_____ КООРДИНАЦИОННЫЕ ___ СОЕДИНЕНИЯ

УДК 546.562'271:541.49

СИНТЕЗ И СТРОЕНИЕ МОНОЯДЕРНЫХ КОМПЛЕКСОВ МЕДИ(II) С АЗАГЕТЕРОЦИКЛИЧЕСКИМИ ЛИГАНДАМИ L (L = Bipy, BPA, Phen) И ДОДЕКАГИДРО-*КЛОЗО*-ДОДЕКАБОРАТНЫМ АНИОНОМ [B₁₂H₁₂]²⁻

© 2019 г. Е. А. Малинина¹, И. К. Кочнева², В. В. Авдеева^{1, *}, Л. В. Гоева¹, А. С. Кубасов¹, Н. Т. Кузнецов¹

¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия ²Федеральная служба по интеллектуальной собственности, Федеральный институт промышленной собственности, Бережковская наб., 30, корп. 1, Москва, 125993 Россия

> **E-mail: avdeeva.varvara@mail.ru* Поступила в редакцию 01.04.2019 г. После доработки 16.04.2019 г. Принята к публикации 13.05.2019 г.

Систематическое изучение реакций комплексообразования меди(I)/меди(II) с азагетероциклическими лигандами и кластерными анионами бора $[B_nH_n]^{2-}$ (n = 10, 12) свидетельствует о возможности синтеза моно-, би-, три-, тетраядерных и полимерных комплексных соединений меди(II). В настоящей работе изучены реакции комплексообразования меди(I) с анионом $[B_{12}H_{12}]^{2-}$ и азагетероциклическими лигандами L (L = Bipy, BPA) на воздухе в органических растворителях (CH₃CN и DMF). В этих условиях происходит окисление меди(I) и в качестве конечных продуктов образуются моноядерные комплексы меди(II) с лигандами L и анионом $[B_{12}H_{12}]^{2-}$ различного состава и строения. Комплексы меди(II) получены также в системе медь(I)/серебро(I). Показано влияние условий синтеза (природа исходного *клозо*-додекабората, источник меди(I), наличие соединений серебра(I) в реакционном растворе) на состав и строение образующихся комплексов. Продукты реакций идентифицированы с помощью элементного и рентгеноструктурного анализа, а также ИК-спектроскопии. Методом PCA установлено строение комплексов [Ag(Bipy)_]]NO₃, [Cu(BPA)₂CI]Cl · DMF, [Cu(BPA)₂CI]B₁₂H₁₂] · DMF, [Cu(BPA)₂][B₁₂H₁₂] · DMF, [Cu(BPA)₂][B₁₂H₁₂] (CCDC № 1899332–1899337 соответственно).

Ключевые слова: комплексообразование, кластерные анионы бора, окислительно-восстановительные реакции

DOI: 10.1134/S0044457X19100088

введение

Кластерные анионы бора $[B_nH_n]^{2-}$ (n = 10, 12) [1–3] образуют самостоятельный раздел химии бора. Изучение их свойств в процессах комплексообразования показывает, что в зависимости от условий проведения реакций, выбранного металла-комплексообразователя и лигандов кластерные анионы бора способны выступать в качестве внутрисферных лигандов [4–6], противоионов, а также участвовать в реакциях, сопровождающих комплексообразование с металлами [7, 8]: окислительно-восстановительных и реакциях замещения экзополиэдрических атомов водорода на различные функциональные группы.

Реакционная способность *клозо*-декаборатного аниона $[B_{10}H_{10}]^{2-}$ в реакциях комплексообразования меди(II) изучена достаточно подробно. Известно, что в реакциях комплексообразования в присутствии солей меди(II) анион $[B_{10}H_{10}]^{2-}$ участвует в окислительно-восстановительной реакции, приводя к восстановлению меди(II) до комплексов меди(I) [9]. Если в реакционном растворе присутствуют лиганды, экранирующие атом меди(II) от восстановительного действия кластерного аниона бора, то могут образоваться катионные комплексные соединения меди(II) с лигандами и *клозо*-декаборатным анионом в качестве противоиона [10–13]. Кроме того, реакционноспособный *клозо*-декаборатный анион в некоторых случаях приводит к получению замещенных производных [$B_{10}H_9L$]⁻ с молекулой органического лиганда L в качестве заместителя [11, 12].

Поведение менее реакционноспособного аниона $[B_{12}H_{12}]^{2-}$ в реакциях комплексообразования меди(II) практически не изучено. В литературе имеются данные о синтезе моноядерных аквакомплексов меди(II), стабилизированных кластерным анионом бора $[B_{12}H_{12}]^{2-}$, состава $[Cu(H_2O)_{5.5}][B_{12}H_{12}] \cdot 2.5H_2O$ и $[Cu(H_2O)_6](H_3O)_2[B_{12}H_{12}]_2 \cdot 6H_2O$ (смешанокатионный комплекс) [14]; комплексные соединения были получены при взаимодействии солей меди(II) с кислотой $(H_3O)_2[B_{12}H_{12}]$. Кроме того, описан синтез и строение полимерного комплекса меди(II) с аминогуанидином $[Cu_{0.61}H_{0.78}Agu_2][B_{12}H_{12}]$ [15]. Структура построена из комплекса $[Cu(Agu)_2[B_{12}H_{12}]]_n$ и соли $(HAgu)_2[B_{12}H_{12}]_n$, так что это соединение можно рассматривать как результат изоморфного замещения ионов H⁺ на ион Cu²⁺.

Впервые для кластерных анионов бора, например $[B_{12}H_{12}]^{2-}$, удалось выделить трехъядерный комплекс меди(II) с 2,2'-бипиридилом состава $[Cu_3(Bipy)_6(CO_3)][B_{12}H_{12}]_2$ [16]. Комплекс получен в результате окислительно-восстановительной реакции при взаимодействии $[Ag_2[B_{12}H_{12}]]$ с CuCl в присутствии Вipy, показано его строение и описаны магнитные свойства.

