_ ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 546.72;546.815.2

ИССЛЕДОВАНИЕ СИСТЕМЫ FeS-PbS

© 2019 г. У. А. Гасанова¹, О. М. Алиев¹, И. Б. Бахтиярлы^{1, *}, Ш. Г. Мамедов¹

¹Институт катализа и неорганической химии им. М. Нагиева НАН Азербайджана, Республика Азербайджан, Az1143 Баку, пр-т. Г. Джавида, 113 *e-mail: azxim@mail.ru

> Поступила в редакцию 07.07.2017 г. После доработки 20.04.2018 г. Принята к публикации 06.07.2018 г.

Система FeS—PbS изучена методами дифференциального термического, рентгенофазового и микроструктурного анализов и измерением микротвердости. Установлено, что система FeS—PbS является квазибинарным сечением и относится к эвтектическому типу. Координаты эвтектический точки: 45 мол. % PbS и T = 1123 K. На основе исходных компонентов образуются узкие области растворимости.

Ключевые слова: сульфид, эвтектика, диаграмма состояния, растворимость **DOI:** 10.1134/S0044457X19020077

введение

Известно, что построение T—x-фазовых диаграмм политермических сечений и проекции поверхности ликвидуса позволяет оптимизировать методики синтеза и выращивания монокристаллов. Система FeS—PbS изучена неоднократно [1—18], но данные авторов разнятся. Поэтому мы исследовали систему FeS—PbS заново.

Система Fe–S также изучалась разными авторами [1, 2, 7, 16–18], однако построенные диаграммы состояния отличаются друг от друга. Наиболее приемлемой можно считать диаграмму системы Fe–S [9], для которой были учтены предыдущие исследования. По данным [9], в системе Fe–S кроме соединений FeS и FeS₂ образуется ряд нестехиометрических фаз с общей формулой Fe_{1-x}S (рис. 1).

По данным [9–11], соединение FeS плавится конгруэнтно при 1460 К и имеет две низкотемпературные модификации с температурными переходами при 558 и 411 К [1, 2]. Соединение FeS кристаллизуется в гексагональной сингонии типа NiAs [10, 11] с параметрами элементарной ячейки

$$a = 3.460, c = 5.681$$
 Å, пр. гр. $P6_3/mmc-D\frac{4}{6h}$.

Соединение PbS плавится конгруэнтно при 1370 K [11] и кристаллизуется в кубической сингонии типа NaCl с параметром элементарной ячейки a = 5.935 Å, пр. гр. *Fm*3*m*. По данным [14, 15], PbS — полупроводник с шириной запрещенной зоны $\Delta E = 0.42$ эВ. Квазибинарная система FeS—PbS была исследована в [19—24], однако построенные диаграммы состояния не дают полной картины фазовых равновесий и не соответствуют друг другу. Следует отметить, что во всех работах систему FeS—PbS относят к эвтектическому типу, однако ни в одной работе не приводятся данные о растворимости на основе исходных сульфидов FeS и PbS и фазовом переходе FeS. Кроме того, кривые ликвидуса системы FeS—PbS не могут быть прямолинейными, как указано в [21].

Цель настоящей работы — заново изучить фазовые равновесия в системе FeS—PbS и построить ее *T*—*x*-диаграмму состояния.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Сульфид свинца (PbS) получали взаимодействием особо чистых элементов (Рb - 99.999%, S - 99.9999%) при температуре 1350-1400 К в толстостенных кварцевых ампулах, вакумированных до остаточного давления (≈0.1 Па). После окончания синтеза образцы PbS гомогенизировали при 1100 К в течение недели. Установлено, что PbS имеет кубическую структуру с a = 5.934 Å, что хорошо согласуется с данными [11]. FeS также синтезировали из особо чистых элементов (железо восстановленное, сера марки В-4) в вакуумированных кварцевых ампулах (≈0.1 Па). По данным рентгенофазового анализа (РФА), получена фаза сульфида железа, кристаллизующаяся в гексагональной сингонии с параметрами элементарной ячейки a = 5.965, c = 11.757 Å, z = 12, $\rho = 4.84$ г/см³,

Рис. 1. *Т*-*х*-фазовая диаграмма системы Fe-S.

