_ КООРДИНАЦИОННЫЕ __ СОЕДИНЕНИЯ __

УДК 546.16+549.242+547.53.024+548.312.5

СИНТЕЗ И СТРОЕНИЕ 3,3,3-ТРИФТОРПРОПАНАТОВ ТРИ- И ТЕТРАФЕНИЛСУРЬМЫ

© 2019 г. В. В. Шарутин^{1,} *, О. К. Шарутина¹, А. Н. Ефремов¹, Е. В. Артемьева¹

¹Южно-Уральский государственный университет, пр-т Ленина, 76, Челябинск, 454080 Россия *E-mail: vvsharutin@rambler.ru

> Поступила в редакцию 08.10.2018 г. После доработки 31.10.2018 г. Принята к публикации 15.04.2019 г.

Взаимодействием трифенилсурьмы с 3,3,3-трифторпропановой кислотой (HL) в присутствии *трет*-бутилгидропероксида получен *бис*(3,3,3-трифторпропанат) трифенилсурьмы (I), превращающийся при обработке пентафенилсурьмой в 3,3,3-трифторпропанат тетрафенилсурьмы (II). Гидролиз соединения I приводит к образованию μ_2 -оксо-*бис*(3,3,3-трифторпропанат тетрафенилсурьмы (II). Соединение II синтезировано также из HL и пентафенилсурьмы. При избытке кислоты (2 : 1 мол.) из реакционной смеси выделен сольват Ph₄SbOC(O)CH₂CF₃ · HOC(O)CH₂CF₃ (IV). По данным рентгеноструктурного анализа, в соединениях II–IV атомы Sb имеют координацию в разной степени искаженной тригональной бипирамиды. Аксиальные углы CSbO в II и IV равны 173.29(7)° и 178.06(11)° соответственно. В центросимметричной молекуле III (центр инверсии – мостиковый атом кислорода) углы OSbO составляют 175.64(6)°. Длины связей Sb–O и Sb–C равны 2.255(2) и 2.109(2)–2.167(2) Å в II; 1.8169(3), 2.045(2) и 2.065(2)–2.403(3) Å в III; 2.319(3) и 2.110(4)–2.168(3) Å в IV. Внутримолекулярные расстояния Sb…O с карбонильным атомом кислорода (3.414(3) Å (II), 3.232(4) Å (III), 3.233(4) Å (IV)) меньше суммы ван-дер-ваальсовых радиусов Sb и O на ~0.3–0.5 Å.

Ключевые слова: трифенилсурьма, пентафенилсурьма, карбоксилат, сольват, рентгеноструктурный анализ

DOI: 10.1134/S0044457X19100131

ВВЕДЕНИЕ

Хорошо изученными сурьмаорганическими соединениями являются дикарбоксилаты триарилсурьмы и карбоксилаты тетраарилсурьмы [1], биологическая активность которых зависит от типа арильного радикала при атоме металла и природы заместителей в карбоксилатных лигандах [2, 3]. Расширение ряда подобных соединений, содержащих различные заместители при атоме сурьмы, является актуальной задачей, поскольку даже небольшие изменения в строении молекулы могут привести к изменению спектра их биологического действия.

К настоящему времени известны многочисленные дикарбоксилаты триарилсурьмы, которые получали по реакции окислительного присоединения из триарилсурьмы и карбоновых кислот в присутствии пероксида [4—8] или из дигалогенидов триарилсурьмы по реакции замещения [9—14]. Менее изучены карбоксилаты тетраарилсурьмы, которые синтезировали либо деарилированием пентаарилсурьмы карбоновыми кислотами, либо по реакции перераспределения лигандов из пентаарилсурьмы и дикарбоксилатов триарилсурьмы [5]. О получении и особенностях строения дикарбоксилатов триарилсурьмы с атомами фтора в карбоксилатных лигандах ранее сообщалось только в работах [15, 16], фторсодержащие карбоксилаты тетраарилсурьмы к настоящему времени не известны.