В [17] изучены окислительно-восстановительные процессы, протекающие в системе $Cu^{I,II}/[B_{12}H_{12}]^{2-}/Phen в органических растворите$ лях в присутствии 1,10-фенантролина (Phen), рассмотрены методы получения и идентификация комплексов Cu(I), Cu(II) и смешанокатионного комплекса меди(I)/меди(II). Среди комплексов меди(II) описан тетраядерный комплекс $[Cu_4^{II}(OH)_4(Phen)_4(DMF)_2][B_{12}H_{12}]_2$, полимерный комплекс $[[Cu^{II}(Phen)_2][B_{12}H_{12}]]_n$ и моноядерный комплекс [Cu^{II}(Phen)₂Cl]₂[B₁₂H₁₂] [17].

В настоящей работе исследованы окислительно-восстановительные процессы, протекающие в системе Cu/ $[B_{12}H_{12}]^{2-}/L$ /solv (L = BPA, Bipy) в присутствии 2,2'-бипиридила (**Bipy**) и 2,2'-бипиридиламина (**BPA**), получены и охарактеризованы моноядерные комплексы меди(II) различного состава и строения с лигандами L и *клозо*-додекаборатным анионом в качестве противоиона.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Додекагидро-*клозо*-додекаборат триэтиламмония (Et₃NH)₂[B₁₂H₁₂] получали пиролизом раствора декаборана в триэтиламиноборане по методике [18].

Клозо-додекаборат цезия получали кипячением (Et₃NH)₂[B₁₂H₁₂] в водном растворе гидроксида цезия до полного удаления триэтиламина.

Клозо-додекабораты с органическими катионами (Bu_3NH^+ , Ph_4P^+) синтезировали по обменной реакции между $Cs_2[B_{12}H_{12}]$ и соответствующими галогенидами.

Додекагидро-клозо-додекаборатокупрат(I) тетрафенилфосфония (C₆H₅)₄P[Cu[B₁₂H₁₂]] получали при нагревании водной суспензии $(Ph_4P)_2B_{12}H_{12}$ и Cu_2SO_4 до 80°C в присутствии Na_2SO_3 [19].

Додекагидро-клозо-додекаборатодисеребро(I) [Ag₂[B₁₂H₁₂]] и додекагидро-клозо-додекаборатоаргентат цезия Cs[Ag[B₁₂H₁₂]] получали по методике [20] при соотношении $[B_{12}H_{12}]^{2-}$: Ag⁺ = 1 : 2 или 1 : 1 соответственно.

Нитрато-ди(2,2'-бипиридил)серебро(I) {[Ag(Bipy)₂] NO₃}_n (1) получали в результате взаимодействия раствора нитрата серебра(I) (0.1 моль) в ацетонитриле (10 мл) с раствором Віру (0.2 моль) в том же растворителе (10 мл). Через 15 мин после сливания растворов реагентов наблюдали образование белого осадка, который отфильтровывали, промывали водой, ацетонитрилом (2 × 10 мл) и высушивали на воздухе. Перекристаллизация конечного продукта из ацетонитрила привела к получению монокристаллов соединения 1. Выход составил ~70%. Монокристалл 1, пригодный для PCA, получен перекристаллизацией из DMF.

[Сu(Bipy)₂Cl][B₁₂H₁₂] (3). К раствору (Bu₃NH)₂[B₁₂H₁₂] (1 ммоль) в DMF (10 мл) добавляли CuCl (1 ммоль) и Bipy (2 ммоль), растворенные в 10 мл DMF каждый. В течение суток окраска реакционного раствора менялась с красной на зеленую. Через несколько дней из реакционного раствора выпадали кристаллы соединения **3** (зеленого цвета), которые отфильтровывали, промывали на фильтре водой (2×5 мл) и высушивали на воздухе. Непосредственно из реакционной массы был отобран кристалл **3** · 2DMF, подходящий для PCA. Выход составил ~60% по бору.

[Cu(BPA)₂(DMF)₂][B₁₂H₁₂] (4). Методика 1 (селективное получение). K раствору Cs[Ag[B₁₂H₁₂]] (1 ммоль) в DMF (10 мл) добавляли CuCl (1 ммоль) и BPA (2 ммоль), растворенные в 10 мл DMF каждый. При смешивании компонентов наблюдали постепенное изменение окраски реакционного раствора с красной на зеленую. В течение 4-5 ч наблюдали образование кристаллического осадка зеленого цвета, который отфильтровывали, промывали на фильтре водой (2 × 5 мл) и высушивали на воздухе. В ходе реакции соединение 4 образуется селективно. Методом РСА установлено строение монокристалла 4 · DMF, выбранного непосредственно из реакционного раствора. Выход составил ~50%.

Методика 2 (совместно с $[Cu(BPA)(CO_3)]_2 \cdot 2H_2O$). К раствору $[Ag_2[B_{12}H_{12}]]$ (1 ммоль) в DMF (10 мл) добавляли CuCl (2 ммоль) и BPA (4 ммоль), растворенные в 10 мл ацетонитрила каждый. Окраска реакционного раствора постепенно менялась с красной на зеленую, в течение суток наблюдалось образование кристаллов. Образующийся кристаллический осадок отфильтровывали, промывали на фильтре водой (2 × 5 мл) и высушивали на воздухе. В ходе реакции образует-

