениями SrIn₂S₄ и α -In₂S₃ подтверждается характерным для эвтектических смесей видом дифференциальных термических кривых и микроструктурой образцов из области составов 55-90 мол. % In₂S₃. По данным МСА двухфазных образцов, состав эвтектической смеси приходится на 73 мол. % In₂S₃. Это подтверждается построением треугольника Таммана. Определенный нами состав эвтектической смеси в системе хорошо совпадает с литературными данными [1]. На шлифах образцов, содержащих от 55 до 70 мол. % In₂S₃, наблюдаются светло-серые зерна соединения SrIn₂S₄, микротвердость которых равна 2650 МПа (рис. 4), и эвтектика, представленная мелкодисперсной смесью кристаллов фаз, находящихся в равновесии. В образцах, содержащих 75-90 мол. % In₂S₃, присутствуют светло-желтые зерна твердого раствора на основе α -In₂S₃ (закалка от 1070 K), микротвердость которых равна 2620 МПа (рис. 4), и эвтек-

Рис. 2. Фазовая диаграмма системы SrS–In₂S₃: *1* – результаты ДТА, *2* – ВТА; состояние образцов по результатам РФА, МСА, ДМА: *3* – однофазный, *4* – двухфазный, *5* – данные [12].

тика. Пересечение кривых ликвидуса с линией эвтектики также происходит в интервале составов 72–74 мол. % In_2S_3 . Температура плавления эвтектики определена на основании результатов, полученных методами ДТА и ВТА, и составляет 1170 К.

Вблизи координаты In_2S_3 при температурах закалки образцов обнаружена узкая область существования ограниченного твердого раствора на основе α -модификации полуторного сульфида индия. По данным MCA и РФА, при 1070 К в α - In_2S_3 растворяется до 6 мол. % SrS. При этом, согласно соотношению радиусов катионов $r(Sr^{2+})/r(In^{3+}) = 0.120/0.092 = 1.3$ [18], с увеличением содержания SrS в α -In₂S₃ происходит закономерное увеличение параметров кубической э. я. α -In₂S₃ от a = 1.0729 до a = 1.0761 нм ($\Delta V = = +0.011$ нм³) (рис. 3) и уменьшение микротвердости образцов от 2800 до 2630 МПа ($\Delta H = -180$ МПа) (рис. 4) вследствие заполнения катионных вакансий в структуре α -In₂S₃. С понижением температуры растворимость SrS в α -In₂S₃ закономерно уменьшается и при 870 К составляет 4 мол. % SrS. Ограниченность твердого раствора подчиняется правилу Юм–Розери. Твердых растворов на основе β - и γ -In₂S₃ при указанных выше температурах отжига образцов не обнаружено. Для построения более точной картины фазовых равновесий

Рис. 3. Зависимость параметров э. я. фаз от состава образцов в системе $SrS-In_2S_3$, закаленных от 1070 K. SrS - кубическая структура типа NaCl, $SrIn_2S_4 -$ ромбическая структура типа EuGa₂S₄, α -In₂S₃ - кубическая структура типа шпинели.

Рис. 4. Зависимость состав-микротвердость образцов системы SrS-In₂S₃, закаленных от 1070 К. Нагрузка 0.020 кг.

вблизи координаты In_2S_3 и определения областей гомогенности на основе β - и γ - In_2S_3 требуются дополнительные исследования.

В системе также не обнаружено образования твердого раствора на основе SrS.

Ликвидус системы SrS— In_2S_3 состоит из трех ветвей первичной кристаллизации фаз SrS, SrIn₂S₄ и твердых растворов на основе α - и γ - In_2S_3 и построен по результатам методов ДТА и ВТА, а вблизи координаты SrS — по результатам ВТА. Температура ликвидуса определена методом ВТА. За данную величину принята температура полного плавления пробы. Экстраполяцией линии ликвидуса, нисходящей от координаты SrS, на экспериментальные данные определена фигуративная точка пересечения инконгруэнтной горизонтали с линией ликвидуса. В области концентраций 0—64 мол. % In_2S_3 линия ликвидуса соответствует первичному выделению кристаллов SrS, в интервале 64—73 мол. % In_2S_3 из расплава выделяются первичные кристаллы фазы SrIn₂S₄, а в области концентраций >73 мол. % In_2S_3 — кристаллы твердого раствора на основе In_2S_3 .