В продолжение исследований особенностей синтеза и строения дикарбоксилатов триарилсурьмы нами получены *бис*(3,3,3-трифторпропанат) трифенилсурьмы (I), 3,3,3-трифторпропанат тетрафенилсурьмы (II), μ_2 -оксо-*бис*(3,3,3-трифторпропанатотрифенилсурьма) (III) и сольват (1:1) 3,3,3-трифторпропаната тетрафенилсурьмы с HL (IV).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Ph₃Sb[OC(O)CH₂CF₃]₂ (I). Смесь 100 мг (0.28 ммоль) трифенилсурьмы, 72 мг (0.566 ммоль) HL и 36 мг (0.28 ммоль) 70%-ного водного раствора *трет*-бутилгидропероксида в 30 мл диэтилового эфира выдерживали при 20°С в течение 24 ч. Получили бесцветные кристаллы, выход 150 мг (87%), $t_{пл} = 163$ °С. ИК-спектр (v, см⁻¹): 3059, 1714, 1480, 1437, 1333, 1142, 1128, 1070,

1022, 997, 943, 814, 785, 733, 711, 689, 604, 555, 459, 435, 426, 411.

	С	Н
Найдено, %:	47.32;	3.31.
Для С ₂₄ Н ₁₉ F ₆ O ₄ Sb		
вычислено, %:	47.47;	3.16.

Рh₄SbOC(O)CH₂CF₃ (II). а) Смесь 100 мг (0.20 ммоль) пентафенилсурьмы и 25 мг (0.20 ммоль) HL в 30 мл смеси бензол-октан (5:1) выдерживали при 20°С до полного испарения растворителей. Получили бесцветные кристаллы, выход 103 мг, (94%), $t_{\text{разл}} = 128^{\circ}$ С. ИК-спектр (v, см⁻¹): 3076, 3061, 3045, 3020, 2987, 1662, 1577, 1479, 1456, 1436, 1429, 1355, 1328, 1307, 1261, 1238, 1190, 1161, 1124, 1080, 1066, 1020, 997, 937, 927, 858, 767, 738, 729, 692, 673, 653, 594, 530, 455, 445, 418.

	С	Н
Найдено, %:	58.06;	4.11.
Для C ₂₇ H ₂₂ F ₃ O ₂ Sb		
вычислено, %:	58.19;	3.99.

б) Смесь 100 мг (0.20 ммоль) пентафенилсурьмы, 120 мг (0.20 ммоль) соединения I и 30 мл смеси бензол-октан (5:1) нагревали при 100°С в течение 1 ч, удаляли растворитель. Получили бесцветные кристаллы, выход 215 мг (98%), $t_{\text{разл}} = 128^{\circ}$ С.

Синтез [Ph₃SbOC(O)CH₂CF₃]₂O (III). a) Смесь 100 мг (0.28 ммоль) трифенилсурьмы, 36 мг (0.28 ммоль) HL и 36 мг (0.28 ммоль) 70%-ного водного раствора трет-бутилгидропероксида в 30 мл диэтилового эфира выдерживали при 20°С в течение 24 ч. Твердый остаток перекристаллизовывали из смеси растворителей бензол-гептан (2:1). Получили бесцветные кристаллы, выход 133 мг (96%), *t*_{разл} = 160°С. ИК-спектр (v, см⁻¹): 3147, 3064, 3018, 2991, 2935, 1961, 1888, 1816, 1764, 1653, 1614, 1577, 1535, 1481, 1436, 1415, 1346, 1307, 1284, 1249, 1184, 1159, 1109, 1074, 1022, 997, 970, 935, 927, 854, 777, 746, 738, 692, 671, 665, 607, 532, 460, 453, 418.

	С	Н
Найдено, %:	58.95;	4.12.
Для $C_{42}H_{34}F_6O_5Sb_2$		
вычислено, %:	59.03;	4.02.

б) Соединение I (100 мг) растворяли в 30 мл водного этанола, удаляли растворитель, остаток перекристаллизовывали из смеси бензол-гептан (2:1). Выход 78 мг (98%), *t*_{разл} = 160°С.