Nº	Peareur	Растропители	Продукт
реакции	rearent	гастворитель	продукі
	L	= Bipy, BPA	
1	$(Bu_3NH)_2[B_{12}H_{12}] + CuCl + 2Bipy$	DMF	$[Cu(Bipy)_2Cl]_2[B_{12}H_{12}]$ (3)
2	$(Bu_3NH)_2[B_{12}H_{12}] + CuCl + 2BPA$	DMF	$[Cu(BPA)_2(DMF)_2][B_{12}H_{12}](4) +$
			+ [[Cu(BPA)Cl]Cl (2)
3	$Ph_4P[Cu[B_{12}H_{12}]] + 2BPA$	DMF или CH ₃ CN	$\{[Cu(BPA)_2][B_{12}H_{12}]\}_n$ (5)
4	$[Ag_2[B_{12}H_{12}]] + 2CuCl + 4BPA$	DMF/CH ₃ CN	$4 + [Cu(BPA)(CO_3)]_2 [11]$
5	$Cs[Ag[B_{12}H_{12}]] + CuCl + 2BPA$	DMF	4
6	$Ph_4P[Cu[B_{12}H_{12}]] + [Ag(Bipy)_2]NO_3(1)$	DMF/CH ₃ CN	$\{[Cu(Bipy)_2]_3(CO_3)\}[B_{12}H_{12}](7) +$
			+ $[Cu(Bipy)(DMF)_4][B_{12}H_{12}]$ (6)
L = Phen (данные [17])			
7	$Cs[Ag[B_{12}H_{12}]] + CuCl + 2Phen$	DMF	$[Cu_4(OH)_4(Phen)_4(DMF)_2][B_{12}H_{12}] +$
			+ {[Cu(Phen) ₂][$B_{12}H_{12}$]} _n
8	$Ph_4P[Cu[B_{12}H_{12}]] + 2Phen$	CH ₃ CN/CH ₂ I ₂	$[Cu^{II}(Phen)_3][Cu^{I}(Phen)_2]_2[B_{12}H_{12}]_2 +$
			+ $[Cu(Phen)_3][B_{12}H_{12}]$
9	$Ph_4P[Cu[B_{12}H_{12}]] + [Cu_2(Phen)_4(CO_3)]Cl_2$	CH ₃ CN/CH ₂ I ₂	$[Cu(Phen)_2Cl]_2[B_{12}H_{12}]$

Таблица 1. Схемы получения комплексов Cu(II) с анионом $[B_{12}H_{12}]^{2-}$ и L (L = Bipy, BPA, Phen)

ся смесь $[Cu(BPA)(CO_3)]_2 \cdot 2H_2O$ (темно-синие кристаллы, параметры ячейки которых соответствуют параметрам известного соединения, описанного в [11]) и комплекса **4** (зеленые кристаллы), которые разделяли механически для проведения рентгеноструктурных экспериментов. Выход соединения **4** составил ~55% по бору.

Методика 3 (совместно с [Cu(BPA)₂Cl]Cl · DMF (2)). К раствору (Bu₃NH)₂[B₁₂H₁₂] в DMF (10 мл) добавляли CuCl (2 ммоль) и BPA (4 ммоль), растворенные в 10 мл DMF каждый. Окраска реакционного раствора постепенно менялась с красной на зеленую. В течение суток наблюдалось образование кристаллов зеленого цвета, которые представляют собой смесь кристаллов 4 и [Cu(BPA)₂Cl]Cl · DMF ($2 \cdot$ DMF). Образующийся кристаллический осадок отфильтровывали, промывали на фильтре водой (2×5 мл) и высушивали на воздухе. Для проведения PCA кристаллы разделяли механически. Выход 2 составил ~65%.

 $[Cu(BPA)_2][B_{12}H_{12}]_n$ (5). Κ раствору Ph₄P[Cu[B₁₂H₁₂]] (1 ммоль) в DMF или CH₃CN (10 мл) приливали раствор ВРА (2 ммоль) в том же растворителе (10 мл). Окраска реакционного раствора постепенно менялась на зеленую. Из реакционного раствора в течение суток наблюдали образование кристаллов зеленого цвета. Полученный кристаллический осадок 5 отфильтровывали, промывали на фильтре водой (2 × 5 мл) и высушивали на воздухе. Монокристалл 5, подходящий для РСА, был выбран непосредственно из реакционного раствора. По данной методике соединение 5 образуется селективно с выходом 82%.

 $[Cu(Bipy)(DMF)_4][B_{12}H_{12}]$ (6). K раствору Ph₄P[Cu[B₁₂H₁₂]] (1 ммоль) в DMF (10 мл) приливали {[Ag(Bipy)₂]NO₃}_{*n*} (1 ммоль) в DMF (10 мл). Окраска реакционного раствора постепенно менялась на зеленую. Образующийся в течение 2-3 сут кристаллический осадок отфильтровывали, промывали на фильтре водой (2 × 5 мл) и высушивали на воздухе. В ходе реакции образуется смесь продуктов **6** (зеленые кристаллы) и {[Cu(Bipy)₂]₃ (CO₃)}[B₁₂H₁₂] (7) (голубые кристаллы) [16]. Монокристаллы 6 и 7, подходящие для РСА, отобрали механически непосредственно из реакционного раствора. Параметры ячейки кристаллов 7 совпали с {[Cu(Bipy)₂]₃(CO₃)}[B₁₂H₁₂], который описан нами ранее [16]. Выход соединения 6 составил <50% по бору.

Реагенты и продукты проведенных реакций представлены в табл. 1.

Элементный анализ на углерод, водород и азот осуществляли на автоматическом газовом анализаторе CHNS-3 FA 1108 Elemental Analyser (Carlo Erba). Перед проведением анализа образцы высушивали до постоянной массы. Бор определяли методом атомно-абсорбционной спектроскопии на спектрофотометре Perkin–Elmer (модель 2100, США) с электротермическим атомизатором HGA-700 [21]. Определение Си проводили на приборе AAS-303 в пламени ацетилен-воздух. Данные элементного анализа представлены в табл. 2.

ИК-спектры записывали на ИК-Фурье-спектрометре ИНФРАЛЮМ ФТ-02 (НПФ АП "Люмекс") в области 4000–400 см⁻¹ с разрешением 1 см⁻¹. Образцы готовили в виде суспензии исследуемого вещества в вазелиновом масле (Aldrich). Данные ИК-спектроскопии представлены в табл. 3.

