## \_\_\_\_\_ КООРДИНАЦИОННЫЕ \_\_\_\_ СОЕДИНЕНИЯ

УДК 549.242+547.53.024+548.312.5

# СИНТЕЗ И СТРОЕНИЕ ДИКАРБОКСИЛАТОВ ТРИ-*ПАРА*-ТОЛИЛСУРЬМЫ (4-MeC<sub>6</sub>H<sub>4</sub>)<sub>3</sub>Sb[OC(O)R)]<sub>2</sub>, $R = C_6H_4(NO_2-3), C_6H_3(NO_2)_2-3,5, CH_2Br$

© 2019 г. В. В. Шарутин<sup>1, \*</sup>, О. К. Шарутина<sup>1</sup>, А. Н. Ефремов<sup>1</sup>

<sup>1</sup>Национальный исследовательский Южно-Уральский государственный университет, Россия, 454080 Челябинск, пр-т Ленина, 76 \*e-mail: vvsharutin@rambler.ru Поступила в редакцию 02.11.2017 г. После доработки 07.12.2017 г. Принята к публикации 04.07.2018 г.

Взаимодействием три-*пара*-толилсурьмы (4-MeC<sub>6</sub>H<sub>4</sub>)<sub>3</sub>Sb с 3-нитробензойной, 3,5-динитробензойной и бромуксусной кислотами в присутствии *трет*-бутилгидропероксида получены *бис*(3-нитробензоат) три-*пара*-толилсурьмы (I), *бис*(3,5-динитробензоат) три-*пара*-толилсурьмы (II) и *бис*(бромацетат) три-*пара*-толилсурьмы (III), в которых атомы Sb имеют, по данным рентгеноструктурного анализа, координацию тригональной бипирамиды. Аксиальные углы OSbO составляют 171.83(12)°, 173.06(9)° и 173.82(10)°. Длины связей Sb–O и Sb–C равны 2.109(3), 2.123(3) и 2.095(4)–2.111(5) Å в I; 2.108(2), 2.133(3) и 2.095(4)–2.103(3) Å в II; 2.126(3), 2.133(3) и 2.102(3)–2.115(3) Å в III. Внутримолекулярные расстояния Sb…O (3.105(5), 3.168(5) в I; 3.060(4), 3.096(4) в II; 3.069(4), 3.100(4) Å в III) меньше суммы ван-дер-ваальсовых радиусов Sb и O на ~0.5 Å.

*Ключевые слова:* три-*пара*-толилсурьма, дикарбоксилаты, окислительный метод синтеза, рентгеноструктурный анализ

**DOI:** 10.1134/S0044457X19010197

### введение

Известно, что комплексы сурьмы, содержащие различные типы лигандов, например арильные и карбоксилатные, проявляют селективное действие против различных раковых клеток [1]. С целью поиска новых лекарств для лечения лейшманиоза был синтезирован широкий спектр дикарбоксилатов триарилсурьмы, апробирование которых для лечения этого заболевания было весьма успешным [2]. Поэтому изучение условий синтеза сурьмаорганических соединений с карбоксилатными и арильными лигандами весьма актуально.

Наиболее многочисленными среди сурьмаорганических соединений, содержащих карбоксилатные лиганды, являются дикарбоксилаты трифенилсурьмы, которые синтезируют по реакции окислительного присоединения из трифенилсурьмы и карбоновых кислот в присутствии пероксида водорода [3, 4]. Не менее эффективен окислительный метод синтеза указанных производных с использованием в качестве окислителя *трет*-бутилгидропероксида, когда целевой продукт выделяют с практически количественным выходом [5–9]. Отметим, что синтез подобных *пара*-толильных производных сурьмы описан лишь в работе [10]. В структурно изученных дикарбоксилатах трифенилсурьмы атомы Sb имеют, как правило, координацию тригональной бипирамиды с аксиально расположенными карбоксилатными лигандами [11]. В указанных соединениях карбоксилатные лиганды бидентатные. Расстояния между атомами сурьмы и карбонильного кислорода Sb···O(=C) меньше суммы их ван-дер-ваальсовых радиусов и составляют 2.664–3.231 Å. Особенности строения дикарбоксилатов три-*пара*-толилсурьмы практически не изучены.