Синтез Ph₄Sb[OC(O)CH₂CF₃]₂ · HOOCCH₂CF₃ (IV). a) Смесь 100 мг (0.18 ммоль) II и 23 мг (0.18 ммоль) HL в 30 мл смеси бензол-октан (5:1) выдерживали при 20°С в течение 24 ч. При медленном испарении растворителя происходило образование бесцветных кристаллов, которые сушили и взвешивали. Выход 117 мг (95%), *t*_{разл} = 120°С. ИК-спектр (v, см⁻¹): 3076, 3062, 3045, 3018, 2987, 1751, 1662, 1616, 1577, 1508, 1481, 1436, 1429, 1388, 1355, 1307, 1261, 1238, 1190, 1124, 1080, 1066, 1020, 997, 937, 927, 856, 767, 738, 729, 694, 673, 653, 638, 594, 530, 455, 445.

	С	Н
Найдено, %:	52.45;	3.73.
Для C ₃₀ H ₂₅ F ₆ O ₄ Sb		
вычислено, %:	52.58;	3.68.

б) Смесь 100 мг (0.20 ммоль) пентафенилсурьмы и 50 мг (0.40 ммоль) HL в 30 мл смеси бензолоктан (5:1) выдерживали при 20°С в течение 24 ч. Получили бесцветные кристаллы, выход 121 мг $(90\%), t_{\text{разл}} = 120^{\circ}\text{C}.$

ИК-спектры соединений I-IV записывали на ИК-спектрометре Shimadzu IRAffinity-1S в области 4000-400 см⁻¹ (таблетки KBr).

РСА кристаллов II-IV проведен на дифрактометре D8 QUEST фирмы Bruker (Мо K_{α} -излучение, $\lambda = 0.71073$ Å, графитовый монохроматор) при 296(2) К. Сбор, редактирование данных и уточнение параметров элементарной ячейки, а также учет поглощения проведены по программам SMART и SAINT-Plus [17]. Все расчеты по определению и уточнению структур выполнены по программам SHELXL/PC [18], OLEX2 [19]. Структуры определены прямым методом и уточнены методом наименьших квадратов в анизотропном приближении для неводородных атомов. Положения атомов водорода определены геометрически по модели "наездника". Кристаллографические данные и результаты уточнения структуры приведены в табл. 1, основные длины связей и валентные углы – в табл. 2. Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджском банке структурных данных (№ 1851769 (II), 1851768 (III), deposit@ccdc.cam.ac.uk 1851770 (IV): или http://www.ccdc.cam.ac.uk/data request/cif).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Известно, что окисление трифенилсурьмы пероксидом водорода в присутствии уксусной кислоты приводит к получению диацетата трифенилсурьмы [4], проведение аналогичной реакции в присутствии трет-бутилгидропероксида и карбоновой кислоты сопровождается образованием дикарбоксилата триарилсурьмы [6, 7, 20].

Нами установлено, что реакция трифенилсурьмы с HL в эфире в присутствии *трет*-бутил-