№ комплекса	Cu	С	Н	Ν	В			
	найдено/вычислено							
1	22.28/22.37(Ag)	49.14/49.81	3.28/3.34	14.44/14.52	—			
3	16.70/16.68	40.98/41.01	5.84/5.82	11.01/11.04	17.05/17.04			
4	9.22/9.18	45.11/45.13	6.13/6.12	16.15/16.19	18.78/18.74			
5	11.80/11.60	43.76/43.85	5.43/5.52	15.27/15.34	23.60/23.68			
6	9.74/9.72	40.42/40.41	7.37/7.40	12.83/12.85	19.82/19.84			

Таблица 2. Данные элементного анализа синтезированных комплексов, %

Таблица 3. Максимумы некоторых полос поглощения в ИК-спектрах синтезированных комплексов (v, см⁻¹)

№ комплекса	$\nu(CH)_{Bipy}$	$\nu(NH)_{BPA}$	v(BH)	ν(C≡N)	$\nu(C=O)_{DMF}$	δ(BBH)	π(CH) _{цикла}
3 ⋅ 2DMF	3058	—	2474	2250	1675	1059	771
4 ⋅ DMF	_	3244, 3206, 3137	2471	_	1669, 1628	1058	770
5	_	3247, 3200, 3134	2468	_	—	1056	770
6	3080	—	2455	2250	1670	1058	773

Спектры КР записывали на ИК-спектрофотометре VERTEX 70 с приставкой RAM II FT-Raman module.

РСА. Набор дифракционных отражений для кристаллов 1-6 получен на автоматическом дифрактометре Bruker APEX2 CCD (λ Mo K_{α} , графитовый монохроматор, ω-φ-сканирование). Структуры расшифрованы прямым методом с последующим расчетом разностных синтезов Фурье. Неводородные атомы уточнены в анизотропном приближении. Все атомы водорода в структурах $3 \cdot 2DMF$ и 5, а также атомы водорода, связанные с атомами бора, ВРА и некоординированной молекулой DMF в структуре 4 · DMF уточнены независимо в изотропном приближении; остальные атомы водорода уточнены по модели наездника с тепловыми параметрами $U(H) = 1.2U_{_{ЭКВ}}$ $(1.5U_{3KB}$ для CH₃-групп) соответствующих неводородных атомов.

В элементарной ячейке 1 содержится одна молекула бипиридила, координированная атомом серебра, и два аниона NO_3^- с заселенностью 0.5. Один из анионов уточнен в модели "жесткого тела", второй – с ограничениями по всем длинам связей и заданием плоской геометрии. Кроме того, принято, что атомы O(1), O(2), O(3) и N(3) имеют одинаковые $U_{\text{аниз}}$. В структуре **3** · 2DMF две молекулы DMF разупорядочены по двум ориентациям каждая, различающимся поворотом вдоль двойной оси, проходящей через атомы O, N. Длина связи O(1)-C(11А) зафиксирована. Принято, что атомы С(11), С(11А), С(12), С(12А) и С(13), C(13A) попарно имеют одинаковые $U_{a\mu\mu3}$. В структуре **6** одна молекула DMF разупорядочена аналогично таковым в 3, принято, что атомы С(17), С(17А), С(18), С(18А) и С(19), С(19А) попарно имеют одинаковые U_{аниз}. Несколько отражений с большим расхождением между наблюдаемой и вычисленной структурными амплитудами в 1, $2 \cdot 2DMF$, $3 \cdot 2DMF$ и 6 исключены из уточнения.

При сборе и обработке массива отражений использованы программы APEX2, SAINT и SAD-ABS [22]. Структура расшифрована и уточнена с помощью программ комплекса OLEX2 [23].

Основные кристаллографические данные, параметры эксперимента и характеристики уточнения структуры приведены в табл. 4, некоторые длины связей и валентные углы в комплексах 1-6- в табл. 5 и 6. Кристаллографические данные для структур 1-6 депонированы в Кембриджском банке структурных данных (КБСД) (ССDС № 1899332–1899337). РСА проведен в ЦКП ИОНХ РАН в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Изучение реакций комплексообразования меди(I) и меди(II) с *клозо*-додекаборатным анионом в присутствии органических лигандов L на воздухе в органических растворителях при соотношении реагентов Cu : L = 1 : 2 показывает, что наряду с моноядерными комплексами меди(II) могут образовываться би, три- и тетраядерные комплексные соединения меди(II). Схемы взаимодействий, которые протекают в системах Cu/[B₁₂H₁₂]^{2-/} L/solv, изученных в настоящей работе (L = Bipy, BPA) и описанных в литературе (L = Phen), представлены в табл. 1.

Для систем, содержащих Phen, ранее [17] было установлено, что взаимодействие Cu(I) с L в присутствии $[B_{12}H_{12}]^{2-}$ в DMF на воздухе сопровождается окислением меди(I) до меди(II), а в качестве основных продуктов образуются тетраядерный и полимерный комплексы меди(II) (табл. 1, реакция 7). При проведении реакции в системе