В продолжение исследования строения дикарбоксилатов триарилсурьмы нами изучены молекулярные и кристаллические структуры *бис*(3нитробензоата) три-*пара*-толилсурьмы (**I**), *бис*(3,5динитробензоата) три-*пара*-толилсурьмы (**II**) и *бис*(бромацетата) три-*пара*-толилсурьмы (**III**).

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез *n*-Tol<sub>3</sub>Sb[OC(O)C<sub>6</sub>H<sub>4</sub>(NO<sub>2</sub>-3)]<sub>2</sub> (I). Смесь 100 мг (0.253 ммоль) *трис*(*пара*-толил)сурьмы, 85 мг (0.506 ммоль) 3-нитробензойной кислоты и 33 мг (0.253 ммоль) 70%-ного раствора гидропероксида третичного бутила в 30 мл диэтилового эфира выдерживали при 20°C 24 ч. После медленного удаления растворителя получили 180 мг (98%) бесцветных кристаллов с  $t_{\text{пл}} = 236^{\circ}$ С.

ИК-спектр (v, см<sup>-1</sup>): 3082, 3039, 2920, 2864, 1656, 1614, 1577, 1525, 1492, 1477, 1446, 1394, 1355, 1323, 1311, 1263, 1209, 1190, 1147, 1120, 1097, 1070, 1037, 1010, 927, 906, 817, 796, 783, 721, 698, 651, 584, 542, 486, 430.

|                                                                      | С      | Н     |
|----------------------------------------------------------------------|--------|-------|
| Найдено, %:                                                          | 57.64; | 4.12. |
| Для C <sub>35</sub> H <sub>29</sub> O <sub>8</sub> N <sub>2</sub> Sb |        |       |
| вычислено, %:                                                        | 57.79; | 4.03. |

Соединения II и III синтезировали по аналогичной методике.

Синтез *n*-Tol<sub>3</sub>Sb[OC(O)C<sub>6</sub>H<sub>3</sub>(NO<sub>2</sub>)<sub>2</sub>-3,5]<sub>2</sub> · **2PhH (II).** После перекристаллизации из смеси бензол-гептан (2 : 1) получили светло-желтые прозрачные кристаллы, выход 95%,  $t_{пл} = 246^{\circ}$ С.

ИК-спектр (v, см<sup>-1</sup>): 3099, 2924, 2858, 1664, 1625, 1593, 1541, 1494, 1458, 1396, 1344, 1330, 1303, 1271, 1180, 1089, 1072, 1014, 921, 819, 798, 785, 723, 586, 551, 486, 424.

|                                                                       | С      | Н     |
|-----------------------------------------------------------------------|--------|-------|
| Найдено, %:                                                           | 62.39; | 4.55. |
| Для C <sub>47</sub> H <sub>39</sub> N <sub>4</sub> O <sub>12</sub> Sb |        |       |
| вычислено, %:                                                         | 62.61; | 4.37. |

Синтез *n*-Tol<sub>3</sub>Sb[OC(O)CH<sub>2</sub>Br]<sub>2</sub> (III). Получили бесцветные кристаллы, выход 99%,  $t_{пл} = 141^{\circ}$ C.

ИК-спектр (v, см<sup>-1</sup>): 2958, 2918, 2864, 1681, 1653, 1589, 1490, 1398, 1361, 1311, 1273, 1211, 1184, 1130, 1066, 1043, 1014, 927, 896, 808, 796, 721, 682, 586, 565, 472, 426.

|                                                                       | С      | Н     |
|-----------------------------------------------------------------------|--------|-------|
| Найдено, %:                                                           | 44.63; | 3.88. |
| Для C <sub>25</sub> H <sub>25</sub> Br <sub>2</sub> O <sub>4</sub> Sb |        |       |
| вычислено, %:                                                         | 44.74; | 3.76. |

**ИК-спектры** соединений I–III записывали на ИК-спектрометре Shimadzu IRAffinity-1S в таблетках KBr в области  $4000-400 \text{ см}^{-1}$ .