20, град	d _{эксп}	$I/I_0, \%$	hkl
17.176	5.15858	3.2	100
18.752	4.72840	3.5	101
29.894	2.98650	75.4	110
30.436	2.93453	4.6	004
33.655	2.66088	75.3	112
35.491	2.52734	13.0	201
41.795	2.15953	6.9	203
42.230	2.13830	2.8	105
43.224	2.09139	100	114
46.469	1.95262	3.0	210
47.067	1.92920	8.6	211
52.284	1.74830	6.4	213
53.057	1.72463	21.1	300
56.143	1.63694	1.3	116
56.523	1.62682	2.6	214
61.632	1.50366	2.7	215
63.262	1.46878	2.3	008
64.295	1.44766	1.9	222
65.545	1.42304	1.6	311
69.839	1.34569	0.6	313
70.708	1.33129	7.4	224

Таблица 1. Расчет рентгенограмм FeS

которые согласуются с данными [25]. Расчетные данные системы FeS—PbS представлены в табл. 1.

Тройные сплавы, богатые FeS (> 70 мол. % FeS), синтезировали в двойных толстостенных кварцевых ампулах, так как из-за теплового расширения элементарной ячейки при охлаждении они часто растрескиваются. Максимальная температура синтеза составляла 1475 К (3 ч). Синтез продолжался не менее 8 ч. В жидком состоянии сплавы периодически перемешивали. После 40-минутного выдерживания при максимальной температуре (1475 К) образцы охлаждали со скоростью 60–65 град/ч до 1050 К и после этого закаляли в ледяной воде. Затем сплавы помещали в другую ампулу и после откачки воздуха отжигали при температуре 975–1050 К в течение недели.

Исследование сплавов проводили методами дифференциального термического (ДТА, HTP-73, хромель-алюмелевая термопара, скорость нагрева 7–10 град/мин, эталон – прокаленный Al_2O_3), рентгенофазового (CuK_{α} -излучение, прибор – D2 Phaser) и микроструктурного (МСА, ПМТ-3) анализов. Травление осуществляли хромовой смесью состава (0.5 г K₂Cr₂O₇ + 5 мл H₂SO_{4(конц)} +

Рис. 2. Термограммы сплавов, содержащих 10 мол. % PbS (а) и 70 мол. % PbS (б).

+ 20 мл H₂O). Погрешность в определении температуры плавления образцов составляла ± 2 K. Погрешность измерения микротвердости не превышала 3-4%, а точность вычисления параметров элементарной ячейки — ± 0.001 Å.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

По разрезу FeS—PbS был синтезирован 21 сплав в интервале концентрации 0—100 мол. % PbS (табл. 2). Синтез проводили из бинарных сульфидов визуально-комбинированным методом при 1350—1475 К, с последующим вибрационным перемешиванием. По предварительным результатам ДТА выбирали режим отжига; сплавы после синтеза го-

Рис. 3. *Т*-х-фазовая диаграмма системы FeS-PbS.

могенизировали при 1050 К в течение 200 ч. Равновесие сплавов контролировали методами МСА и РФА. Литые отожженные сплавы изучали методами ДТА, РФА, МСА и измерением микротвердости.

Результаты термического анализа показали, что изотермические эффекты наблюдаются на термограммах сплавов в интервале 0–70 мол. % PbS при 411 и 560 K, что, по всей вероятности, связано с полиморфным переходом α -FeS $\leftrightarrow \beta$ -FeS. Термические эффекты полиморфного перехода β -FeS $\leftrightarrow \gamma$ -FeS в интервале концентраций 60–98 мол. % PbS не обнаружены (рис. 2).

Диаграмма состояния системы FeS—PbS, построенная по полученным экспериментальным данным, приведена на рис. 3, из которого видно, что система является квазибинарным сечением и относится к эвтектическому типу.

