ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ

УДК 538.915

ЭЛЕКТРОННАЯ СТРУКТУРА И СПЕКТР ОПТИЧЕСКОГО ПОГЛОЩЕНИЯ ИКОСАЭДРИЧЕСКОГО ЗОЛОТОГО ФУЛЛЕРЕНА Au₃₂¹

© 2019 г. Г. И. Миронов*

Марийский государственный университет, пр-т Ленина, 1, Йошкар-Ола, 424000 Россия *E-mail: mirgi@marsu.ru Поступила в редакцию 29.01.2019 г. После доработки 09.04.2019 г. Принята к публикации 15.04.2019 г.

Электронная структура молекулы золотого фуллерена Au_{32} изучена с использованием методов квантовой теории поля в рамках модели Хаббарда. Получены выражения для фурье-образов функции Грина, полюса которых определяют энергетический спектр рассматриваемой наносистемы. Энергетический спектр Au_{32} , исследованный в сравнении со спектром икосаэдрического углеродного фуллерена C_{60} , свидетельствует о полупроводниковом состоянии золотого фуллерена Au_{32} . Приведена плотность электронных состояний, пики которой соответствуют особенностям Ван Хова. Приведены спектры оптического поглощения нейтрального и отрицательно заряженного фуллерена Au_{32} , энергия первого прямого оптического перехода отрицательно заряженного иона золотого фуллерена Au_{32}^{-} равна 1.26 эВ.

Ключевые слова: золотой фуллерен, оптический переход, плотность электронных состояний, функция Грина, энергетический спектр **DOI:** 10.1134/S0044457X1910009X

ВВЕДЕНИЕ

Вскоре после опубликования работы [1], где сообщалось о синтезе золотого фуллерена Au₁₆, была опубликована статья [2], которая позволила объяснить основные физико-химические свойства "полой золотой клетки" Au₁₆. Отметим, что последние два десятилетия золотые нанокластеры привлекают большое внимание благодаря широкому применению в биологии, катализе и нанотехнологии [3-11]. Работы [10, 11] вызвали огромный интерес к физике и химии золотых нанокластеров, особенно полых структур из атомов золота, из-за их каталитических свойств. Последние исследования показали, что серии полых фуллереноподобных структур из атомов золота имеют необычную стабильность, обусловленную релятивистскими эффектами при взаимодействии атомов золота [12].

В работе [13] в рамках скалярной релятивистской теории функционала плотности (DFT) удалось показать, что нанокластер Au₃₂ имеет форму икосаэдрического фуллерена. Для определения стабильности фуллерена золота из 32 атомов были использованы два функционала: популярный функционал BP86 [14] обобщенного градиентного приближения (GGA) и неэмпирический гибридный GGA функционал PBE0 [15]. В Au_{32} каждый атом золота связан с пятью или шестью ближайшими соседними атомами золота (рис. 1). Золотой фуллерен Au_{32} характеризуется такой же симметрией, как и усеченный икосаэдр C₆₀ [16]. Энергетическая щель между нижней незанятой (LUMO) и верхней занятой (HOMO) молекулярными орбиталями составляет 1.7 и 2.5 эВ при вычислениях с функционалами BP86 и PBE0 соответственно. Кратность вырождения и HOMO, и LUMO равна четырем [13].

DFT-изучение молекулы Au_{32} в [17] показало, что фуллерен из 32 атомов золота с симметрией икосаэдра устойчив только в интервале температур 300—400 К. Основанное на DFT моделирование в рамках молекулярной динамики [17] свидетельствует о том, что фуллерен Au_{32} без каких-либо стабилизирующих лигандов может быть использован в практических целях, например в области катализа, только вблизи комнатных температур.

В [12] показано, что золотой фуллерен Au₃₂ "имеет хорошую стабильность", удельная энергия связи равна 2.257 эВ, ширина HOMO–LUMO

¹ Дополнительная информация для этой статьи доступна для авторизированных пользователей по doi 10.1134/S0044457X1910009X.

Рис. 1. Золотой фуллерен Аи₃₂.

щели равна 1.56 эВ. Согласно подходу, основанному на понятии суператома [18–20], в [21] показано, что молекулярные орбитали НОМО и LUMO характеризуются состояниями 1*f* и 1*g* соответственно, электронная конфигурация полой молекулы Au_{32} имеет вид $1s^{2}1p^{6}1d^{10}1f^{14}$.

В [22] рассмотрен вопрос потенциального применения золотого фуллерена Au_{32} для адресной доставки лекарства к больным органам. Идеальная система доставки лекарств с помощью Au_{32} позволяет более эффективно лечить заболевания путем доставки лекарственного средства в органы-мишени для снижения побочных эффектов, при этом лекарство высвобождается в течение определенного периода времени контролируемым образом.

Настоящая работа посвящена исследованию золотого фуллерена в рамках квантовой теории поля — вычислению фурье-образа антикоммутаторной функции Грина, определению и исследованию энергетического спектра фуллерена из тридцати двух атомов золота как системы с сильными корреляциями в сравнении со спектром икосаэдрического фуллерена из шестидесяти атомов углерода [16]. В настоящее время при исследовании нанокластеров как золота, так и углерода все чаще исследования проводятся из первых принципов, DFT-расчетов, когда детали вычислений остаются скрытыми в прикладных программах, поэтому возникает необходимость в разработке методов исследования, которые позволили бы получать аналитические выражения, описывающие физико-химические свойства исследуемых нанокластеров. Предлагаемый ниже метод можно назвать методом "квантово-полевой химии".