РСА кристаллов I–III проводили на дифрактометре D8 QUEST фирмы Bruker (Мо $K_{\alpha}$ -излучение,  $\lambda = 0.71073$  Å, графитовый монохроматор) при 296(2) К. Сбор, редактирование данных и уточнение параметров элементарной ячейки, а также учет поглощения проведены по программам SMART и SAINT-Plus [12]. Все расчеты по определению и уточнению структур выполнены по программам SHELXL/PC [13], OLEX2 [14]. Структуры определены прямым методом и уточнены методом наименьших квадратов в анизотропном приближении для неводородных атомов. Кристаллографические данные и результаты уточнения структур I—III приведены в табл. 1, основные длины связей и валентные углы — в табл. 2. Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджском банке структурных данных (№ 1573014 (I), № 1573486 (II), № 1573780 (III); deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk/data\_request/cif).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Известно, что окисление трифенилстибина *трет*-бутилгидропероксидом в присутствии карбоновых кислот приводит к синтезу дикарбоксилатов трифенилсурьмы общей формулы Ph<sub>3</sub>Sb(O<sub>2</sub>CR)<sub>2</sub> [4].

Нами установлено, что реакции три-*пара*-толилсурьмы с такими карбоновыми кислотами, как 3-нитробензойная, 3,5-динитробензойная и бромуксусная, содержащими электроотрицательные заместители в радикале R, в присутствии *трет*-бутилгидропероксида (мольное отношение 1:2:1) протекают в эфире с образованием дикарбоксилатов три-*пара*-толилсурьмы, выделяемых с выходом до 99%.

 $n\text{-Tol}_{3}\text{Sb} + 2\text{HOC}(\text{O})\text{R} + mpem\text{-BuOOH} \rightarrow$   $\rightarrow n\text{-Tol}_{3}\text{Sb}[\text{OC}(\text{O})\text{R}]_{2} + \text{H}_{2}\text{O} + mpem\text{-BuOH},$   $\text{R} = \text{C}_{6}\text{H}_{4}(\text{NO}_{2}\text{-}3) \text{ (I)},$  $\text{C}_{6}\text{H}_{3}(\text{NO}_{2})_{2}\text{-}3,5 \text{ (II)}, \text{CH}_{2}\text{Br} \text{ (III)}.$ 

Таким образом, направление реакции окислительного присоединения не зависит от присутствия алкильных заместителей в арильных группах и природы карбоновой кислоты.

По данным РСА, в соединениях I–III атомы Sb находятся в экваториальной плоскости и имеют искаженную тригонально-бипирамидальную координацию с атомами кислорода карбоксилатных лигандов в аксиальных положениях (рис. 1-3). Суммы углов в экваториальной плоскости и аксиальные углы OSbO для молекул I-III составляют 360°, 359.9°, 360° и 171.83(12)°, 173.06(9)°, 173.82(10)° соответственно. Карбоксильные группы, имеющие относительно экваториального фрагмента Ar<sub>3</sub>Sb цис-ориентацию, в I, II, III лежат приблизительно в одной плоскости (двугранные углы между плоскостями карбоксильных групп равны соответственно 9.72°, 7.14°, 9.18°). Атом сурьмы отклонен от экваториальной плоскости в соединениях I, II, III на 0.011, 0.038, 0.003 Å соответственно. Плоскости ареновых колец карбоксилатных лигандов I и II практически компланарны плоскостям, в которых расположены карбоксигруппы (соответствующие углы равны

