_ КООРДИНАЦИОННЫЕ ____ СОЕДИНЕНИЯ ____

УДК 546.571+546.18+547.53.024+548.312.2+547.491

СИНТЕЗ И СТРОЕНИЕ ДИЦИАНОАРГЕНТАТОВ ОРГАНИЛТРИФЕНИЛФОСФОНИЯ [$Ph_3PCH_2CH=CHCH_2PPh_3$]²⁺[Ag(CN)₂]₂ и [Ph_3PR]⁺[Ag(CN)₂]⁻(R = Et, CH=CMe₂)

© 2019 г. В. В. Шарутин¹, О. К. Шарутина¹, М. А. Попкова¹, Н. М. Тарасова^{1, *}, В. В. Полозова¹

¹Национальный исследовательский Южно-Уральский государственный университет, пр-т им. В.И. Ленина, 76, Челябинск, 454080 Россия *E-mail: tarasovanm@susu.ru Поступила в редакцию 14.01.2019 г.

После доработки 18.02.2019 г. Принята к публикации 17.06.2019 г.

Взаимодействием дицианоаргентата калия с хлоридами алкилтрифенилфосфония в водном раство-

ре синтезированы ионные комплексы Ag(I) $[Ph_3PCH_2CH=CHCH_2PPh_3]^{2+}[Ag(CN)_2]_2^-$ (I) и $[Ph_3PR]^+[Ag(CN)_2]^-$, где R = Et (II), CHCMe₂ (III). ИК-спектры соединений I–III характеризуются наличием полос поглощения CN-групп в области 2131–2137 см⁻¹. В ходе рентгеноструктурных исследований установлено, что катионы алкилтрифенилфосфония имеют искаженную тетраэдрическую конфигурацию: углы CPC составляют 105.6(3)°–112.8(3)° (I), 108.0(3)°–110.6(4)° (II), 106.77(11)°–113.74(11)° (III), связи P–C равны 1.790(6)–1.810(6) (I), 1.774(8)–1.806(7) (II) и 1.745(3)–1.806(2) Å (III). В анионах [Ag(CN)_2]⁻ углам CAgC соответствуют значения 168.4(3)° (I), 175.5(3)° (II), 180.000(2)° (III), расстояния Аg–C составляют 2.039(10)–2.093(10) Å. Формирование кристаллов I–III обусловлено в основном слабыми водородными связями между атомами водорода катионов и азота анионов N…H–C (2.37–2.74 Å).

Ключевые слова: бис(дицианоаргентат) бут-2-ен-1,4-диил-*бис*(трифенилфосфония), дицианоаргентаты алкилтрифенилфосфония, рентгеноструктурный анализ

DOI: 10.1134/S0044457X19120158

ВВЕДЕНИЕ

Комплексы дицианилов металлов вызывают интерес исследователей в связи с их использованием при получении полупроводниковых и оптически активных материалов, которые приобретают при этом разнообразные свойства [1-6]. В частности, специфическое строение дицианоаргентатных анионов, способствующее образованию олигомеров, приводит к проявлению магнитной активности [7]. Кроме того, комплексы с анионами $[Ag(CN)_2]^-$ перспективны в плане создания новых нано- и жилкокристаллических систем [8. 9]. С точки зрения поиска структур, обладающих ценными физико-химическими свойствами, перспективным является варьирование катионной части лицианоаргентатных комплексов [10]. В зависимости от строения катиона дицианоаргентатные анионы в кристаллах могут быть мономерными [2, 11, 12], полимерными с разветвленным строением [13-15], выполнять мостиковую функцию, связывая катионы и анионы [16], образовывать "димеры" с короткими расстояниями Ад…Ад [17–19]. Следует отметить, что комплексы

 $[Ag(CN)_2]^-$ с органическими и элементоорганическими катионами мало изучены. В литературе представлены немногочисленные примеры подобных систем с катионами имидазолия [11, 20], пиримидиния [21], *бис*(трифенилфосфан)иминия [22, 23] и трифенилтеллурия [24]. Данные о синтезе и особенностях строения дицианоаргентатов тетраорганилфосфония в литературе отсутствуют.