ЖУР	Соединение	1	2 · DMF	3 · 2DMF	4 · DMF	w	6
РНАЛ	Брутто-формула	$c_{20}H_{16}AgN_6O_6$	$C_{23}H_{25}Cl_2CuN_7O$	$C_{46}H_{58}B_{12}Cl_2Cu_2N_{10}O_2$	$C_{16}H_{29}B_6Cu_{0.5}N_5O_2$	$C_{20}H_{30}B_{12}CuN_6$	$C_{22}H_{48}B_{12}CuN_6O_4$
HE	FW	544.25	549.95	1110.93	420.16	547.94	653.92
οργ	T, K	294(2)	296(2)	150(2)	150(2)	150(2)	297(2)
чни	Сингония	Моноклинная	Триклинная	Моноклинная	Моноклинная	Триклинная	Триклинная
ЧЕС	Пр. гр.	C2/c	Ρ	$P2_{1}/c$	$P2_1/c$	Ρ	Ρ
КОЙ	$a, m \AA$	24.0862(18)	7.0856(3)	9.0305(4)	10.2261(5)	8.3668(6)	12.4517(4)
і ХИ	$b, m \AA$	3.7891(3)	12.6793(5)	14.3504(6)	15.2774(8)	9.9199(7)	12.4812(4)
миі	$c, m \AA$	24.2299(18)	15.4756(7)	20.2446(8)	14.3185(8)	9.9519(12)	14.0296(5)
4	α, град	90	67.2090(10)	06	06	111.437(3)	113.2730(10)
том	β, град	102.0300(10)	77.5790(10)	94.3120(10)	102.3090(10)	101.336(3)	91.1450(10)
64	ү, град	90	75.1530(10)	06	06	110.833(2)	117.24
N ⁰ 1	$V, Å^3$	2162.8(3)	1228.48(9)	2616.10(19)	2185.5(2)	666.04(11)	1726.17(10)
10	$Z_{ m Bbit}$	4	2	2	4	1	2
2019	$\rho_{pacy}, r/cm^3$	1.6713	1.4866	1.4100	1.2766	1.3656	1.258
	μ, мм ⁻¹	0.982	1.137	0.965	0.548	0.845	0.671
	F(000)	1089.0	567.4	1146.2	882.9	281.4	686.0
	Размеры кристалла, мм	$0.50 \times 0.2 \times 0.12 \times 0.12$	$0.40 \times 0.28 \times 0.04$	$0.20 \times 0.16 \times 0.08$	$0.36 \times 0.12 \times 0.10$	$0.20 \times 0.12 \times 0.08$	$0.50 \times 0.40 \times 0.26$
	Интервал углов 20, град	4.34-54.90	3.56 - 54.00	4.52 - 58.00	4.88 - 58.00	4.74 - 60.30	4.354-63.944
	Число отражений: измеренных независимых (<i>N</i>) [<i>R</i> _{int}]	8000 2446 [0.0190],	14923 5305 [0.0169]	32529 6954 [0.0451]	22357 5794 [0.0499]	9370 3905 [0.0430]	21600 10857 [0.0210]
	$R_1, wR_2 \operatorname{IIO} N_{\mathrm{o}}$	0.0551, 0.1517	0.0341, 0.0929	0.0335, 0.0761	0.0446, 0.0977	0.0445, 0.1048	0.0516, 0.1550
	$R_1, wR_2 \operatorname{IIO} N$	0.0676, 0.1679	0.0408, 0.0971	0.0522, 0.0827	0.0686, 0.1076	0.0603, 0.1130	0.0709, 0.1703
	$\Delta \rho_{max} / \Delta \rho_{min}$, $\Im / Å^3$	0.66/-0.78	0.84/-0.47	0.55/-0.43	0.55/-0.90	1.04/-0.44	0.65/-0.46

Таблица 4. Основные кристаллографические данные, параметры эксперимента и уточнения структур 1–6

СИНТЕЗ И СТРОЕНИЕ МОНОЯДЕРНЫХ КОМПЛЕКСОВ МЕДИ(II)

1035

Cpg21	$d, \mathrm{\AA}$			
Связв	2 · 2DMF	3 · 2DMF		
Cu–Cl(1)	2.3140(7)	2.3035(5)		
Cu-N(1)	1.9945(17)	1.9785(14)		
Cu-N(2)	2.1741(17)	2.1044(14)		
Cu-N(3)	2.0593(18)	2.0918(14)		
Cu-N(4)	2.0039(17)	1.9715(14)		

Таблица 5. Некоторые длины связей в комплексах $2\cdot 2DMF$ и $3\cdot 2DMF$

Таблица 6. Некоторые длины связей в комплексах $4 \cdot 2DMF$, 5 и 6

Связь	<i>d</i> , Å
4 · I	OMF
Cu-N(1)(N(1'))	2.0044(16)
Cu-N(2)(N(2'))	2.0153(15)
Cu–O(1)(O(1'))	2.3643(15)
	5
Cu-N(1)(N(1'))	2.0035(17)
Cu-N(2)(N(2'))	1.9958(17)
Cu-H(1A)(H(1A'))	2.20(17)
	6
Cu-N(1)	1.9902(16)
Cu-N(2)	1.9995(16)
Cu–O(1)	1.9623(15)
Cu–O(2)	1.9805(14)
Cu–O(3)	2.4755(18)
Cu–O(4)	2.3102(17)

 CH_3CN/CH_2I_2 удается замедлить процесс окисления меди(I) на воздухе, так что в качестве основных продуктов образуются моноядерные комплексы – смешанокатионный комплекс меди(I) и меди(II) [Cu^{II}(Phen)₃][Cu^I(Phen)₂]₂[B₁₂H₁₂]₂ и комплекс меди(II) [Cu(Phen)₃][B₁₂H₁₂] (реакция 8). При направленном проведении реакции из исходного комплекса меди(II) [Cu₂(CO₃)(Phen)₄]Cl₂ в качестве основного продукта образуется моноядерный комплекс меди [Cu(Phen)₂Cl]₂[B₁₂H₁₂] (реакция 9).

В настоящей работе изучены реакции комплексообразования меди(II), протекающие в ходе окислительно-восстановительных превращений в системах, содержащих медь(I), анион $[B_{12}H_{12}]^{2-}$ и органический лиганд L, на воздухе в органических растворителях solv. Реакции проводили при варьировании источника меди(I) (CuCl или Ph₄P[Cu[B₁₂H₁₂]]), источника кластерного аниона бора ((Bu₃NH)₂[B₁₂H₁₂], Ph₄P[Cu[B₁₂H₁₂]], Cs[Ag[B₁₂H₁₂]] или [Ag₂[B₁₂H₁₂]]), органического лиганда (свободный лиганд L или комплекс {[Ag(Bipy)₂]NO₃}_n). Во всех реакциях соотношение Cu : L составляло 1 : 2. Схемы проведенных реакций представлены в табл. 1 (реакции 1–6).