## СИНТЕЗ И СТРОЕНИЕ ДИКАРБОКСИЛАТОВ

| Характеристика                                                            | Ι                                                         | II                                                        | III                                                                      |
|---------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|
| Брутто-формула                                                            | $C_{35}H_{29}N_2O_8Sb$                                    | $C_{47}H_{39}N_4O_{12}Sb$                                 | $\mathrm{C}_{25}\mathrm{H}_{25}\mathrm{O}_{4}\mathrm{Br}_{2}\mathrm{Sb}$ |
| М                                                                         | 727.35                                                    | 973.57                                                    | 671.02                                                                   |
| Сингония                                                                  | Моноклинная                                               | Триклинная                                                | Триклинная                                                               |
| Пр. гр.                                                                   | $P2_1/n$                                                  | $P\overline{1}$                                           | PĪ                                                                       |
| Параметры решетки:                                                        |                                                           |                                                           |                                                                          |
| <i>a</i> , Å                                                              | 11.238(3)                                                 | 13.203(4)                                                 | 10.301(8)                                                                |
| b, Å                                                                      | 10.798(3)                                                 | 13.768(5)                                                 | 11.648(7)                                                                |
| <i>c</i> , Å                                                              | 26.767(7)                                                 | 14.996(5)                                                 | 13.008(9)                                                                |
| α, град                                                                   | 90                                                        | 98.39(2)                                                  | 106.07(4)                                                                |
| β, град                                                                   | 99.573(12)                                                | 100.632(12)                                               | 105.13(3)                                                                |
| ү, град                                                                   | 90                                                        | 106.960(12)                                               | 107.71(3)                                                                |
| <i>V</i> , Å <sup>3</sup>                                                 | 3203.1(16)                                                | 2504.1(15)                                                | 1323.3(16)                                                               |
| Ζ                                                                         | 4                                                         | 2                                                         | 2                                                                        |
| $\rho_{\rm выч}, r/c {\rm M}^3$                                           | 1.508                                                     | 1.291                                                     | 1.684                                                                    |
| $\mu_{Mo},{}^{_MM^{-1}}$                                                  | 0.917                                                     | 0.611                                                     | 4.089                                                                    |
| <i>F</i> (000)                                                            | 1472.0                                                    | 992.0                                                     | 656.0                                                                    |
| Размер кристалла, мм                                                      | $0.27 \times 0.18 \times 0.11$                            | $1.30\times0.76\times0.49$                                | $0.17\times0.17\times0.12$                                               |
| 20, град                                                                  | 5.66-66.50                                                | 5.86-71.94                                                | 5.9-70.1                                                                 |
| Интервалы индексов отражений                                              | $-16 \le h \le 12, -16 \le k \le 16, \\ -39 \le l \le 41$ | $-21 \le h \le 21, -22 \le k \le 22, \\ -24 \le l \le 24$ | $-16 \le h \le 16, -18 \le k \le 18, \\ -20 \le l \le 20$                |
| Всего отражений                                                           | 75218                                                     | 119275                                                    | 41779                                                                    |
| Независимых отражений                                                     | 10915<br>( $R_{\rm int} = 0.0547$ )                       | 23279<br>( $R_{int} = 0.2674$ )                           | 11367<br>( $R_{\rm int} = 0.0448$ )                                      |
| Число уточняемых параметров                                               | 419                                                       | 580                                                       | 293                                                                      |
| GOOF                                                                      | 1.188                                                     | 0.925                                                     | 1.042                                                                    |
| R-факторы<br>по $F^2 > 2\sigma(F^2)$                                      | $R_1 = 0.0697,$<br>$wR_2 = 0.1298$                        | $R_1 = 0.0861,$<br>$wR_2 = 0.1542$                        | $R_1 = 0.0565,$<br>$wR_2 = 0.1231$                                       |
| <i>R</i> -факторы по всем отражениям                                      | $R_1 = 0.1034,$<br>$wR_2 = 0.1409$                        | $R_1 = 0.3273,$<br>$wR_2 = 0.1945$                        | $R_1 = 0.0900,$<br>$wR_2 = 0.1355$                                       |
| Остаточная электронная плот-<br>ность (min/max), <i>e</i> /Å <sup>3</sup> | 0.99/-1.40                                                | 1.39/-0.84                                                | 2.57/-2.38                                                               |