В настоящей работе впервые синтезированы и структурно охарактеризованы дицианоаргентатные комплексы органилтрифенилфосфония $[Ph_3PCH_2CH=CHCH_2PPh_3]^{2+}[Ag(CN)_2]_2^-$ (I) и $[Ph_3PR]^+[Ag(CN)_2]^-$, где $R = CH_2CH_3$ (II), R = $= CH=CMe_2$ (III).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез бис(дицианоаргентата) бут-2-ен-1,4-диилбис(трифенилфосфония) [Ph₃PCH₂CH=CHCH₂PPh₃]²⁺ [Ag(CN)₂]₂ (I). К водному раствору 326 мг (0.502 ммоль) дихлорида бутен-2-ен-1,4-*бис*(трифенилфосфония) добавляли раствор 200 мг

СИНТЕЗ И СТРОЕНИЕ ДИЦИАНОАРГЕНТАТОВ

Параметр	Ι	II	III
M	898.45	451.24	792.63
Сингония	Триклинная	Моноклинная	Триклинная
Пр. гр.	$P\overline{1}$	$P2_{1}/c$	Р
<i>a</i> , Å	9.57(2)	9.648(11)	8.997(5)
b, Å	9.624(19)	29.71(4)	10.579(5)
<i>c</i> , Å	12.698(18)	7.490(8)	10.647(8)
α, град	70.34(7)	90.00	101.11(3)
β, град	68.18(9)	106.61(3)	100.26(3)
ү, град	84.45(17)	90.00	92.80(2)
$V, Å^3$	1022(3)	2057(4)	974.8(10)
Ζ	2	4	1
$ ho_{\rm выч},$ г/см ³	1.459	1.457	1.350
μ, мм ⁻¹	1.071	1.065	0.633
<i>F</i> (000)	452.0	912.0	409.0
Размер кристалла, мм	$0.36 \times 0.12 \times 0.07$	$0.21\times0.15\times0.08$	$0.42 \times 0.37 \times 0.3$
Область сбора данных по 20, град	6.32-39.7	5.84-46.78	6.14-58.38
Интервалы индексов отражений	$-9 \le h \le 9, -9 \le k \le 9,$	$-10 \le h \le 10, -32 \le k \le 32,$	$-12 \le h \le 12, -14 \le k \le 14,$
TT V	$-12 \le l \le 12$	$-8 \le l \le 8$	$-14 \le l \le 14$
Измерено отражений	7807	19859	40651
Независимых отражений	1839 ($R_{\rm int} = 0.0345$)	2948 ($R_{\rm int} = 0.0425$)	5267 ($R_{\rm int} = 0.0276$)
Отражений с <i>I</i> > 2σ(<i>I</i>)	1454	2244	4282
Переменных уточнения	235	236	233
GOOF	1.069	1.103	1.062
R -факторы по $F^2 \ge 2\sigma(F^2)$	$R_1 = 0.0371, wR_2 = 0.0842$	$R_1 = 0.0570, wR_2 = 0.1111$	$R_1 = 0.0519, wR_2 = 0.1629$
<i>R</i> -факторы по всем отражениям	$R_1 = 0.0541, wR_2 = 0.0934$	$R_1 = 0.0785, wR_2 = 0.1226$	$R_1 = 0.0632, wR_2 = 0.1743$
Остаточная электронная	0.28/-0.38	0.48/-0.69	1.38/-0.72
плотность (min/max), $e/Å^3$			

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структур I-III

(1.004 ммоль) дицианоаргентата калия в 5 мл воды. Воду удаляли, остаток экстрагировали ацетонитрилом (3 × 5 мл). Медленное испарение растворителя приводило к образованию бледно-желтых кристаллов, пригодных для проведения рентгеноструктурного анализа. Выделили 383 мг (85%) комплекса I с $t_{nл} = 218.5^{\circ}$ C.

ИК-спектр (v, см⁻¹): 3415, 3055, 3043, 3020, 2964, 2933, 2893, 2862, 2792, 2131, 1631, 1585, 1496, 1481, 1458, 1435, 1408, 1315, 1247, 1186, 1157, 1112, 1072, 1026, 975, 844, 756, 744, 723, 705, 690, 613, 543, 516, 503, 493, 457, 443, 435, 422, 416.