СПИСОК ЛИТЕРАТУРЫ

- 1. *Takizawa T., Kubo M., Hidaka C. //* J. Cryst. Growth. 2005. V. 275. P. 433.
- 2. *Moldovyan N.A.* // Inorg. Mater. 1992. V. 23. № 3. P. 670.
- Eisenmann B., Hofmann A. // Z. Kristallogr. 1991. V. 197. P. 167.
- 4. Кертман А.В., Краева Н.В. // Журн. неорган. химии. 2010. Т. 55. № 8. С. 1359. [Kertman A.V.,

Kraeva N.V. // Russ. J. Inorg. Chem. 2010. V. 55. № 8. P. 1283].

- Stubbs M.X., Schule Y.A., Tornpson A.Y. et al. // J. Am. Chem. Soc. 1952. V. 74. P. 1441.
- Кертман А.В. // Журн. неорган. химии. 2017. Т. 62. № 9. С. 1249. doi 10.7868/ S0044457X17090161 [Kertman A.V. // Russ. J. Inorg. Chem. 2017. V. 62. № 9. Р. 1240. doi 10.1134/S003602361709008X].
- Медведева З.С. Халькогениды элементов III Б подгруппы периодической системы. М.: Наука, 1968. 216 с.
- Steigmann G.A., Sutherland H.H., Goodyear J. // Acta Crystallogr. 1965. V. 19. P. 967.
- 9. Косяков А.В., Завражнов А.Ю., Наумов А.В. // Неорган. материалы. 2010. Т. 46. № 4. С. 398 [Kosyakov A.V., Zavrazhnov A.Yu., Naumov A.V. // Inorg. Mater. 2010. V. 46. № 4. Р. 343].
- Косяков А.В., Завражнов А.Ю., Наумов А.В., Сергеева А.В. // Вестник ВГУ. Серия: Химия, Биология, Фармация. 2009. № 2. С. 28.
- 11. Завражнов А.Ю., Наумов А.В., Аноров П.В. и др. // Неорган. материалы. 2006. Т. 42. № 12. С. 1420. [Zavrazhnov A. Yu., Naumov A.V., Anorov P.V. et al. // Inorg. Mater. 2006. V. 42. № 12. Р. 1294].

- Pistor P., Merino Alvarez J.M., Leon M. et al. // Acta Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 2016. V. 72. Pt. 3. P. 410. doi 10.1107/S2052520616007058
- Li T., Zhang S., Meng S. et al. // Royal Soc. Chem. 2017. V. 7. P. 6457. doi 10.1039/c6ra28560k
- Rodrigues-Hernandez P.E., Nieto-Zepeda K.E., Guillen-Cervantes A. et al. // Chalcogenide Letters. 2017. V. 14. № 8. P. 331.
- 15. Андреев О.В., Кертман А.В., Паршуков Н.Н. // Журн. неорган. химии. 1998. Т. 43. № 7. С. 1223 [Andreev O.V., Kertman A.V., Parshukov N.N. // Russ. J. Inorg. Chem. 1998. V. 43. № 7. Р. 1127].
- Русейкина А.В., Соловьев Л.А. // Журн. неорган. химин. 2016. Т. 61. № 4. С. 504. doi 10.7868/S0044457X16040164 [Ruseikina A.V., Solov'ev L.A. // Russ. J. Inorg. Chem. 2016. V. 61. № 4. P. 482. doi 10.1134/S0036023616040161].
- 17. Кертман А.В., Носов И.И., Андреев О.В. // Журн. неорган. химии. 2002. Т. 47. № 1. С. 132. [Kertman A.V., Nosov I.I., Andreev O.V. // Russ. J. Inorg. Chem. 2002. V. 47. № 1. Р. 126].
- 18. Shannon R.D. // Acta Crystallogr. 1976. V. 32A. P. 751.