Атом золота относится к группе переходных металлов. При образовании нанокластеров золота волновые функции электронов перекрываются. в результате возникает явление делокализации электронов, т.е. электроны могут переноситься от одного узла к другому. При перескоках электронов от атома к соседнему атому на узле могут оказаться два электрона с противоположно ориентированными проекциями спинов, поэтому необходимо учесть кулоновское отталкивание этих электронов друг от друга. Поскольку в транспорте электронов основную роль играют *d*-электроны, так как уровни энергии *s*-электронов находятся ниже уровней энергии *d*-электронов, мы предлагаем следующую простую модель: заменить сложный атом золота моделью, когда *d*-электрон движется в поле положительно заряженного иона, составленного из ядра и всех остальных, кроме *d*-электрона, электронов. Конечно, эта модель может показаться слишком простой и оторванной от реальности, но мы понимаем, что модель строится для решения определенных задач. На следующем этапе модель можно усложнить для описания большего круга явлений. Для теоретического анализа таких моделей еще в шестидесятые годы двадцатого века была предложена модель Хаббарда [23]. которая является частным случаем модели, предложенной ранее Шубиным и Вонсовским [24].

ТЕОРЕТИЧЕСКАЯ МОДЕЛЬ

Гамильтониан модели золотого фуллерена Au₃₂ имеет вид:

$$\hat{H} = \hat{H}_0 + \hat{V},\tag{1}$$

$$\hat{H}_0 = \sum_{\sigma,f=1}^{32} \varepsilon \hat{n}_{f\sigma} + \sum_{\sigma,f\neq l} B_{fl} \left(a_{f\sigma}^+ a_{l\sigma} + a_{l\sigma}^+ a_{f\sigma} \right), \qquad (2)$$

$$\hat{V} = U \sum_{f=1}^{32} \hat{n}_{f\uparrow} \hat{n}_{f\downarrow}, \qquad (3)$$

где $a_{j\sigma}^{+}$, $a_{j\sigma}^{-}$ ферми-операторы рождения и уничтожения электронов на узле j (j = f,l) фуллерена из атомов Au с проекцией спина σ ($\sigma = \uparrow, \downarrow$), $\hat{n}_{j\sigma} = a_{j\sigma}^{+}a_{j\sigma}^{-}$ – оператор числа частиц, ε – собственная энергия d-электрона, U – энергия кулоновского отталкивания двух электронов с противоположно ориентированными проекциями спи-

нов на одной орбитали, $B_{fl} = B(f - l)$ – интеграл переноса электрона от одного узла золотого фуллерена к соседнему узлу.

Для решения модели фуллерена Au_{32} пронумеруем все узлы от 1 до 32 в согласии с (2), (3), как указано на рис. 1, для операторов рождения электронов на каждом узле напишем уравнения движения:

$$\begin{aligned} \frac{d}{dt}a_{1\uparrow}^{+}(t) &= \varepsilon a_{1\uparrow}^{+}(t) + B\left(a_{2\uparrow}^{+}(t) + a_{3\uparrow}^{+}(t) + a_{4\uparrow}^{+}(t) + a_{4\uparrow}^{+}(t) + a_{5\uparrow}^{+}(t) + a_{6\uparrow}^{+}(t)\right) + U\hat{n}_{1\downarrow}a_{1\uparrow}^{+}(t), \quad \frac{d}{dt}a_{2\uparrow}^{+}(t) &= \varepsilon a_{2\uparrow}^{+}(t) + a_{5\uparrow}^{+}(t) + a_{10\uparrow}^{+}(t)\right) + U\hat{n}_{2\downarrow}a_{2\uparrow}^{+}(t), \\ &+ B\left(a_{1\uparrow}^{+}(t) + a_{1\uparrow\uparrow}^{+}(t)\right) + U\hat{n}_{2\downarrow}a_{2\uparrow}^{+}(t), \\ &- \dots \\ & \frac{d}{dt}a_{32\uparrow}^{+}(t) = \varepsilon a_{32\uparrow}^{+}(t) + a_{21\uparrow}^{+}(t) + a_{21\uparrow}^{+}(t) + a_{21\uparrow}^{+}(t) + a_{21\uparrow}^{+}(t) + a_{21\uparrow}^{+}(t) + a_{21\uparrow}^{+}(t). \end{aligned}$$