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структур I-III

| 94                        | ШАРУ                    | ЛИНИДр.             |            |
|---------------------------|-------------------------|---------------------|------------|
| Габлица 2. Основные длины | связей и валентные углы | і в структурах I–II |            |
| Связь                     | $d, \mathrm{\AA}$       | Угол                | ω, град    |
| ·                         |                         | I                   |            |
| Sb(1)-O(1)                | 2.109(3)                | O(1)Sb(1)O(2)       | 171.83(12) |
| Sb(1)-O(2)                | 2.123(3)                | O(1)Sb(1)C(21)      | 90.94(15)  |
| Sb(1)-C(1)                | 2.095(4)                | C(1)Sb(1)O(1)       | 86.16(14)  |
| Sb(1)-C(21)               | 2.111(5)                | C(1)Sb(1)O(2)       | 85.84(14)  |
| Sb(1)-C(11)               | 2.101(5)                | C(1)Sb(1)C(21)      | 115.27(18) |
| O(1)-C(37)                | 1.308(5)                | C(1)Sb(1)C(11)      | 110.28(17) |
| O(3)-C(37)                | 1.210(6)                | C(21)Sb(1)O(2)      | 90.98(14)  |
| O(6)-N(1)                 | 1.225(7)                | C(11)Sb(1)O(1)      | 92.87(16)  |
| O(2)-C(47)                | 1.301(5)                | C(11)Sb(1)O(2)      | 91.46(15)  |
| O(4)-C(47)                | 1.217(5)                | C(11)Sb(1)C(21)     | 134.44(17) |
| O(7)-N(2)                 | 1.219(7)                | C(37)O(1)Sb(1)      | 120.7(3)   |
| , i                       |                         | İİ İ                |            |
| Sb(1)-O(2)                | 2.133(3)                | O(1)Sb(1)O(2)       | 173.06(9)  |
| Sb(1)-O(1)                | 2.108(2)                | C(1)Sb(1)O(2)       | 90.01(12)  |
| Sb(1)-C(1)                | 2.095(4)                | C(1)Sb(1)O(1)       | 92.76(11)  |
| Sb(1)-C(21)               | 2.097(3)                | C(1)Sb(1)C(21)      | 111.41(13) |
| Sb(1)-C(11)               | 2.103(3)                | C(1)Sb(1)C(11)      | 135.75(13) |
| O(2)-C(47)                | 1.297(4)                | C(21)Sb(1)O(2)      | 86.48(12)  |
| O(11)-N(3)                | 1.216(5)                | C(21)Sb(1)O(1)      | 86.58(12)  |
| O(12)-N(3)                | 1.231(5)                | C(21)Sb(1)C(11)     | 112.74(13) |
| O(9)-N(4)                 | 1.205(7)                | C(11)Sb(1)O(2)      | 89.76(12)  |
| O(4)-C(47)                | 1.218(4)                | C(11)Sb(1)O(1)      | 92.68(12)  |
| O(1)-C(37)                | 1.306(4)                | C(47)O(2)Sb(1)      | 117.9(2)   |
| O(3)-C(37)                | 1.207(4)                | C(37)O(1)Sb(1)      | 116.9(2)   |
| O(5)-N(1)                 | 1.203(6)                | O(5)N(1)O(6)        | 123.8(5)   |
| O(8)-N(2)                 | 1.210(6)                | O(7)N(2)O(8)        | 124.2(4)   |
| ·                         |                         | III                 |            |
| Sb(1)-O(1)                | 2.133(3)                | O(2)Sb(1)O(1)       | 173.82(10) |
| Sb(1)-O(2)                | 2.126(3)                | C(1)Sb(1)O(1)       | 91.57(13)  |
| Sb(1)-C(1)                | 2.102(3)                | C(1)Sb(1)O(2)       | 92.65(13)  |
| Sb(1)-C(21)               | 2.114(4)                | C(1)Sb(1)C(21)      | 110.98(13) |
| Sb(1)-C(11)               | 2.115(3)                | C(1)Sb(1)C(11)      | 134.47(14) |
| O(1)-C(31)                | 1.301(4)                | C(21)Sb(1)O(1)      | 86.92(12)  |
| O(2)-C(33)                | 1.297(5)                | C(21)Sb(1)O(2)      | 87.35(13)  |
| O(4)-C(33)                | 1.215(5)                | C(21)Sb(1)C(11)     | 114.56(14) |
| O(3)-C(31)                | 1.210(4)                | C(11)Sb(1)O(1)      | 90.59(13)  |

T

6.84°, 11.95° и 3.19°, 11.87°), что допускает сопряжение между ними. О наличии *p*-π-сопряжения свидетельствует уменьшение длины связей С-С(ОО) (1.400(7), 1.503(8) и 1.483(5), 1.492(6) Å в I и II соответственно) по сравнению со значениями этих связей в дикарбоксилатах триарилсурьмы, где сопряжение отсутствует (1.522(6)-1.547(7) Å [11]). Геометрические параметры молекул I-III несколько различаются длинами связей Sb-C и Sb-O

1.925(4)

1.927(5)

C(32) - Br(1)

C(34) - Br(2)

(2.095(4)-2.111(3) и 2.109(3), 2.123(3) Å для I, 2.095(4)-2.103(3) и 2.108(2), 2.133(3) Å для II, 2.102(3)-2.115(3) и 2.126(2), 2.133(3) Å для III).

89.68(13)

116.2(2)

Как и в других дикарбоксилатах трифенилсурьмы, в I-III имеют место внутримолекулярные контакты Sb…O(=C). Соответствующие расстояния составляют 3.105(7), 3.168(8) Å для I, 3.060(7), 3.096(7) Å для II, 3.069(7), 3.100(7) Å для III и сопоставимы с аналогичными рассто-

C(11)Sb(1)O(2)

C(31)O(1)Sb(1)



Рис. 1. Общий вид молекулы I (атомы водорода не показаны).