	С	Н
Найдено, %:	58.71;	4.13.
Для $C_{44}H_{36}Ag_2N_4P_2$		
вычислено, %:	58.80;	4.01.

Соединения II и III синтезировали по аналогичной методике.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 12 2019

Дицианоаргентат трифенилэтилфосфония (II). Выделено 85% комплекса II с $t_{nn} = 104.1$ °C.

ИК-спектр (v, см⁻¹): 3167, 3080, 3043, 3024, 3008, 2989, 2981, 2931, 2900, 2881, 2216, 2140, 2129, 2088, 1986, 1905, 1834, 1784, 1687, 1612, 1583, 1479, 1456, 1436, 1406, 1336, 1315, 1269, 1244, 1182, 1161, 1114, 1105, 1070, 1033, 1014, 997, 931, 856, 846, 748, 734, 721, 690, 661, 530, 503, 489, 451, 441, 418.

	С	Н
Найдено, %:	58.42;	4.47.
Для C ₂₂ H ₂₀ AgN ₂ P		
вычислено, %:	58.54;	4.34.

Дицианоаргентат (2-метилпроп-1-ен-1-ил)трифенилфосфония (III). Выделено 87% комплекса III с $t_{nn} = 195.8^{\circ}$ C.

ИК-спектр (v, см⁻¹): 3091, 3064, 3051, 3022, 3001, 2956, 2914, 2164, 2137, 1973, 1905, 1826, 1778, 1631, 1587, 1573, 1481, 1436, 1409, 1363, 1338, 1307,

1273, 1193, 1172, 1163, 1141, 1111, 1074, 1028, 997, 966, 931, 854, 846, 765, 754, 721, 694, 684, 642, 615, 599, 542, 518, 486, 455, 416.

	С	Н
Найдено, %:	66.59;	5.42.
Для C ₄₆ H ₄₂ AgN ₂ P		
вычислено, %:	66.70;	5.30.

Дифференциальную сканирующую калориметрию (ДСК) соединений I—III проводили с помощью комплекса синхронного термического анализа Netzsch 449C Jupiter.

ИК-спектры комплексов I–III записывали на ИК-Фурье-спектрометре Shimadzu IR Affinity-1S в таблетках KBr.

РСА кристаллов I-III проводили на дифрактометре D8 Quest фирмы Bruker (Мо K_{α} -излучение, λ = 0.71073 Å, графитовый монохроматор). Для сбора, редактирования данных и уточнения параметров элементарной ячейки, а также учета поглощения использовали программное обеспечение SMART и SAINT-Plus [25]. Все расчеты по определению и уточнению структур выполнены по программам SHELXL/PC [26] и OLEX2 [27]. Структуры определены прямым методом и уточнены методом наименьших квадратов в анизотропном приближении для неводородных атомов. Основные кристаллографические данные и результаты уточнения структур I–III приведены в табл. 1, избранные длины связей и валентные углы – в табл. 2.

Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджском банке структурных данных (№ 1878005 (I), 1878008 (II), 1878006 (III); deposit@ccdc.cam.ac.uk; http://www.ccdc.cam.ac.uk).