Решив эту систему 32 уравнений движения в "приближении статических флуктуаций" [2, 25–27], получим аналитические выражения для операторов рождения электронов на каждом узле, с помощью которых вычислим фурье-образы функций Грина. В случае молекулы Au₃₂ мы имеем два неэквивалентных узла: 1 – соответствующий атому в центре пентагона, 2 – соответствующий атому в центре гексагона.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Имея решение для $a_{1\uparrow}^+(\tau)$, можем получить следующую формулу для фурье-образа антикоммутаторной функции Грина фуллерена Au₂₀ для атома в центре правильного пентагона, составленного из треугольников (см. Приложение):

$$\left\langle \left\langle a_{1\uparrow}^{+} | a_{1\uparrow} \right\rangle \right\rangle_{E} = \frac{i}{2\pi} \sum_{\alpha=1}^{2} \left\{ \frac{0.0100}{E - \varepsilon_{\alpha} + 2.4514B} + \frac{0.0838}{E - \varepsilon_{\alpha} + 2.1564B} + \frac{0.1149}{E - \varepsilon_{\alpha} - 0.2153B} + \frac{0.0412}{E - \varepsilon_{\alpha} - 4.3925B} + \frac{0.0753}{E - \varepsilon_{\alpha} - 2.3028B} + \frac{0.1331}{E - \varepsilon_{\alpha} + 1.3028B} + \frac{0.0133}{E - \varepsilon_{\alpha} - 5.6533B} + \frac{0.0284}{E - \varepsilon_{\alpha} + 2.6533B} \right\}.$$

В случае второго атома:

$$\left\langle \left\langle a_{2\uparrow}^{+} | a_{2\uparrow} \right\rangle \right\rangle_{E} = \frac{i}{2\pi} \sum_{\alpha=1}^{2} \left\{ \frac{0.0689}{E - \varepsilon_{\alpha} + 2.4514B} + \frac{0.0247}{E - \varepsilon_{\alpha} + 2.1564B} + \frac{0.0061}{E - \varepsilon_{\alpha} - 0.2153B} + \frac{0.0503}{E - \varepsilon_{\alpha} - 4.3925B} + \frac{0.0798}{E - \varepsilon_{\alpha} - 2.3028B} + \frac{0.0452}{E - \varepsilon_{\alpha} + 1.3028B} + \frac{0.0170}{E - \varepsilon_{\alpha} - 5.6533B} + \frac{0.0080}{E - \varepsilon_{\alpha} + 2.6533B} + \frac{0.1000}{E - \varepsilon_{\alpha} + 2B} \right\},$$

где в формулах (4), (5) $\varepsilon_1 = \varepsilon$, $\varepsilon_2 = \varepsilon + U$. Полюса функций (4), (5) определяют энергетический спектр фуллерена Au₃₂, числители – вероятности нахождения электронов на соответствующих уровнях энергии. Проанализируем полученные формулы для фурье-образов функций Грина. Рассмотрим первые слагаемые в этих выражениях. Из формулы (4) следует, что электроны на первом узле фуллерена с вероятностью, равной 0.01, могут находиться на уровнях энергии $E = \varepsilon - 2.4514B$ и $E = \varepsilon + U - 2.4514B$. На втором узле на этих же уровнях энергии электроны могут быть обнаружены с вероятностью, равной 0.0689, т.е. практически в семь раз большей вероятностью. Есть еще одна особенность в поведении электронов. Если на втором узле фуллерена электроны могут находиться на уровнях энергии $E = \varepsilon$, $E = \varepsilon + U$, $E = \varepsilon - 2B, E = \varepsilon + U - 2B$ с вероятностью 0.1, то вероятность нахождения электронов на этих же уровнях энергии на первом узле молекулы фуллерена равна нулю, т.е. они не могут находиться на этих уровнях энергии, поэтому соответствующие слагаемые в формуле (4) опущены. Энергетический спектр фуллерена из 32 атомов Аи приведен на рис. 2. Для сравнения на рис. 3 представлен энергетический спектр углеродного фуллерена С₆₀ [28].

В случае фуллеренов Au₃₂ (рис. 2) спектр построен при значениях параметров $U = 8.85 \ \text{эB}$, $B = -1 \ \text{эB}$, $\varepsilon = -2.95 \ \text{эB}$. При построении спектра фуллерена C₆₀ взяты следующие параметры исследуемой модели: $U = 7.06 \ \text{эB}$, $B = -0.98 \ \text{эB}$, $\varepsilon = -3.36 \ \text{эB}$, $B_1 = 1.03B$, где B_1 – интеграл перескока для связей на общей стороне двух гексагонов, B – интеграл перескока для связей на общей стороне гексагона и пентагона [28].

На рис. 2 приведены значения энергий, орбитального квантового числа, кратность вырождения и обозначение уровня энергии. Кратность вырождения соответствующих уровней энергии (размерность неприводимых представлений икосаэдрической группы) 1, 3, 3, 4 и 5 принято обозначать как a, t_1, t_2, g и h соответственно. Этим обозначениям приписывается дополнительный

Рис. 2. Энергетический спектр золотого фуллерена Au_{32} при следующих значениях параметров: $U = 8.85 \Rightarrow B, B = -1 \Rightarrow B, \varepsilon = -2.95 \Rightarrow B.$

нижний индекс g, если соответствующее состояние является четным, или u, если соответствующее состояние является нечетным. Например, уровень энергии -1.6472 эВ имеет кратность вы-