Ранее было показано, что использование солей серебра(I) в синтезе комплексов меди(II) благодаря сложным окислительно-восстановительным процессам (Cu^I \rightarrow Cu^{II}, Ag^I \rightarrow Ag⁰), протекающим в системе, позволяет получать нетривиальные соединения, в частности, по данной методике был получен трехъядерный комплекс меди(II) [Cu₃(Bipy)₆(CO₃)][B₁₂H₁₂]₂ [16].

Синтез и строение комплекса ${[Ag(Bipy)_2]NO_3]_n(1)}$

Для изучения реакций комплексообразования в системах медь(I)/серебро(I) в присутствии органического лиганда L предварительно синтезировали комплекс серебра(I) с Bipy:

$$AgNO_3 + 2Bipy \rightarrow [Ag(Bipy)_2]NO_3.$$
 (1)

Комплекс 1 идентифицирован методами элементного анализа, ИК- и КР-спектроскопии, строение комплекса определено методом РСА.

На рис. 1а приведен ИК-спектр комплекса 1, из которого видно, что в области валентных колебаний v(N=O) нитратогруппы присутствует интенсивная уширенная полоса около 1380 см⁻¹, отражающая внешнесферное положение NO₃⁻⁻ группы. В спектре присутствует полный набор полос, соответствующий координированному состоянию молекул Віру интервале 1600–700 см⁻¹ с одновременным повышением колебательных частот v(CC) и v(CN), $\Delta v \sim 25$ см⁻¹.

В спектре КР комплекса (рис. 16) наблюдается узкая интенсивная полоса валентных колебаний связи металл-металл v(Ag-Ag) при 253 см⁻¹ с низкочастотным плечом при 237 см⁻¹.

Пригодные для РСА монокристаллы комплекса 1 были получены перекристаллизацией из DMF. В структуре 1 (рис. 2) окружение атома серебра составляют четыре атома азота двух молекул Віру, координационный полиэдр Ад – сильно искаженный квадрат. Длины связи Ag-N лежат в диапазоне 2.313(3)-2.320(3) Å. Катионы упакованы стопками, между которыми образуются полости, заполненные разупорядоченными нитратионами. В кристалле имеются очень слабые контакты Ag...Ag (3.789(3) Å). Среднее значение этого расстояния, установленное по данным КБСД, составляет 3.026(3) Å. Между расположенными параллельно молекулами Віру наблюдается $\pi - \pi$ стекинг взаимодействие с расстоянием между молекулами 3.789(3) Å и смещением между центрами гетероциклов 1.421(3) Å. За счет контактов Ag...Ag комплексные катионы $[Ag(Bipy)_2]^+$ формируют полимерную цепь. Данные РСА находятся в соответствии с результатами ИК- и КР-спектроскопии.

В дальнейшем комплекс 1 использовали в реакциях комплексообразования меди(II) при проведении синтезов в системе серебро(I)/медь(II).

Рис. 1. ИК-спектр **1** в области v(NO), см⁻¹ (a); вид спектра КР в области валентных колебаний v(Ag-Ag), см⁻¹ (б).

Реакции комплексообразования меди(II) при использовании солей меди(I) в качестве исходных реагентов

В результате проведения реакций комплексообразования в системе анион $[B_{12}H_{12}]^{2-}/Cu^{1}/L$ (L = = Bipy, BPA) при соотношении металл : лиганд = = 1 : 2 установлено, что состав и строение полученных продуктов зависят от природы лиганда, меди(I) и используемого *клозо*-додекабората. Во всех случаях в органических растворителях протекает на воздухе окисление меди(I) до меди(II). В качестве основных продуктов реакций образуются моноядерные катионные комплексы меди(II), окружение металла в которых достраивается до KЧ = 5 или 6 присутствующими в реакционном растворе анионами хлора, CO₃-группой, источником которой является CO₂ воздуха, или молекулами растворителя DMF.

При взаимодействии $(Bu_3NH)_2[B_{12}H_{12}] + CuCl + 2Bipy в DMF в качестве основного продукта образуется моноядерный катионный комплекс меди(II) [Cu(Bipy)_2Cl][B_{12}H_{12}] (3) в виде сольвата с молекулой DMF (табл. 1, реакция 1). Для BPA аналогичная реакция (реакция 2) привела к получению смеси двух моноядерных комплексов: [Cu(BPA)_2(DMF)_2][B_{12}H_{12}] (4) и [Cu(BPA)_2Cl]Cl (2), выделяющихся в виде сольватов с молекулами DMF.$

В элементарных ячейках комплексов $2 \cdot DMF$ (рис. 3) и $3 \cdot 2DMF$ (рис. 4) содержатся катионные комплексы меди(II) [CuL₂Cl]⁺ (L = BPA для 2, Bipy для 3), координационные полиэдры которых представляют собой искаженную квадратную пирамиду, образованную четырьмя атомами азота двух молекул лиганда L и ионом Cl⁻, находящимся в экваториальной позиции. Анионную часть комплекса $2 \cdot DMF$ образует хлорид-ион, комплекса $3 \cdot 2DMF$ – половина аниона [B₁₂H₁₂]²⁻.

Рис. 2. Строение комплекса $\{[Ag(Bipy)_2]NO_3\}_n$ (1), пунктирной линией показано расстояние между двумя молекулами Віру.

Кроме того, в элементарную ячейку обоих соединений входит некоординированная молекула DMF.