2019

Параметр	II		IV
Параметр		111	10
M	557.20	976.19	685.25
Сингония	Моноклинная	Моноклинная	Моноклинная
Пр. гр.	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$
Параметры решетки:			
a, Å	13.130(4)	9.408(2)	15.689(7)
b, Å	10.818(5)	19.399(6)	10.552(5)
c, Å	17.515(6)	11.184(3)	17.974(9)
α, град	90.00	90.00	90.00
β, град	101.037(12)	92.584(11)	96.316(19)
ү, град	90.00	90.00	90.00
$V, Å^3$	2441.7(16)	2039.1(9)	2957(2)
Ζ	4	2	4
$ ho_{\rm выч},$ г/см 3	1.516	1.590	1.539
μ_{Mo},mm^{-1}	1.174	1.394	1.003
<i>F</i> (000)	1112.0	964.0	1368.0
Размер кристалла, мм	$0.67 \times 0.4 \times 0.15$	$0.55 \times 0.26 \times 0.09$	$0.41 \times 0.23 \times 0.09$
20, град	5.72-2.68	5.56-92.94	5.98-53.64
Интервалы индексов отражений	$-24 \le h \le 24,$	$-19 \le h \le 18,$	$-19 \le h \le 19,$
	$-20 \le k \le 20,$	$-33 \le k \le 33,$	$-13 \le k \le 13,$
	$-32 \le l \le 32$	$-16 \le l \le 16$	$-22 \le l \le 22$
Всего отражений	98337	84422	34278
Независимых отражений	16349	10997	6303
	$(R_{\rm int} = 0.0452)$	$(R_{\rm int} = 0.0406)$	$(R_{int} = 0.0314)$
Число отражений с $F^2 > 2\sigma(F^2)$	9822	7555	4972
Число уточняемых параметров	299	251	370
GOOF	1.011	1.058	1.043
R -факторы по $F^2 > 2\sigma(F^2)$	$R_1 = 0.0487, wR_2 = 0.0988$	$R_1 = 0.0435, wR_2 = 0.1053$	$R_1 = 0.0381, wR_2 = 0.0997$
<i>R</i> -факторы по всем отражениям	$R_1 = 0.0990, wR_2 = 0.1190$	$R_1 = 0.0798, wR_2 = 0.1212$	$R_1 = 0.0530, wR_2 = 0.1129$
Остаточная электронная плот- ность (max/min), <i>e</i> /Å ³	1.29/-1.14	1.41/-1.28	0.51/-0.84

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структур II–IV

гидропероксида (мольное соотношение 1 : 2 : 1) протекает с образованием *бис*(3,3,3-трифторпропаната) трифенилсурьмы, выделенного из реакционной смеси с выходом 87%, строение которого доказано на основании результатов элементного анализа, ИК-спектроскопии, а также предварительных данных PCA (пр. гр. $P2_1/c$, a = 9.095(2), b = 22.704(6), c = 12.487(4) Å, $\beta = 106.229(12)^\circ$, R = 0.759).

$$Ph_{3}Sb + 2HOC(O)CH_{2}CF_{3} + t-BuOOH \rightarrow$$

$$\rightarrow Ph_{3}Sb[OC(O)CH_{2}CF_{3}]_{2} + H_{2}O + t-BuOH.$$
(I)

Известно, что дикарбоксилаты триарилсурьмы арилируются пентаарилсурьмой до карбоксилатов тетраарилсурьмы [21]. Нами показано, что ре-

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 10 2019

акция I с пентафенилсурьмой приводит к количественному образованию 3,3,3-трифторпропаната тетрафенилсурьмы (II), который был нами также синтезирован из пентафенилсурьмы и HL:

$$I + Ph_{5}Sb \rightarrow Ph_{4}SbOC(O)CH_{2}CF_{3} \leftarrow \leftarrow Ph_{5}Sb + HOC(O)CH_{2}CF_{3}.$$
(II)

В водно-спиртовом растворе соединение I количественно превращается в μ_2 -оксо-*бис*(3,3,3-трифторпропанатотрифенилсурьму) (III), которая образуется также по реакции окислительного присоединения из эквимолярных количеств трифенилсурьмы, HL и *трет*-бутилгидропероксида в эфире:

Связь	$d, \mathrm{\AA}$	Угол	ω, град
		II	
Sb(1)-O(1)	2.2552(16)	C(1)Sb(1)O(1)	79.47(7)
Sb(1)-C(1)	2.1172(19)	C(31)Sb(1)O(1)	173.29(7)
Sb(1)-C(31)	2.167(2)	C(21)Sb(1)O(1)	87.73(7)
Sb(1)-C(21)	2.111(2)	C(21)Sb(1)C(1)	121.50(8)
Sb(1)-C(11)	2.109(2)	C(21)Sb(1)C(31)	95.85(8)
O(1)-C(7)	1.277(3)	C(11)Sb(1)C(1)	116.83(8)
O(2)-C(7)	1.222(3)	C(11)Sb(1)C(31)	97.37(9)
F(1)-C(9)	1.324(4)	C(11)Sb(1)C(21)	118.78(8)
		III	
Sb(1)-O(1)	1.8169(3)	O(1)Sb(1)O(2)	175.64(6)
Sb(1)-O(2)	2.0450(16)	O(1)Sb(1)C(11)	104.98(6)
Sb(1)-C(11)	2.065(2)	O(1)Sb(1)C(21)	92.28(6)
Sb(1)-C(21)	2.218(3)	O(2)Sb(1)C(1)	101.14(8)
Sb(1) - C(1)	2.403(3)	C(11)Sb(1)C(21)	105.68(11)
O(1)-Sb(1 ^a)	1.8169(3)	C(11)Sb(1)C(1)	127.47(9)
O(2)-C(7)	1.313(3)	C(21)Sb(1)C(1)	126.23(9)
O(3)-C(7)	1.282(3)	$Sb(1^1)O(1)Sb(1)$	180.0
Преобразования симметрии: $a_1 - x$, $1 - y$, $1 - z$.			
		IV	
Sb(1)-O(1)	2.319(3)	C(11)Sb(1)C(1)	114.11(14)
Sb(1)-C(11)	2.110(4)	C(11)Sb(1)C(31)	95.34(13)
Sb(1)-C(1)	2.116(3)	C(11)Sb(1)C(21)	126.41(13)
Sb(1)-C(31)	2.168(3)	C(1)Sb(1)O(1)	81.92(12)
Sb(1)-C(21)	2.114(4)	C(31)Sb(1)O(1)	178.06(11)
O(1)-C(7)	1.268(5)	C(21)Sb(1)C(1)	115.54(14)
O(2)-C(7)	1.230(5)	C(21)Sb(1)C(31)	96.46(13)
O(4)-C(17)	1.199(6)	O(4)C(17)O(3)	126.6(5)
O(3)-C(17)	1.245(6)	O(1)C(7)O(2)	125.9(2)

Таблица 2. Некоторые межатомные расстояния и валентные углы в структурах II-IV

$$I + H_2O \rightarrow [Ph_3SbOC(O)CH_2CF_3]_2O \leftarrow \leftarrow Ph_3Sb + HOC(O)CH_2CF_3 + t-BuOOH.$$
(III)

Отметим, что карбоксилаты триарилсурьмы с мостиковым атомом кислорода по реакции окислительного присоединения ранее не получали.

Установлено, что при смешении эквимолярных количеств соединения II с 3,3,3-трифторпропановой кислотой в смеси бензол—октан (5 : 1) образуется сольват $Ph_4SbOC(O)CH_2CF_3 \cdot HOC(O)CH_2CF_3$ (IV), который можно получить непосредственно взаимодействием пентафенилсурьмы с избытком HL (мольное соотношение 1 : 2) в бензоле. О выделении подобных сольватов с уксусной и азотной кислотами сообщалось в [22, 23].

По данным PCA, в соединениях II–IV атомы Sb имеют искаженную в разной степени тригонально-бипирамидальную координацию с электроотрицательными карбоксилатными лигандами в аксиальных позициях (рис. 1-3). Аксиальные углы CSbO в II и IV равны 173.29(7)° и 178.06(11)° соответственно. В центросимметричной молекуле III (центр инверсии – мостиковый атом кислорода) угол OSbO равен 175.64(6)°. Угол при мостиковом атоме кислорода линейный. Суммы углов CSbC в экваториальной плоскости в молекулах II, III и IV составляют 357.11(8)°, 359.38(9)° и 356.06(14)° соответственно. В соединениях II и IV атом Sb выходит из плоскости $[C_3]$ в сторону аксиального атома углерода на 0.209 и 0.243 Å соответственно, в III – в сторону мостикового атома кислорода на 0.100 Å. Плоские фенильные кольца в структурах II-IV развернуты вокруг связей Sb-C таким образом, чтобы свести

Рис. 1. Общий вид молекулы II.

Рис. 2. Общий вид молекулы III.