Ликвидус системы состоит из двух ветвей первичной кристаллизации фаз γ (твердый раствор на основе γ -FeS) и γ' (твердый раствор на основе сульфида свинца). Ветви первичной кристаллизации γ - и γ' -фаз пересекаются в эвтектической точке с координатами 45 мол. % PbS и T = 1123 К. Состав, отвечающий эвтектической точке, уточнен построением треугольника Таммана. На ос-

Состав, мол. % PbS	Термические эффекты, К		Микротрерности	
	температура	температура	МПа	Фазовый состав
	солидуса	ликвидуса		
0.0	—	1463	2500	γ(FeS)
1.0	430, 615, 1430	1460	2700	ү (однофазный)
3.0	420, 600, 1400	1470	2700	$\alpha + \gamma'$
5.0	410, 570, 1350	1450	—	$\alpha + \gamma'$
10	410, 560, 1123	1430	2700	$\alpha + \gamma'$
15	410, 560, 1123	1420	—	$\alpha + \gamma'$
20	410, 560, 1123	1370	2700	$lpha+\gamma'$
25	405, 560, 1140	130	2700	$\alpha + \gamma'$
30	410, 560, 1123	1330	2700	$\alpha + \gamma'$
35	408, 550, 1115	1230	—	$\alpha + \gamma'$
40	410, 560, 1123	1150	—	$\alpha + \gamma'$
45	410, 560, 1123	—	Эвтектика	$\alpha + \gamma'$
50	410, 560, 1123	1160	—	—
55	410, 560, 1123	1225	-7400	$\alpha + \gamma'$
60	410, 560, 1123	1240	—	—
65	410, 1123	1270	-7400	—
70	410, 1123	1300	—	$\alpha + \gamma'$
80	410, 1123	1350	-7400	$\alpha + \gamma'$
90	410, 1123	1380	-7400	$\alpha + \gamma'$
99	1290	1388	-7400	γ' (однофазный)
100	—	1388	-7200	PbS

Таблица 2. Результаты ДТА, РФА и определения микротвердости сплавов системы FeS-PbS

нове исходных компонентов образуются ограниченные области твердых растворов, доходящие до 2.0 мол. % при комнатной температуре. Причина образования ограниченной области твердых растворов в системе FeS—PbS, по-видимому, связана с различием атомных и ионных радиусов Fe(II) и

Рис. 4. Рентгенограмма сплавов системы FeS–PbS: *1*– PbS, *2*– 99% PbS, *3*– 50% PbS, *4*– 1% PbS, *5*– FeS.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 2 2019

Pb(II), а также с разными кристаллическими структурами FeS и PbS.

Сравнение атомных (Fe и Pb – 1.26 и 1.75 Å соответственно) и ионных (Fe²⁺ = 0.86 Å, Pb²⁺ = 1.16 Å) радиусов показывает, что атомные радиусы различаются на 28%, а ионные – на 25.86%. В результате образуются узкие области растворимости на основе сульфидов железа и свинца.

Образование ограниченных областей растворимости на основе FeS и PbS подтверждается данными измерения микротвердости и рентгенофазового анализа. При измерении микротвердости сплавов получено два ряда значений (2500–2700 и 7200–7400 МПа), относящихся к микротвердости твердых растворов: γ – на основе FeS и γ' – на основе PbS.

Следует отметить, что сплавы, содержащие более 50 мол. % FeS, хрупкие, не поддаются шлифовке и легко окисляются на воздухе.

Результаты РФА (рис. 4) полностью согласуются с данными ДТА и МСА. Рентгенограмма сплава, содержащего 1.0 мол. % PbS и 2.0 мол. % FeS, полностью совпадает с рентгенограммой исходных сульфидов, что еще раз подтверждает образование узкой области растворимости на осно-

ве FeS и PbS. Параметр кубической решетки γ' твердых растворов, содержащих 2 мол. % FeS, составляет a = 5.926 Å (у чистого PbS a = 5.934 Å), а параметры элементарной ячейки FeS с ростом содержания PbS увеличиваются (a = 5.965-5.982, c = 11.757-11.762 Å).