Таблица 2. Основные длины связей и валентные углы в структурах I–III

Связь	Длина, Å	Угол	ω, град	
Ι				
Ag(1) - C(9)	2.039(10)	C(9)Ag(1)C(10)	168.4(3)	
Ag(1) - C(10)	2.059(10)	C(21)P(1)C(7)	109.5(3)	
P(1)-C(21)	1.798(7)	C(21)P(1)C(11)	108.6(3)	
P(1)-C(1)	1.790(6)	C(1)P(1)C(21)	110.5(3)	
P(1)-C(7)	1.810(6)	C(1)P(1)C(7)	105.6(3)	
P(1)-C(11)	1.799(7)	C(1)P(1)C(11)	109.8(3)	
N(1)-C(9)	1.101(9)	C(11)P(1)C(7)	112.8(3)	
N(2) - C(10)	1.104(9)	N(2)C(10)Ag(1)	174.1(9)	
C(1) - C(2)	1.403(8)	N(1)C(9)Ag(1)	171.7(8)	
Преобразован	ния симмет	трии: ¹ − <i>x</i> , 1 − <i>y</i> , 1 −	- <i>Z</i> .	
		II		
Ag(1)-C(9)	2.093(10)	C(10)Ag(1)C(9)	175.5(3)	
Ag(1) - C(10)	2.068(11)	C(21)P(1)C(1)	110.6(3)	
P(1)-C(21)	1.774(8)	C(21)P(1)C(11)	108.4(3)	
P(1) - C(1)	1.806(7)	C(21)P(1)C(7)	110.6(6)	
P(1)-C(11)	1.791(6)	C(11)P(1)C(1)	108.0(3)	
P(1)-C(7)	1.787(8)	C(7)P(1)C(1)	110.6(4)	
N(1)-C(9)	1.089(9)	C(7)P(1)C(11)	108.5(4)	
N(2)-C(10)	1.121(11)	N(1)C(9)Ag(1)	177.1(8)	
III				
$Ag(1) - C(27^1)$	2.059(5)	$C(27^{1})Ag(1)C(27)$	180.000(2)	
Ag(1) - C(27)	2.059(5)	C(1)P(1)C(11)	107.46(10)	
P(1)-C(1)	1.794(2)	C(1)P(1)C(21)	108.22(11)	
P(1)-C(11)	1.806(2)	C(21)P(1)C(11)	107.12(10)	
P(1)-C(21)	1.802(2)	C(7)P(1)C(1)	113.25(12)	
P(1)-C(7)	1.745(3)	C(7)P(1)C(11)	113.74(11)	
P(1)-C(27)	1.113(6)	C(7)P(1)C(21)	106.77(11)	
Преобразования симметрии: ¹ – <i>x</i> , 2 – <i>y</i> , 1 – <i>z</i> .				

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Комплексы I—III получали взаимодействием дицианоаргентата калия и хлоридов алкилтрифенилфосфония в водном растворе:

I

$$[Ph_3PCH_2CH=CHCH_2PPh_3]Cl_2 + 2K[Ag(CN)_2] \xrightarrow{-2KCl} Ph_3PCH_2CH=CHCH_2PPh_3][Ag(CN)_2]_2$$

$$[Ph_{3}PR]Cl + K[Ag(CN)_{2}] \xrightarrow[-KCl]{-KCl} [Ph_{3}PR][Ag(CN)_{2}]$$

II, III
$$R = CH_{2}CH_{3} (II) R = CH = C(CH_{3})_{2} (III)$$

После испарения воды сухой остаток перекристаллизовывали из ацетонитрила для получения монокристаллов. Соединения I—III устойчивы на воздухе.

Согласно данным ДСК, кристаллы I, II, III плавятся при температурах 218.5, 104.1, 195.8°С соответственно и не претерпевают разложения при нагревании до 200°С.

Известно, что поглощение С≡N-групп в ИКспектрах соединений независимо от их природы (органические, неорганические, элементоорганические) наблюдается в нешироком интервале частот: 2200–2000 см⁻¹, т.е. колебания связей С \equiv N не чувствительны к влиянию окружения [28]. В связи с этим соединения с цианогруппами легко обнаружить по поглощению в указанной области. В ИК-спектрах соединений I, II, III колебаниям С \equiv N-групп соответствуют полосы при 2131, 2129, 2137 см⁻¹. Колебания связей P–Ph в катионах находятся в интервале частот

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 12 2019

1306

Рис. 1. Строение комплекса І.

Рис. 2. Строение комплекса II.

1450—1435 см⁻¹ [28]. В спектрах соединений I, II и III имеет место поглощение при 1435, 1436 и 1436 см⁻¹, относящееся к колебаниям связи фосфор—углерод фенильных колец. В спектрах I и III с непредельными алкильными радикалами на-

блюдаются полосы при 1585 и 1631 см⁻¹, характерные для колебаний кратных связей C=C.

Рентгеноструктурные исследования показали, что кристаллы I–III сформированы из катионов органилтрифенилфосфония и мономерных ди-

Рис. 3. Строение комплекса III.

Рис. 4. Упаковка катионов и анионов в кристалле I (расположение вдоль кристаллографической оси *a*).

Рис. 5. Упаковка катионов и анионов в кристалле II (расположение вдоль кристаллографической оси а).