В моноклинную элементарную ячейку соединения $4 \cdot DMF$ (рис. 5) входят координированная атомом меди молекула BPA, координированная и сольватная молекулы DMF и половина аниона $[B_{12}H_{12}]^{2-}$. Атом меди находится в слабоискаженном октаэдрическом окружении из четырех атомов азота двух молекул BPA и двух атомов кислорода молекул DMF.

При изменении источника исходного *клозо*додекабората и меди при взаимодействии купрадодекабората $Ph_4P[Cu[B_{12}H_{12}]]$ с органическим лигандом BPA в DMF основным продуктом является комплекс {[Cu(BPA)₂][B₁₂H₁₂]}_n (5) (табл. 1, реакция 3), имеющий полимерное строение (рис. 6). Катионная часть представляет собой комплекс меди(II), в котором медь находится в незначительно искаженном квадратном окружении, образованном четырьмя атомами азота двух молекул BPA. Две BH-группы *клозо*-додекаборатных анионов через атом H(1a) достраивают координационную сферу атома меди до октаэдра, при этом образуются полимерные 1D-цепочки, связанные между собой сеткой вторичных связей (рис. 6).

Комплексы меди(II) схожего строения получены для Phen состава { $[Cu(Phen)_2][B_{12}H_{12}]_n$ [17] и { $[Cu(Phen)_2][B_{10}H_{10}]_n$ [11]. В полученных соединениях имеются удлиненные контакты Cu...H(B) 2.85 Å, тогда как в комплексе **5** присутствует укороченный контакт Cu-H 2.20(17) Å. Такая связь между атомом водорода борного кластера и атомом меди(II) обнаружена впервые. Длина этой связи совпадает с расстояниями (B)H-Cu(I) 2.1–2.3 Å. Этот факт можно объяснить более низкой реакционной способностью *клозо*-додекаборатного аниона по сравнению с *клозо*-декаборатным, для

Рис. 3. Структура комплекса $[Cu(bipy)_2Cl][B_{12}H_{12}] \cdot 2DMF (3 \cdot 2DMF).$

которого подобные расстояния (B)H–Cu(II) невозможны ввиду протекания окислительно-восстановительной реакции, приводящей к восстановлению меди(II) до меди(I).

Реакции комплексообразования меди(II) в системе медь(I)/серебро(I)

Проведение реакций в системе, содержащей медь(I)/медь(II) и серебро(I), позволяет получать

соединения нетривиального строения, так как наличие нескольких металлов приводит к сложным окислительно-восстановительным процессам, происходящим в реакционном растворе, что оказывает влияние на координационное окружение атомов металлов и строение образующихся продуктов.

Для ВРА обнаружено, что изменение реагентов не приводит к образованию соединений, отличных от вышеописанного комплекса **4**. При взаимодействии комплексов $[Ag_2[B_{12}H_{12}]]$ или Cs $[Ag[B_{12}H_{12}]]$ с CuCl в присутствии ВРА в ацетонитриле или смеси CH₃CN/DMF обнаружено, что основным продуктом является комплекс **4**, но в случае $[Ag_2[B_{12}H_{12}]]$ (реакция 4) соединение **4** выпадает совместно с комплексом $[Cu(BPA)(CO_3)]_2$, описанным нами ранее [11]. В случае Cs $[Ag[B_{12}H_{12}]]$ (реакция 5) соединение **4** образуется селективно.

Для Віру при проведении реакции в системе медь(I)/серебро(I) взаимодействие $Ph_4P[Cu[B_{12}H_{12}]]$ с предварительно синтезированным комплексом 1 дает смесь продуктов: трехъядерный комплекс меди(II) {[Cu(Bipy)_2]_3(CO_3)}[B_{12}H_{12}], описанный нами ранее [16], и моноядерный комплекс 6 (табл. 1, реакция 6). Соединение 6 состоит из катионной части [Cu(Bipy)(DMF)_4]²⁺ и двух независимых половин аниона $[B_{12}H_{12}]^{2-}$. В отличие от описанного выше моноядерного комплекса меди(II) с ВРА состава [Cu(BPA)_2(DMF)_2][B_{12}H_{12}], в окружение атома меди(II) в соединении 6 входят четыре атома кислорода молекул DMF и два атома азота молекулы Віру (рис. 7).

Данные ИК-спектроскопии синтезированных комплексов 3–6

В ИК-спектрах комплексов **3–6** (табл. 3) присутствуют полосы валентных колебаний групп ВН с максимумами около 2450 см⁻¹, указываю-

Рис. 4. Структура комплекса [Cu(bpa)₂Cl]Cl \cdot DMF (2 \cdot DMF).

Рис. 5. Структура комплекса $[Cu(BPA)_2(DMF)_2][B_{12}H_{12}] \cdot DMF(4 \cdot DMF).$

щие на положение *клозо*-додекаборатного аниона во внешней сфере комплекса. При координации молекул азагетероциклических лигандов в спектрах соединений **3**–**6** наблюдается повышение значений колебательных частот v(CN) и v(CC) и значительное перераспределение интенсивностей полос колебаний гетероциклов в интервале $1600-700 \text{ см}^{-1}$ по сравнению с таковыми в спектрах некоординированных лигандов. В ИК-спектрах соединений **4** и **5** присутствуют полосы, соответствующие валентным колебаниям NH-групп координированных молекул BPA (табл. 3). Кроме того, в спектрах соединений, содержащих координированные и некоординированные молекулы DMF, присутствуют полосы v(CO).

ЗАКЛЮЧЕНИЕ

В работе синтезированы моноядерные комплексы меди(II) с азагетероциклическими лигандами L (L = Bipy, BPA) и *клозо*-додекаборатным анионом. Показано влияние исходных реагентов и условий проведения реакций на состав и строение полученных комплексов. В качестве исходных реагентов использовали соединения меди(I), некоторые реакции проводили в системе медь(I)/серебро(I). Во всех случаях происходит окисление меди(I) до комплексов меди(II). Реакции проводили при соотношении металл : лиганд = 1 : 2, по-

Рис. 6. Структура комплекса [Cu(BPA)₂][B₁₂H₁₂]]_{*n*} (5), пунктирными линиями показаны некоторые диводородные связи между анионом $[B_{12}H_{12}]^{2-}$ и BPA.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 10 2019

Рис. 7. Структура комплекса [Cu(Bipy)(DMF)₄][B₁₂H₁₂] (**6**).