	D		
E,	ЭВ 6.029	l = 7	t_{1u}
6	5 973	l = 7	σ
	5.420	l = 6	g_6
	5.043	l = 7	h _u
5	- 4.859	<i>l</i> = 5	t_{2u}
	4.725	<i>l</i> = 6	h_6
4	- 3.860	<i>l</i> = 6	t_{1g}
	2 (21	1 5	
	3.621	1=5	t_{1u}
3	- 2.847	<i>l</i> = 5	h _u
	2.480	<i>l</i> = 4	h_g
	2.470	l = 4	g_g
2	- 1.917	<i>l</i> = 3	gu
	1.691	<i>l</i> = 3	t_{2u}
	1.206	<i>l</i> = 2	hg
1	- 0.760	l = 1	<i>t</i> 1
	0.700	. 1	•14
	0.521	l = 0	a_g
0	-		
-1		<i>l</i> = 7	t_{1u}
-1		l = 7 $l = 7$	t_{1u} g_u
-1		l = 7 $l = 7$ $l = 6$	t_{1u} g_u g_g
-1		l = 7 $l = 7$ $l = 6$ $l = 7$	t_{1u} g_u g_g h_u
-1 -2		l = 7 $l = 7$ $l = 6$ $l = 7$ $l = 5$	t_{1u} g_u g_g h_u t_{2u}
-1 -2		l = 7 $l = 7$ $l = 6$ $l = 7$ $l = 5$ $l = 6$	$ \begin{array}{c} t_{1u} \\ g_u \\ g_g \\ h_u \\ t_{2u} \\ h_g \end{array} $
-1 -2		l = 7 l = 7 l = 6 l = 7 l = 5 l = 6	
-1 -2 -3	-1.031 -1.087 -1.640 -2.017 -2.201 -2.335 3.200	l = 7 l = 7 l = 6 l = 7 l = 5 l = 6 l = 6	$ \begin{array}{c} t_{1u} \\ g_{u} \\ g_{g} \\ h_{u} \\ t_{2u} \\ h_{g} \\ t_{1g} \end{array} $
-1 -2 -3		l = 7 l = 7 l = 6 l = 7 l = 5 l = 6 l = 6 l = 5	$\frac{t_{1u}}{g_{g}}$ $\frac{g_{g}}{h_{u}}$ $\frac{f_{2u}}{h_{g}}$ $\frac{f_{1g}}{f_{1g}}$
-1 -2 -3		$ \begin{array}{c} l = 7 \\ l = 7 \\ l = 6 \\ l = 7 \\ l = 5 \\ l = 6 \\ l = 6 \\ l = 5 \\ \end{array} $	$\frac{t_{1u}}{g_g}$ $\frac{g_g}{h_u}$ $\frac{t_{2u}}{h_g}$ $\frac{t_{1g}}{t_{1u}}$
-1 -2 -3 -4	-1.031 -1.087 -1.640 -2.017 -2.201 -2.335 3.200 	$ \begin{array}{c} l = 7 \\ l = 7 \\ l = 6 \\ l = 7 \\ l = 5 \\ l = 6 \\ l = 6 \\ l = 5 \\ l = 5 \\ \end{array} $	$\frac{t_{1u}}{g_g}$ $\frac{g_g}{h_u}$ $\frac{t_{2u}}{h_g}$ $\frac{t_{1g}}{t_{1u}}$ $\frac{h_u}{h_u}$
-1 -2 -3 -4		$ \begin{array}{r} l = 7 \\ l = 7 \\ l = 6 \\ l = 5 \\ l = 6 \\ l = 6 \\ l = 5 \\ l = 5 \\ l = 5 \\ l = 4 \end{array} $	$ \begin{array}{c} t_{1u} \\ g_{u} \\ g_{g} \\ h_{u} \\ t_{2u} \\ h_{g} \\ t_{1g} \\ t_{1u} \\ h_{u} \\ h_{g} \end{array} $
-1 -2 -3 -4	-1.031 -1.087 -1.640 -2.017 -2.201 -2.335 2.335 3.200 -3.440 3.440 4.213 -4.580 -4.590	$ \begin{array}{c} l = 7 \\ l = 7 \\ l = 6 \\ l = 5 \\ l = 6 \\ l = 5 \\ l = 5 \\ l = 4 \\ l = 4 \end{array} $	$\frac{t_{1u}}{g_{g}}$ $\frac{g_{g}}{h_{u}}$ $\frac{g_{g}}{t_{2u}}$ $\frac{f_{1g}}{h_{g}}$ $\frac{f_{1u}}{h_{u}}$ $\frac{h_{u}}{h_{g}}$ $\frac{g_{g}}{g_{g}}$
-1 -2 -3 -4 -5		$ \begin{array}{c} l = 7 \\ l = 7 \\ l = 6 \\ l = 5 \\ l = 6 \\ l = 5 \\ l = 5 \\ l = 4 \\ l = 4 \\ l = 3 \\ \end{array} $	$\frac{t_{1u}}{g_g}$ $\frac{g_g}{h_u}$ $\frac{t_{2u}}{h_g}$ $\frac{t_{1g}}{t_{1u}}$ $\frac{t_{1u}}{h_g}$ $\frac{g_g}{g_u}$
-1 -2 -3 -4 -5		$ \begin{array}{c} l = 7 \\ l = 7 \\ l = 6 \\ l = 5 \\ l = 6 \\ l = 5 \\ l = 5 \\ l = 4 \\ l = 4 \\ l = 3 \\ l = 3 \\ \end{array} $	$\frac{t_{1u}}{g_u}$ $\frac{g_g}{h_u}$ $\frac{t_{2u}}{h_g}$ $\frac{t_{1g}}{t_{1u}}$ $\frac{h_u}{h_g}$ $\frac{g_g}{g_u}$ $\frac{g_g}{g_u}$ $\frac{g_g}{g_u}$
-1 -2 -3 -4 -5		l = 7 $l = 7$ $l = 6$ $l = 7$ $l = 6$ $l = 6$ $l = 5$ $l = 5$ $l = 4$ $l = 4$ $l = 3$ $l = 3$ $l = 2$	$\frac{t_{1u}}{g_g}$ $\frac{g_g}{h_u}$ $\frac{t_{2u}}{h_g}$ $\frac{t_{1u}}{h_g}$ $\frac{h_u}{h_g}$ $\frac{g_g}{g_u}$ $\frac{g_g}{g_u}$ $\frac{t_{2u}}{h_g}$
-1 -2 -3 -4 -5 -6		$ \begin{array}{c} l = 7 \\ l = 7 \\ l = 6 \\ l = 5 \\ l = 6 \\ l = 5 \\ l = 5 \\ l = 4 \\ l = 3 \\ l = 3 \\ l = 2 \\ l = 1 \end{array} $	$\frac{t_{1u}}{g_g}$ $\frac{g_g}{h_u}$ $\frac{f_{2u}}{h_g}$ $\frac{f_{1g}}{f_{1u}}$ $\frac{f_{1u}}{h_g}$ $\frac{g_g}{g_u}$ $\frac{g_g}{f_{2u}}$ $\frac{f_{2u}}{h_g}$
-1 -2 -3 -4 -5 -6		$ \begin{array}{c} l = 7 \\ l = 7 \\ l = 6 \\ l = 5 \\ l = 6 \\ l = 5 \\ l = 5 \\ l = 4 \\ l = 4 \\ l = 3 \\ l = 3 \\ l = 2 \\ l = 1 \\ \end{array} $	$ \begin{array}{c} t_{1u} \\ g_u \\ g_g \\ h_u \\ t_{2u} \\ h_g \\ t_{1g} \\ t_{1u} \\ h_g \\ g_g \\ g_u \\ t_{2u} \\ h_g \\ t_{1u} \end{array} $