цианоаргентатных анионов (рис. 1–3). Расстояния Ад[…]Ад между анионами для всех структур значительно превышают суммы ван-дер-ваальсовых радиусов атомов серебра (3.40(3) Å) [11].

В кристалле I катионы центросимметричны с центром инверсии, совпадающим с серединой двойной связи фрагмента CH₂CH=CHCH₂. Тетраэдрическая конфигурация катионов несколько искажена, углы при атоме фосфора отличаются от значения теоретического И составляют: $105.6(3)^{\circ}-112.8(3)^{\circ}$ (I), $108.0(3)^{\circ}-110.6(4)^{\circ}$ (II), 106.77(11)°-113.74(11)° (III), длины связей Р-С_{Рh} (1.790(6)—1.799(7) Å (I), 1.774(8)—1.806(7) Å (II) и 1.794(2)-1.806(2) Å (III)) близки между собой, как и расстояния Р-С_{аlk} (1.810(6), 1.787(7), 1.745(3) Å). Отметим, что в структурно исследованных комплексах рутения палладия катионы И [Ph₃PCH₂CH=CHCH₂PPh₃]²⁺ также центросимметричны и имеют очень близкие значения валентных углов СРС и расстояний Р-С [29, 30]. В анионах $[Ag(CN)_2]^-$ углы CAgC равны 168.4(3)° (I), 175.5(3)° (II), 180.000(2)° (III), расстояния Ag-C (2.039(10)–2.093(10) Å) близки к сумме ковалентных радиусов указанных атомов (2.03 Å [31]). Тройные связи C=N в цианидных лигандах комплексов I, II и III равны 1.101(9), 1.104(9) Å; 1.089(9), 1.121(11) Å и 1.113(6), 1.113(6) Å соответственно. Структурная организация кристаллов соединений I–III обусловлена в основном образованием слабых водородных связей между атомом водорода катионов и атомом азота анионов N…H–C (2.37–2.74 Å).

На рис. 4—6 изображено относительное расположение катионов и анионов в кристаллах дицианоаргентатов тетраорганилфосфония I, II и III.

ЗАКЛЮЧЕНИЕ

Осуществлен синтез и проведены структурные исследования *бис*(дицианоаргентата) бут-2-ен-1,4-диил-*бис*(трифенилфосфония), а также дици-

Рис. 6. Упаковка катионов и анионов в кристалле III (расположение вдоль кристаллографической оси а).

аноаргентатов трифенилэтилфосфония и (2-метилпроп-1-ен-1-ил)трифенилфосфония. Кристаллы комплексов состоят из катионов органилтрифенилфосфония, имеющих искаженную тетраэдрическую конфигурацию, и мономерных дицианоаргентатных анионов. Соединения термически стабильны до 200°С.

БЛАГОДАРНОСТЬ

Работа выполнена при финансовой поддержке в рамках государственного задания № 4.6151.2017/8.9.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Xiaobo L., Patterson H.* // Materials. 2013. V. 6. P. 2595. https://doi.org/10.3390/ma6072595
- Dechambenoit P., Ferlay S., Kyritsakas N. et al. // Cryst. Eng. Commun. 2011. V. 13. P. 1922. https://doi.org/10.1039/C0CE00607F
- Hill J.A., Thompson A.L., Goodwin A.L. // J. Am. Chem. Soc. 2018. V. 138. P. 5886. https://doi.org/10.1021/jacs.5b13446

- 4. *Assefaa Z., Haire R.G., Sykora R.E.* // J. Solid State Chem. 2008. V. 181. P. 382. https://doi.org/10.1016/j.jssc.2007.11.036
- Brown M.L., Ovens J.S., Leznoff D.B. // Dalton Trans. 2017. V. 46. P. 7169. https://doi.org/10.1039/C7DT00942A
- Chorazy S., Wyczesany M., Sieklucka B. // Molecules. 2017. V. 22. P. 1902. https://doi.org/10.3390/molecules22111902
- Agust G., Bele'n Gaspar A., Muñoz M.C. et al. // Inorg. Chem. 2007. V. 46. P. 9646. https://doi.org/10.1021/ic060247i
- Dobbs W., Suisse J.-M., Douce L. et al. // Angew. Chem. Int. Ed. 2006. V. 45. P. 4179. https://doi.org/10.1002/anie.200600929
- 9. Al Abbas A., Heinrich B., L'Her M. et al. // New J. Chem. 2016. V. 41. P. 2604. https://doi.org/10.1039/C6NJ03590F
- Ahern J.C., Shilabin A., Henline K.M. et al. // Dalton Trans. 2014. V. 43. P. 12044. https://doi.org/10.1039/c4dt01110d
- 11. *Mallah E., Abu-Salem Q., Sweidan K. et al.* // Z. Naturforsch. 2011. V. 66b. P. 545.