ЗАКЛЮЧЕНИЕ

Построена T—x-диаграмма состояния системы FeS—PbS, установлено, что она квазибинарная и относится к эвтектическому типу. Координаты эвтектической точки: 55 мол. % FeS—45 мол. % PbS, T = 1123 K. На основе сульфида железа растворимость составляет 1.0 мол. % PbS, а на основе PbS — 2 мол. % FeS.

СПИСОК ЛИТЕРАТУРЫ

- Кубашевски О. Диаграммы состояния двойных систем на основе железа / Пер. с англ. под ред. Петровой Л.А. М.: Металлургия, 1985. 184 с.
- 2. *Kubaschewcki O. //* ASM International / Ed. Komoto H.O. 1993. P. 364.
- Gronvold F., Stolen S. // J. Chem. Thermodyn. 1992. V. 24. P. 913.
- Bale C.W., Toguri J.M. // Canad. Metall. 1976. V. 15. № 1. P. 305.
- 5. Arnold R.G. // Econ. Geol. 1971. V. 66. P. 1121.
- 6. *Moh.G.H., Kullerud E.* Phase Relations at Low Temperatures: The Fe−S System. Carnegie Inst. Washington, 1964. V. 63. № 1. P. 207.
- Kanda M., Hasegawa N., Itagaki K., Yazawa A. // Termochim. Acta. 1986. V. 109. № 1. P. 271.

- 8. *Судавцова В.С., Шаркина Н.О., Кудин В.Г. //* Журн. физ. химии. 2001. Т. 75. № 4. С. 1061.
- Walder P., Pelton A.D. // J. Phase Eguilibria Diffusion. 2005. V. 26. № 1. P. 23.
- Sharma R., Lin J., Chang Y. // Metall. Trans. 1987.
 V. 18B. № 1. P. 237.
- 11. Самсонов Г.В., Дроздова С.В. Сульфиды. М.: Металлургия, 1972. 304 с.
- 12. *Комарова Т.Н.* // Изв. физ.-хим. Ин-та при Иркутск. ун-те. 1986. Т. 27. № 1. С. 23.
- 13. *Xiu Zhilang, Liu Suwen, Xu Fengxin* // J. Alloys Compd. 2008. V. 457. № 1–2. P. 9.
- Власенко О.И., Левицкий С.М., Крисков Ц.А. // Физика и химия твердого тела. 2006. Т. 7. № 4. С. 660.
- 15. *Угай Я.А.* Введение в химию полупроводников М.: Высш. школа, 1975. 302 с.
- 16. Tikdogan E.T. // Trans. AIME. 1968. V. 242. P. 1665.
- 17. *Ban-ya S., Chipman J.* // Trans. AIME. 1968. V. 242. P. 940.
- Mehrotra G.M., Wagner J.B. // Proc. Electrochem. Soc.1986. V. 86. P. 150.
- Avetisyan K.K., Gnatishenko G.I. // Izv. Akad. Nauk Kaz. SSR. Ser. Gorn. Dela Met. Stroit. Stroim. 1956. № 6. P. 11.
- Eriç H., Timuçin M. // Metallurg. Trans. B. 1981.
 V. 12B. P. 493.
- 21. Dutrizac J.E. // Can. J. Chem. 1980. V. 58. P. 739.
- Hannu Johto, Pekka Takinen // J. Miner. Met. Mater. Soc. 2012. V. 51. P. 205.
- 23. *Johto H., Taskinen P. //* Proc. of the EMC. June 26–29, 2011. Düsseldorf, 2011. P. 1127.
- 24. Vargas M.B. // Metallurgia. 1979. V. 31. P. 131.
- 25. *Skala R., Cisarova I., Drabek M.* // Am. Mineral. 2006. V. 91. P. 917.