Рис. 3. Энергетический спектр фуллерена C_{60} при следующих значениях параметров: U = 7.06 эВ, B = -0.98 эВ, $\varepsilon = -3.36$ эВ, $B_1 = 1.03B$.

рождения 5, четность равна $(-1)^l = (-1)^4 = +1$, поэтому уровень энергии обозначили h_g . Отметим, что значения кратности вырождения уровней энергии можно было бы и не приводить, но для более последовательного изложения результатов эти значения на рис. 2 приведены. На рис. 3 значения кратности вырождения приводить не будем.

Рассмотрим энергетический спектр фуллерена Аи₃₂. Энергетическая зона в случае фуллерена из 32 атомов золота состоит из двух подзон. Нижняя хаббардовская подзона включает 10 уровней энергии от -8.6033 до -0.2967 эВ, верхняя хаббардовская подзона состоит также из десяти уровней энергии от 0.2467 до 8.5533 эВ. Расстояние Δ между самым верхним занятым электронами уровнем энергии нижней подзоны (НОМО) и нижним незанятым электронами верхней подзоны (LUMO) составляет 0.5434 эВ. Верхняя подзона играет роль зоны проводимости, нижняя подзона — роль валентной зоны, зона шириной Δ — роль зоны запрещенных энергий. Отметим, что особенность системы с сильными корреляциями, которой и является Au₃₂, состоит в том, что в случае нейтрального фуллерена Au₃₂, когда на 32 узла наносистемы приходятся 32 электрона, в основном состоянии заполняются все уровни энергии нижней хаббардовской подсистемы. Например, уровень энергии h_g характеризуется кратностью вырождения 5, если бы изучаемая нами система была обычной ферми-системой, то на этом уровне могли бы находиться в основном состоянии 10 электронов – пять электронов с проекцией спина "вверх" и пять электронов с проекцией спина "вниз". В случае сильнокоррелированной системы на этом уровне энергии могут располагаться лишь пять электронов с произвольным значением проекции спина. Если бы молекула Au₃₂ была обычной ферми-системой, то 32 электрона в основном состоянии заняли бы только 5 нижних уровней нижней подзоны: a_g , t_{1u} , h_g , t_{2u} и g_u . В связи с этим отметим работу [21], где, как было отмечено выше, "...кластер Au₃₂ с тридцатью двумя электронами имеет электронную конфигурацию $1s^{2}1p^{6}1d^{10}1f^{14}$. Высшая занятая электронами орбиталь НОМО и низшая незанятая электронами орбиталь LUMO имеют характер 1f и 1g соответственно". Разрешенные оптические переходы в [21] соответствуют переходам с 1f на 1g (рис. 4, переходы 1, 2, 3, 4), что на самом деле неверно, поскольку уровни энергии в состоянии 1*f* заняты электронами.