1311

- 12. *Tsujimoto K., Ogasawara R., Kishi Y. et al.* // New J. Chem. 2014. V. 38. P. 406. https://doi.org/10.1039/C3NJ00979C
- Urban V., Pretsch T., Hart H. // Angew. Chem. Int. Ed. 2005. V. 44. P. 2794. https://doi.org/10.1002/anie.200462793
- Liu X., Guo G.-C., Fu M.-L. et al. // Inorg. Chem. 2006. V. 45. P. 3679. https://doi.org/10.1021/ic0601539
- Geiser U., Wang H.H., Gerdom L.E. et al. // J. Am. Chem. Soc. 1985. V. 107. P. 8305. https://doi.org/10.1021/ja00312a106
- 16. Hill J.A., Thompson A.L., Goodwin A.L. // J. Am. Chem. Soc. 2016. V. 138. P. 5886. https://doi.org/10.1021/jacs.5b13446
- Korkmaz N., Aydin A., Karadag A. et al. // Spectrochim. Acta, Part A. 2017. V. 173. P. 1007. https://doi.org/10.1016/j.saa.2016.10.035
- Stender M., White-Morris R.L., Olmstead M.M. et al. // Inorg. Chem. V. 42. P. 4504. https://doi.org/10.1021/ic0343830
- Zhang H.-X., Kang B.-S., Deng L.-R. et al. // Inorg. Chem. Commun. 2001. V. 4. P. 41. https://doi.org/10.1016/S1387-7003(00)00191-X
- Yoshida Y., Muroi K., Otsuka A. et al. // Inorg. Chem. 2004. V. 43. P. 1458. https://doi.org/10.1021/ic035045q
- Jiang Z.-Y., Dong H.-Z., Zhang G. et al. // Acta Crystallogr. 2008. V. E64. P. m858. https://doi.org/10.1107/S1600536808015791
- Carcelli M., Ferrari C., Peliui C. et al. // J. Chem. Soc., Dalton Trans. 1992. P. 2127. https://doi.org/10.1039/DT9920002127

- Jaafar M., Liu X., Dielmann F. et al. // Inorg. Chim. Acta. 2016. V. 45. P. 443. https://doi.org/10.1016/j.ica.2015.12.018
- 24. *Klapötke T.M., Krumm B., Mayer P. et al.* // Eur. J. Inorg. Chem. 2002. P. 2701. https://doi.org/10.1002/1099-0682(200210)2002:10< 2701::AID-EJIC2701>3.0.CO;2-G
- Bruker (1998). SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1998). SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- 28. *Преч Э., Бюльманн Ф., Аффольтер К.* Определение строения органических соединений. М.: Мир, 2006. 440 с.
- Sharutin V.V., Sharutina O.K., Senchurin V.S. et al. // Russ. J. Inorg. Chem. 2018. V. 63. Р. 1178. [Шарутин В.В., Шарутина О.К., Сенчурин В.С. и др. // Журн. неорган. химии. 2018. Т. 63. С. 1153. https://doi.org/10.1134/S0044457X18090180]. https://doi.org/10.1134/S0036023618090188
- Sharutin V.V., Sharutina O.K., Senchurin V.S. et al. // Russ. J. Inorg. Chem. 2018. V. 63. Р. 747. [Шарутин В.В., Шарутина О.К., Сенчурин В.С. и др. // Журн. неорган. химии. 2018. Т. 63. С. 712.] https://doi.org/10.1134/S0036023618060220
- 31. *Batsanov S.S.* // Russ. J. Inorg. Chem. 1991. V. 36. № 12. Р. 2015. [*Бацанов С.С.* // Журн. неорган. химии. 1991. Т. 36. № 12. С. 3015.]