Рис. 3. Общий вид соединения IV.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 10 2019

к минимуму внутри- и межмолекулярные контакты. В молекуле III длина экваториальных связей Sb-C значительно различается: 2.065(2), 2.218(3), 2.403(3) Å, при этом самая короткая связь наблюдается с кольцом, образующим максимальный угол с плоскостью [C₃]. Связь Sb-O с мостиковым атомом кислорода (1.8169(3) Å) короче аналогичной связи с карбоксилатным лигандом (2.0450(16) Å). Внутримолекулярное расстояние Sb-O с карбонильным атомом кислорода равно 3.232(4) Å.

Отметим, что в молекулах μ_2 -оксо-*бис*(трифторацетатотрифенилсурьмы) [24], μ_2 -оксо-*бис*(2-хлорникотинатотрифенилсурьмы) [25] с угловым строением фрагмента Sb–O–Sb и в молекуле μ_2 -оксо*бис*(хлорацетатотрифенилсурьмы) с линейным строением этого фрагмента [26] средние значения длин связей Sb–O заметно больше: 1.974(5), 2.239(5) Å, 1.955(5), 2.219(5) Å и 1.950(4), 2.197(4) Å соответственно.

В молекулах II и IV экваториальные связи Sb-С (2.110(4)-2.116(3) Å и 2.109(2)-2.117(2) Å) короче аксиальных связей (2.168(3) и 2.167(2) Å) и имеют близкие значения, а связи Sb-O значительно различаются (2.255(2) и 2.319(3) Å соответственно). Меньшей длине связи Sb-O соответствует большее расстояние Sb…O (3.414(3) и 3.233(4) Å в II и IV соответственно). В молекуле II связи С-О (1.277(3) Å) и С=О (1.222(3) Å) в карбоксильной группе различаются на 0.055 Å, в то время как в IV разность составляет 0.038 Å (1.268(5) и 1.230(5) Å). Наблюдаемые различия в межъядерных расстояниях, очевидно, обусловлены наличием межмолекулярной водородной связи в аддукте IV между карбонильным атомом кислорода карбоксилатного лиганда и гидроксильной группой молекулы кислоты. Отметим, что геометрические параметры молекулы ацетата тетрафенилсурьмы в свободном виде и в аллукте с уксусной кислотой различаются еще заметнее [27].

ФИНАНСИРОВАНИЕ РАБОТЫ

Южно-Уральский государственный университет благодарит за финансовую поддержку Министерство образования и науки Российской Федерации (грант № 4.6151.2017/8.9).

СПИСОК ЛИТЕРАТУРЫ

- Шарутина О.К., Шарутин В.В. Молекулярные структуры органических соединений сурьмы(V). Челябинск: Издательский центр ЮУрГУ, 2012. 395 с.
- Hadjikakou S.K., Ozturk I.I., Banti C.N. et al. // J. Inorg. Biochem. 2015. V. 153. P. 293. https://doi.org/10.1016/j.jinorgbio.2015.06.006
- Ali M.I., Rauf M.K., Badshah A. et al. // Dalton Trans. 2013. V. 42. P. 16733. https://doi.org/10.1039/C3DT51382C