Выводы, аналогичные сделанным в [21], были предложены в более ранней работе [13]. Кроме того, в [13] сделано заключение, что уровни энергии и НОМО, и LUMO, как отметили ранее, являются четырехкратно вырожденными: НОМО соответствует уровню энергии g_u с кратностью вырождения 4, LUMO соответствует четырехкратно вырожденному уровню энергии g_g , который при DFT-расчетах оказался ниже уровня h_g с пятикратным вырождением. В работе [13] расчеОптическое поглощение

Рис. 4. Спектр оптического поглощения молекулы нейтрального фуллерена C_{60} при значениях параметров: U = 7.06 эВ, B = -0.98 эВ, $\varepsilon = -3.36$ эВ, $B_1 = 1.03B$. Полуширина C = 0.2 эВ.

ты энергетических уровней находились в соответствии с уровнями энергии углеродного фуллерена С₆₀, в случае которого действительно уровень энергии g_g ниже уровня энергии h_g на 0.01 эВ (рис. 3). Ширина щели Δ , как отметили выше, равна 1.7 и 2.5 эВ в зависимости от выбора потенциала. Согласно [12], ширина щели HOMO-LUMO равна 1.56 эВ, в работе [17] получено, что $\Delta = 1.6$ эВ. Из анализа рис. 2 следует, что расстояние между уровнями энергии h_g и g_u равно 1.3 эВ, ширина зоны запрещенных энергий равна 0.5434 эВ, роль НОМО выполняет однократно вырожденный уровень энергии a_g с орбитальным квантовым числом l = 6, роль LUMO играет также однократно вырожденный уровень энергии a_g с орбитальным квантовым числом l = 0. Таким образом, молекула фуллерена Аи₃₂, состоящая из 32 атомов металла, обладает полупроводниковыми свойствами.

Рассмотрим теперь для сравнения энергетический спектр икосаэдрического углеродного фуллерена C_{60} (рис. 3). Энергетический спектр углеродного фуллерена состоит из двух подзон, каждая из которых имеет 16 уровней энергии. Последовательности нижних 9 уровней энергии и нижней, и верхней хаббардовских подзон Au_{32} и C_{60} выглядят одинаково, за исключением уровней энергии h_g и g_g , которые меняются местами. Понятно, что отличаются и расстояния между уровнями энергии. Уровнем энергии НОМО является трехкратно вырожденный уровень энергии t_{1u} с орбитальным квантовым числом l = 7, LUMO – однократно вырожденный уровень энергии a_g с орбитальным квантовым числом l = 0. Ширина зоны запрещенных энергий между уровнями энергии НОМО и LUMO равна 1.552 эВ.

Первая картина энергетического спектра С₆₀ была получена хюккелевским расчетом без учета того, что система π -электронов в фуллерене C₆₀ не является обычной ферми-системой. Энергетический спектр для фуллерена С₆₀, полученный без учета того, что рассматриваемая π -электронная система является системой с сильными корреляциями (см. для примера спектр фуллерена С₆₀, приведенный в книге [29] или в оригинальной работе [30]), не позволил правильно интерпретировать заполнение энергетических уровней и, как следствие, не позволил правильно объяснить физико-химические свойства фуллерена из шестидесяти атомов углерода, например эксперименты по оптическому поглощению. Считалось, что высшая заполненная молекулярная орбиталь является пятикратно вырожденной с симметрией h_{μ} , низшая вакантная молекулярная орбиталь является трехкратно вырожденной с симметрией t_{1y} . Из нашего спектра может получиться такой результат, если считать, что π -электронная система является обычной ферми-системой. В этом случае на уровне h_{μ} при кратности вырождения 5 могли бы находиться пять электронов с проекцией спина, направленной "вверх", и пять электронов с проекцией спина "вниз". Аналогичная картина должна наблюдаться и для уровней энергий, лежащих ниже h_{μ} . Тогда все шестьдесят электронов в основном состоянии разместились бы на семи уровнях энергии нижней хаббардовской подзоны. А это означает, что в случае золотых и углеродных фуллеренов, нанотрубок из атомов золота и углерода расчеты методами квантовой химии, из первых принципов, методами DFT с применением различных потенциалов необходимо вести с учетом того, что это сильно коррелированные системы. В первую очередь в пакетах прикладных программ необходимо учесть, что два электрона с противоположно ориентированными проекциями спинов на одном узле подвержены значительному кулоновскому отталкиванию. В работе [27] мы показали, что при расчетах без учета того, что углеродные нанотрубки являются системами с сильными корреляциями, получается, что нанотрубки являются металлическими, если разность хиральных индексов кратна трем, или равна нулю, например, нанотрубка (5,5) является металлической [31–37]. С учетом сильных корреляций получается, что все нанотрубки являются на самом деле полупроводниками, в частности, нанотрубки типа "зигзаг" хиральностей (9,0), (12,0), (15,0) являются узкощелевыми нанотрубками. Об этом свидетельствуют эксперименты на ультрачистых нанотрубках [38, 39]. В работе [40] было высказано предположение, что наличие узких зон запрещенных энергий в "металлических" нанотрубках можно объяснить сильными корреляциями, такая же гипотеза была высказана в работах [38, 39]. В работе [27] мы учли, что углеродная одностенная нанотрубка является системой с сильными корреляциями и (с учетом мнений авторов [38-40]) степень перекрывания волновых функций *п*-электронов зависит от кривизны поверхности нанотрубки. Это позволило как качественно, так и количественно с большой точностью объяснить результаты экспериментов [38, 39].