этому в конечных комплексах, в которых КЧ атома меди было равно 5 или 6, в окружение металла входят не только молекулы органических лигандов, но также молекулы растворителей и присутствующих в реакционном растворе анионов (хлорид-ионов, CO₃-группа). Получено четыре новых моноядерных комплекса меди(II) с лигандами L и анионами [B₁₂H₁₂]^{2–} во внешней сфере. В полимерном комплексе [Cu(BPA)₂][B₁₂H₁₂]]_n, построенном чередованием кластерных анионов бора и моноядерного комплекса меди, обнаружены короткие контакты (B)H–Cu и разветвленная сеть водородных связей BH...HX (X = C, N) с молекулой BPA.

БЛАГОДАРНОСТЬ

Рентгеноструктурный эксперимент проведен И.Н. Поляковой в ЦКП ИОНХ РАН.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Muetterties E.L., Balthis J.H. et al.* // Inorg. Chem. 1964. V. 3. P. 444.
- 2. *Muetterties E.L., Knoth W.H.* Polyhedral Boranes. Dekker–New York, 1968.
- 3. *Greenwood N.N., Earnshaw A.* Chemistry of the Elements. Butterworth-Heinemann, 1997.
- Malinina E.A., Avdeeva V.V., Goeva L.V., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2010. V. 55. P. 2148. https://doi.org/10.1134/S0036023610140032
- Avdeeva V.V., Malinina E.A., Sivaev I.B. et al. // Crystals. 2016. V. 6. № 5. P. 60. https://doi.org/10.3390/cryst6050060

- Avdeeva V.V., Malinina E.A., Kuznetsov N.T. // Polyhedron. 2016. V. 105. P. 205. https://doi.org/10.1016/j.poly.2015.11.049
- 7. Avdeeva V.V., Malinina E.A., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2017. V. 62. № 13. P. 1673. https://doi.org/10.1134/S0036023617130022
- Avdeeva V.V., Polyakova I.N., Churakov A.V. et al. // Polyhedron. 2019. V. 162. P. 65. https://doi.org/10.1016/j.poly.2019.01.051
- 9. *Malinina E.A., Zhizhin K.Yu., Polyakova I.N. et al.* // Russ. J. Inorg. Chem. 2002. V. 47. № 8. P. 1158.
- Avdeeva V.V., Dziova A.E., Polyakova I.N. et al. // Inorg. Chim. Acta. 2015. V. 430. P. 74. https://doi.org/10.1016/j.ica.2015.02.029
- Dziova A.E., Avdeeva V.V., Polyakova I.N. et al. // Dokl. Chem. 2011. V. 440. P. 253. https://doi.org/10.1134/S0012500811090035
- 12. Avdeeva V.V., Dziova A.E., Polyakova I.N. et al. // Russ. J. Inorg. Chem. 2013. V. 58. P. 657. https://doi.org/10.1134/S003602361306003X
- Dziova A.E., Avdeeva V.V., Polyakova I.N. et al. // Russ. J. Inorg. Chem. 2013. V. 58. P. 1527. https://doi.org/10.1134/S0036023614010045
- Van N.D. Doctoral Thesis: New Salt-Like Dodecahydro-closo-Dodecaborates and Efforts for the Partial Hydroxylation of [B₁₂H₁₂]²⁻ Anions. Institut für anorganische Chemie der Universität, Stuttgart, 2009.
- Polyakova I.N., Avdeeva V.V., Malinina E.A. et al. // Cryst. Rep. 2009. V. 54. P. 831. https://doi.org/10.1134/S1063774509050149
- Malinina E.A., Kochneva I.K., Polyakova I.N. et al. // Inorg. Chim. Acta. 2018. V. 479. P. 249. https://doi.org/10.1016/j.ica.2018.04.059
- Malinina E.A., Kochneva I.K., Polyakova I.N. et al. // Inorg. Chim. Acta. 2018. V. 477. P. 284. https://doi.org/10.1016/j.ica.2018.03.024
- Greenwood N.N., Morris J.H. // Proc. Chem. Soc. 1963. V. 11. P. 338.
- 19. *Malinina E.A., Drozdova V.V., Mustyatsa V.N. et al.* // Russ. J. Inorg. Chem. 2006. V. 51. Р. 1723. [*Малинина Е.А.,* Дроздова В.В., Мустяца В.Н. и др. // Журн. неорган. химии. 2006. Т. 51. № 11. С. 1832.] https://doi.org/10.1134/S0036023606110076
- 20. Drozdova V.V., Malinina E.A., Belousova O.N. et al. // Russ. J. Inorg. Chem. 2008. V. 53. Р. 1024. [Дроздова В.В., Малинина Е.А., Белоусова О.Н. и др. // Журн. неорган. химии. 2008. Т. 53. № 7. С. 1105.] https://doi.org/10.1134/S0036023608070097
- Ochertyanova L.I., Mustyatsa V.N., Zhizhin K.Y. et al. // Inorg. Mater. 2004. V. 40. № 2. Р. 144. [Очертянова Л.И., Мустяца В.Н., Жижин К.Ю. и др. // Неорган. материалы. 2004. Т. 40. № 2. С. 188.] https://doi.org/10.1023/B:INMA.0000016088.12295.5b
- 22. APEX2 (V. 2009, 5-1), SAINT (V7.60A), SADABS (2008/1). Bruker AXS Inc., Madison, Wisconsin, USA, 2008–2009.
- 23. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.