- Thepe T.C., Garascia R.J., Selvoski M.A. et al. // Ohio J. Sci. 1977. V. 77. № 3. P. 134.
- 5. Шарутин В.В., Сенчурин В.С. Именные реакции в химии элементоорганических соединений. Челябинск, 2011. 427 с.
- Sharutin V.V., Sharutina O.K. // Russ. Chem. Bul. 2017. № 4. Р. 707. [Шарутин В.В., Шарутина О.К. // Изв. РАН. Сер. хим. 2017. № 4. С. 707.] https://doi.org/10.1007/s11172-017-1796-6
- Sharutin V.V., Sharutina O.K. // Russ. J. Gen. Chem. 2016. V. 86. № 8. Р. 1902. [Шарутин В.В., Шарутина О.К. // Журн. общ. химии. 2016. Т. 86. № 8. С. 1366.] https://doi.org/10.1134/S107036321608020X
- Sharutin V.V., Sharutina O.K., Efremov A.N. // Russ. J. Inorg. Chem. 2016. V. 61. № 1. Р. 43. [Шарутин В.В., Шарутина О.К., Ефремов А.Н. // Журн. неорган. химии. 2016. Т. 61. № 1. С. 46.] https://doi.org/10.1134/S003602361601023X
- Yu L., Ma Y.-Q., Wang G.-C. et al. // Heteroatom. Chem. 2004. V. 15. P. 32. https://doi.org/10.1002/hc.10208
- Yu L., Ma Y.-Q., Liu R.-C. et al. // Polyhedron. 2004. V. 23. P. 823. https://doi.org/10.1016/j.poly.2003.12.002
- 11. *Iftikhar T., Rauf M.K., Sarwar S. et al.* // J. Organomet. Chem. 2017. V. 851. № 15. P. 89. https://doi.org/10.1016/j.jorganchem.2017.09.002
- 12. *Hong M., Yin H-D., Li W-K. et al.* // Inorg. Chem. Comm. 2011. V. 14. № 10. P. 1616. https://doi.org/10.1016/j.inoche.2011.06.023
- Yu L., Ma Y.-Q., Liu R.-C. et al. // Polyhedron. 2004. V. 23. № 5. P. 823.
- https://doi.org/10.1016/j.poly.2003.12.002
- Islam A., Rodrigues B.L., Marzano I.M. et al. // Eur. J. Med. Chem. 2016. V. 109. № 15. P. 254. https://doi.org/10.1016/j.ejmech.2016.01.003
- 15. *Ferguson G., Kaither B., Glidewell C. et al.* // J. Organomet. Chem. 1991. V. 419. № 3. P. 283. https://doi.org/10.1016/0022-328X(91)80241-B
- 16. Sharutin V.V., Senchurin V.S., Sharutina O.K. et al. // Russ. J. Gen. Chem. 2012. V. 82. № 1. Р. 95. [Шарутин В.В., Сенчурин В.С., Шарутина О.К. и др. //

Журн. общ. химии. 2012. Т. 82. № 1. С. 99.] https://doi.org/10.1134/S1070363212010161

- 17. Bruker (1998). SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1998). SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- Гущин А.В. Получение органических производных сурьмы, висмута(V) и применение их в органическом синтезе: Дис.... д-ра хим. наук. Нижний Новгород, 1998. 282 с.
- Sharutin V.V., Senchurin V.S., Sharutina O.K. et al. // Russ. J. Gen. Chem. 1996. V. 66. № 10. Р. 1750. [Шарутин В.В., Сенчурин В.С., Шарутина О.К. и др. // Журн. общ. химии. 1996. Т. 66. № 10. С. 1755.]
- Schmidbaur H., Mitschke K.H. // Angew. Chem. 1971. № 83. P. 149. https://doi.org/10.1002/zaac.19713860204
- 23. Sharutin V.V., Senchurin V.S., Sharutina O.K. et al. // Russ. J. Inorg. Chem. 2008. V. 53. № 7. Р. 1110. [Шарутин В.В., Сенчурин В.С., Шарутина О.К. и др. // Журн. неорган. химии. 2008. Т. 53. № 7. С. 1194.] https://doi.org/10.1134/S0036023608070206
- 24. *Gibbons M.N., Sowerby D.B.* // J. Organomet. Chem. 1998. V. 555. № 2. P. 271. https://doi.org/10.1016/S0022-328X(97)00759-6
- Quan L., Yin H., Wang D. // Acta Crystallogr. 2009.
 V. 65E. № 1. P. m99. https://doi.org/10.1107/S1600536808042335
- 26. Quan L., Yin H., Wang D. // Acta Crystallogr. 2008. V. 64E. № 2. P. m349. https://doi.org/10.1107/S1600536808000676
- 27. *Bone S.P., Sowerby D.B.* // Phosphorus, Sulfur and Silicon and the Related Elements. 1989. V. 45. P. 23. https://doi.org/10.1080/10426508908046072