После вычисления энергетического спектра фуллерена C_{60} в работе [30] практически в течение тридцати лет полученный вид спектра позволил более или менее удовлетворительно описывать его основные физико-химические свойства. Основная проблема была связана со спектром оптического поглощения C_{60} [39–43]. Основные теоретические проблемы при описании оптических свойств C_{60} изложены в обзоре [44]. В заключении в [44] было отмечено: "...В настоящее время даже оптический спектр поглощения нейтральной молекулы C_{60} далек от понимания. Для полной ясности необходимо провести дополнительные исследования".

По этой причине представляется целесообразным привести спектр оптического поглощения нейтрального фуллерена C_{60} , вычисленный с учетом сильных корреляций. Вид спектра оптического поглощения нейтральной молекулы C_{60} приведен на рис. 4. Значения энергий в эВ на графике, например 5.88 эВ, показывают, что формирование оптических полос поглощения происходит вблизи этих значений энергий. Приведенный спектр поглощения молекулы фуллерена C_{60} позволяет объяснить особенности спектров поглощения, приведенных в [39–44].

На рис. 5 приведен спектр поглощения молекулы золотого фуллерена Au₃₂, полученный с учетом особенностей переходов электронов, правил отбора при оптических переходах. На рис. 5 приведены значения энергий, вблизи которых формируются оптические полосы поглощения. На рис. 6 приведена часть спектра поглощения для

иона Au₃₂, находящегося левее спектра на рис. 4. При этом значения для плотности оптического поглощения понижаются, дополнительно появляются полосы поглощения вблизи значений энергий 1.26 и 2.08 эВ, которые по сравнению с полосами поглощения нейтрального фуллерена смещены в сторону инфракрасной области спек-

Рис. 5. Спектр оптического поглощения молекулы золотого фуллерена Au_{32} при следующих значениях параметров: U = 8.85 >B, B = -1 >B, $\varepsilon = -2.95 \text{ >B}$, C = 0.25 >B.

тра, полоса с энергией 1.26 эВ находится в ближней инфракрасной области спектра.

С помощью функций Грина (4, 5) нетрудно вычислить плотность электронных состояний, она представлена на рис. 7. При моделировании δ -функция представлена в виде: $\delta(E-x) = (1/\pi)C/$ $(C^2 + (E - x)^2)$. Полуширина *C* взята равной 0.15 эВ. Пики плотности состояний электронов соответствуют сингулярностям Ван Хова. Величина энергетической щели между нижней сингулярностью зоны проводимости (верхней хаббардовской подзоны) и верхней сингулярностью валентной зоны (нижней хаббардовской подзоны) является важнейшим параметром плотности состояний электронов и в случае полупроводников совпадает с минимальной оптической щелью [45-47]. Анализ графика на рис. 7 показывает, что плотность электронных состояний больше в области НОМО-НОМО-З зоны валентных электронов и меньше в области LUMO-LUMO+1 зоны проводимости.

Таким образом, в рамках простой модели удается описать свойства молекулы фуллерена из 32 атомов золота, получить аналитические выражения для фурье-образов антикоммутаторных функций Грина, описывающих физико-химические свойства золотого нанокластера. Это особенно важно в тех случаях, когда решения, полученные впервые в рамках расчетов их первых

Рис. 6. Спектр оптического поглощения молекулы иона золотого фуллерена Au_{32}^- при следующих значениях параметров: $U = 8.85 \Rightarrow B$, $B = -1 \Rightarrow B$, $\varepsilon = -2.95 \Rightarrow B$, $C = 0.25 \Rightarrow B$.

Рис. 7. Плотность состояния электронов в произвольных единицах при следующих значениях параметров: $U = 8.85 \text{ эB}, B = -1 \text{ эB}, \varepsilon = -2.95 \text{ эB}, C = 0.15 \text{ эB}.$

принципов, DFT-вычислений, из-за отсутствия экспериментальных данных нуждаются в наличии реперных точек, в качестве которых могут выступать расчеты в рамках "квантово-полевой химии". Представляет дальнейший интерес исследование физико-химических свойств молекул золотых фуллеренов Au₄₂, Au₅₀, а также влияния хиральности на физику и химию золотых нанотрубок [46, 47].

ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ

Вычисление фурье-образа функций Грина в программе Maple.