Рис. 2. Общий вид молекулы II (сольватные молекулы бензола и атомы водорода не показаны).

яниями в  $Ph_3Sb[OC(O)CH_3]_2$  (2.779 Å [15]),  $Ph_3Sb[OC(O)C_6H_5]_2$  (2.70 и 2.81 Å [16]) и  $Ph_3Sb[OC(O)C_4H_3S-2]_2$  (2.744 и 2.949 Å [17]). Поскольку карбоксилатные лиганды в I–III имеют *цис*-ориентацию относительно экваториального фрагмента  $Ar_3Sb$ , один из экваториальных углов CSbC со стороны контактов Sb···O(=C) значительно увеличен (134.44(17)°, 135.75(13)°, 134.47(14)° в I, II, III соответственно), что приводит к уменьшению двух других экваториальных углов. Плоские фенильные кольца C(11)–C(16), C(21)–C(26), C(31)–C(36) в структурах I–III развернуты вокруг связей Sb–C таким образом, чтобы свести к минимуму внутри- и межмолекулярные контакты.



Рис. 3. Общий вид молекулы III (атомы водорода не показаны).

### БЛАГОДАРНОСТЬ

Работа выполнена при финансовой поддержке в рамках государственного задания № 4.6151.2017/8.9.

#### СПИСОК ЛИТЕРАТУРЫ

- Hadjikakou S.K., Ozturk I.I., Banti C.N. et al. // J. Inorg. Biochem. 2015. V. 153. P. 293.
- Ali M.I., Rauf M.K., Badshah A. et al. // J. Shem. Soc., Dalton Trans. 2013. V. 42. P. 16733.
- 3. *Thepe T.C., Garascia R.J., Selvoski M.A., Patel A.N.* // Ohio J. Sci. 1977. V. 77. № 3. P. 134.
- Шарутин В.В., Сенчурин В.С. Именные реакции в химии элементоорганических соединений. Челябинск: Издат. центр ЮУрГУ, 2011. 427 с.
- Шарутин В.В., Шарутина О.К., Котляров А.Р. // Журн. неорган. химии. 2015. Т. 60. № 4. С. 525 [Sharutin V.V., Sharutina O.K., Kotlyarov A.R. // Russ. J. Inorg. Chem. 2015. V. 60. № 4. Р. 525].
- 6. Шарутин В.В., Шарутина О.К., Сенчурин В.С. // Журн. неорган. химии. 2015. Т. 60. № 9. С. 1200 [Sharutin V.V., Sharutina O.K., Senchurin V.S. // Russ. J. Inorg. Chem. 2015. V. 60. № 9. Р. 1093].
- 7. Шарутин В.В., Шарутина О.К. // Изв. РАН. Сер. хим. 2017. № 4. С. 707 [Sharutin V.V., Sharutina O.K. // Russ. Chem. Bull. V. 66. № 4. Р. 707].
- Шарутин В.В., Шарутина О.К., Ефремов А.Н. // Журн. неорган. химии. 2016. Т. 61. № 1. С. 46 [Sha-

*rutin V.V., Sharutina O.K., Efremov A.N.* // Russ. J. Inorg. Chem. 2016. V. 61. № 1. P. 43].

- 9. Шарутин В.В., Шарутина О.К. // Журн. общ. химии. 2016. Т. 86. № 8. С. 1366 [Sharutin V.V., Sharutina O.K. // Russ. J. Gen. Chem. 2016. V. 86. № 8. P. 1902].
- 10. Шарутин В.В., Шарутина О.К., Пакусина А.П. и др. // Коорд. химия. 2003. Т. 29. № 10. С. 750 [Sharutin V.V., Sharutina O.K., Pakusina A.P. et al. // Russ. J. Coord. Chem. 2017. V. 43. № 11. Р. 780].
- Шарутина О.К., Шарутин В.В. Молекулярные структуры органических соединений сурьмы(V). Челябинск: Издат. центр ЮУрГУ, 2012. 395 с.
- Bruker (1998). SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1998). SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures From Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339.
- 15. Sowerby D.B. // J. Chem. Res., Synop. 1979. № 3. P. 80.
- Лебедев В.А., Бочкова Р.И., Кузубова Л.Ф. и др. // Докл. АН СССР. 1982. Т. 265. № 2. С. 332.
- Domagala M., Huber F., Preut H. // Z. Anorg. Allg. Chem. 1989. B. 574. S. 130.