СПИСОК ЛИТЕРАТУРЫ

- 1. Bulusu S., Wang X., Li L., Zeng X.G. // Proc. Natl. Acad. Sci. U.S.A. 2006. V. 103. № 22. P. 8362.
- 2. Миронов Г.И. // ФТТ. 2008. Т. 50. № 1. С. 182.
- Schmid G., Simon U. // Chem. Commun. 2005. V. 6. № 3. P. 697.
- Homberger M., Simon U. // Phil. Trans. R. Soc. A. 2010. V. 368. P. 1405.
- 5. Okinaka Y. // Gold Bull. 2000 V. 33. № 4. P. 117.
- 6. Gruene P., Rayner D.M., Redlich B. et al. // Science. 2008. V. 321. № 5889. P. 674.
- Stewart M.E., Anderton C.R., Thompson L.B. et al. // Chem. Rev. 2008. V. 108. № 2. P. 494.
- 8. *Gittins D.I., Bethell D., Schiffrin D.J. et al.* // Nature. 2000. V. 408. № 6808. P. 67.
- Manzoor D., Dar M.S. // Sci. Eng. Appl. 2017. V. 2. P. 156.
- 10. *Haruta M., Kobayashi T., Sano H. et al.* // Chem. Lett. 1987. V. 10. P. 405.
- 11. *Haruta M., Yamada N., Kobayashi T. et al.* // J. Catal. 1989. V. 115. № 2. P. 301.
- 12. *Ning H., Wang J., Ma Q.-M. et al.* // J. Phys. Chem. Solids. 2014. V. 75. № 5. P. 696.
- 13. Johansson M.P., Sundholm D., Vaara J. // Angew. Chem. Int. Ed. 2004. V. 43. № 20. P. 2678.
- 14. Becke A.D. // Phys. Rev. A. 1988. V. 38. № 6. P. 3098.
- Adamo C., Barone V. // J. Chem. Rev. 1999. V. 110. № 13. P. 6158.
- Kroto H., Heath J., Brien S.O. et al. // Nature. 1985.
 V. 318. № 6042. P. 162.
- 17. De H.S., Krishnamutry S., Pal S. // Catalysis Tuday. 2012. V. 198. № 1. P. 106.
- Walter M., Akola J., Lopez-Acevedo O. et al. // Proc. Natl. Acad. Sci. U.S.A. A. 2008. V. 105. № 27. P. 9157.
- Hakkinen H. // Chem. Soc. Rev. 2008. V. 37. № 9. P. 1847.

- я 20. Jena P. // J. Phys. Chem. 2013. V. 4. № 9. Р. 1432.
 - 21. Rauhalahti M., Munoz-Castro A., Sundholm D. // RSC Adv. 2016. V. 6. P. 21332.
 - Ganji M.D., Larijani H.T., Alamol-hoda R. et al. // Scientific Reports. 2018. V. 8. P. 11400.
 - 23. *Hubbard J.* // Proc. Roy. Soc. A. 1963. V. 276. № 1365. P. 238.
 - 24. *Shubin S.P., Wonsowskii S.V.* // Proc. Roy. Soc. A. 1934. V. 145. № 854. P. 159.
 - 25. Миронов Г.И. // ФММ. 2008. Т. 105. № 4. С. 355.
 - 26. Филиппова Е.Р., Миронов Г.И. // ФНТ. 2011. Т. 37. № 6. С. 644.
 - 27. Миронов Г.И. // ФНТ. 2017. Т. 43. № 6. С. 902.
 - 28. *Миронов Г.И., Мурзашев А.И. //* ФТТ. 2011. Т. 53. № 11. С. 2273.
 - 29. *Сидоров Л.Н., Юровская М.А. и др.* Фуллерены. М.: Экзамен, 2005. 688 с.
 - 30. *Haddon R.C.* // Acc. Chem. Res. 1992. V. 25. № 3. P. 127.
 - Saito R., Fujita M., Dresselhaus G. et al. // Phys. Rev. B. 1992. V. 46. № 3. P. 1804.
 - 32. *Mintmire J.W., Dunlap D.I., White C.T.* // Phys. Rev. Lett. 1992. V. 68. № 5. P. 631.
 - Hamada N., Sawada. S.-I. // Phys. Rev. Lett. 1992.
 V. 68. № 10. P. 1579.
 - 34. Collins P.G., Zettl A., Bando H. et al. // Science. 1997. V. 278. № 5335. P. 100.
 - 35. *Ebbesen T.W., Lezec H.J., Hiura H. et al.* // Nature. 1996. V. 382. № 6586. P. 54.
 - 36. *Kane C.L., Mele E.J., Fisher J.E. et al.* // Eur. Phys. Lett. 1998. V. 41. № 6. P. 683.
 - 37. *Pichler T., Knupfer M., Golden M.S. et al.* // Phys. Rev. Lett. 1998. V. 80. № 21. P. 4729.
 - 38. Deshpande V.V., Chandra B., Caldwell R. et al. // Science. 2009. V. 323. № 5910. P. 106.
 - Leach S., Vervloet M., Despres A. et al. // Chem. Phys. 1992. V. 160. № 3. P. 451.
 - 40. Yasumatsu H., Kondow T., Kitagawa H. et al. // J. Chem. Phys. 1996. V. 104. № 3. P. 899.
 - 41. Sassara A., Zerza G., Chergui M. // Astroph. J. Suppl. Series. 2001. V.135. № 2. P. 263.
 - 42. *Ajie H., Alvarez M.M., Anz S.J. et al.* // J. Phys. Chem. 1990. V. 94. № 24. P. 8630.
 - 43. Zimmerman G., Smith A.L. Chemical Properties of the Fullerenes. Drexell University, Philadelphia, 1993.
 - 44. *Николаев А.В., Плахутин Б.Н.* // Успехи химии. 2010. Т. 79. № 9. С. 803.
 - 45. Дьячков П.Н. Электронные свойства и применение нанотрубок. М.: БИНОМ, 2011. 488 с.
 - 46. *Дьячков П.Н.* // Журн. неорган. химии. 2015. Т. 60. № 8. С. 1045.
 - 47. *Миронов Г.И.* // Журн. неорган. химии. 2018. Т. 63. № 1. С. 72.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 10 2019