— ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 546.824 4.657.226.161-323.161:641.123.61:541.123.61

ФАЗООБРАЗОВАНИЕ В СИСТЕМЕ ТіO2-H2SO4-HF-Nd(NO3)3-H2O ПРИ 20°C

© 2019 г. М. М. Годнева^{1, *}, М. П. Рыськина¹, Н. Л. Михайлова¹, В. Я. Кузнецов¹

¹Институт химии и технологии редких элементов и минерального сырья КНЦ РАН, Россия, 184209 Апатиты, Академгородок, 26a

*e-mail: motov@chemy.kolasc.net.ru Поступила в редакцию 05.04.2018 г. После доработки 20.05.2018 г.

Принята к публикации 06.07.2018 г.

Выделены фазы NdF₃ (I), X (II), NdTi₂O_{4.75}F_{0.5}(SO₄)_{0.5} · 3H₂O (III), NdTiF₃(SO₄)₂ · 6H₂O (NdTiOF(SO₄)₂ · 6H₂O) (IV), Nd₂(SO₄)₃ · 8H₂O (V) и Nd₂(SO₄)₃ · 4H₂O (VI), образующиеся в сернокислых и фторсодержащих растворах при получении материалов из сырья, при очистке и разделении металлов. Схематично представлены области их существования. Отмечены частицы со структурой "ядро-оболочка". Соединения изучены методами элементного, кристаллооптического, рентгенофазового и термического анализа. Определен состав фазы III (по данным TГ) и сферолитоподобных частиц H₆NdF_{7.8}(SO₄)_{0.5} · 3.75H₂O (VII) (методом рентгеновского микроанализа). Свежеполученные частицы выделяют HF. Фаза IV, соответствующая (по данным TГ) NdTiF₃(SO₄)₂ · 6H₂O, при выстаивании приобретает состав и вид известной фазы NdTiOF(SO₄)₂ · 6H₂O.

Ключевые слова: неодим, титан, фтор, сульфат, нитрат, ядро-оболочка **DOI:** 10.1134/S0044457X19020089

ВВЕДЕНИЕ

Недостаточная изученность индивидуальных свойств соединений неодима тормозит их применение на практике. Ранее были исследованы системы Nd₂O₃-TiO₂-HNO₃-HF-H₂O в интервале концентраций 25-50% HNO₃, 0.5-6.0% HF при мольном отношении (**м. о.**) Nd/Ti = 0.4 при 50 и 75°С [1] и TiO₂-H₂SO₄-HF-Nd(NO₃)₃-H₂O при содержании в растворах 6-7 мас. % TiO₂, м. о. $H_2SO_4/Ti = 3-8$, Nd/Ti = 0.3-0.4 и F/Ti = 0-5 при 75°С [2]. Установлены области кристаллизации твердых фаз: NdF₃, Nd₂(SO₄)₃ · 8H₂O, Nd₂(SO₄)₃ · \cdot 4H₂O, NdTiOF(SO₄)₂ \cdot 6H₂O, Nd₄Ti₃F₁₅(SO₄)_{4.5} $\cdot nH_2O$, NdFSO₄ $\cdot nH_2O$, TiOSO₄ $\cdot 2H_2O$, TiO₂ $\cdot xH_2O$ и фторида титана. Кристаллизацией из кипящих сернокислых растворов при 150-170°С выделен также двойной сульфат $Nd_2(SO_4)_3 \cdot 4Ti(SO_4)_3$ [3].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для получения образцов в качестве исходных компонентов использовали $TiOSO_4 \cdot 2H_2O$, $Nd(NO_3)_3 \cdot 6H_2O$ (х. ч.), H_2SO_4 и HF квалификации "ос. ч.". Исследования проводили по разрезам системы $TiO_2-H_2SO_4-HF-Nd(NO_3)_3-H_2O$ при м. о. $H_2SO_4/Ti = 2$ и 5, Nd/Ti = 0.2 и 0.5, F/Ti == 1-6 и при содержании в растворе 2–15 мас. % TiO_2 . Концентрацию TiO_2 рассчитывали с учетом разбавления водой, содержащейся в растворе фтористоводородной кислоты и гидрате неодима. Смеси выдерживали в течение 7-30 сут при 20° С, затем образовавшиеся осадки отфильтровывали. промывали ледяной водой, спиртом с водой, спиртом. Кристаллооптические измерения проводили с использованием иммерсионных жидкостей на микроскопе Leica DM 2500 Р. Рентгенограммы полученных образцов записывали на приборе ДРФ-2 (графитовый монохроматор, СиК_а-излучение). Состав некоторых частиц определяли методом рентгеновского микроанализа (РМА) на энергодисперсионном спектрометре INCA Energy фирмы Oxford Instrument. Запись кривых ДТА и ТГ осуществляли с помощью термоанализатора STA 409 фирмы NETZSCH в Pt-Rhтиглях с крышками в токе воздуха с расходом 30 мл/мин при скорости нагрева 10 град/мин с Pt-Pt/Rh-термопарой.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 схематично представлены поля образования фаз NdF₃ (I), X (II), NdTi₂O_{4.75}F_{0.5}(SO₄)_{0.5} · · 3H₂O (III), NdTiOF(SO₄)₂ · 6H₂O (IV), Nd₂(SO₄)₃ · · 8H₂O (V) и Nd₂(SO₄)₃ · 4H₂O (VI). При низком содержании неодима (Nd/Ti = 0.2) и серной кислоты (H₂SO₄/Ti = 2) (рис. 1а) выделены фазы I, II, IV и V. В поле I, II в широкой области концентраций по TiO₂ при м. о. F/Ti > 4 образуются аморфизо-

Рис. 1. Области образования фаз. Разрезы: м. о. Nd/Ti, H_2SO_4/Ti : a - 0.2, 2; 6 - 0.2, 5; B - 0.5, 2; r - 0.5, 5 соответственно. Кружками отмечены экспериментальные точки.

ванные осадки, которые состоят из смеси NdF₃ и изотропной фазы (II). Повышение кислотности исходного раствора ($H_2SO_4/Ti = 5$) приводит к образованию двухфазных полей фаз IV, V и V, VI, т.е. помимо оксофторосульфатотитаната неодима образуется октагидрат сульфата неодима, а при увеличении содержания титана имеет место также образование тетрагидрата (фаза VI) (рис. 16). Кроме того, появляется поле фазы V. Увеличение содержания неодима, по-видимому, смещает границу образования фазы VI вправо (рис. 1г). Повышение содержания неодима от м. о. Nd/Ti = 0.2 до 0.5 (рис. 1в) не приводит к существенным изменениям в образовании фаз при тех же условиях, что на рис. 1а. Однако при низком содержании титана в исходном растворе и незначительном содержании фтора отмечена область ненасыщенных растворов, а при высоком – с фазой V кристаллизуется сульфат VI (рис. 1в). Как было отмечено ранее, при осаждении фторида из растворов образуются гелеобразные осадки, плохо фильтрующиеся и плохо отмывающиеся от анионов [3].

ГОДНЕВА и др.

Рис. 2. Микрофотографии формирования ядер в капсуле в исходном растворе (a,б, в - m. o. F/Ti = 6; r - m. o. F/Ti = 4): a – общий вид капсулы, б – часть оболочки отсутствует, в – ядро удалено, r – внутренняя сторона капсулы; увеличение ×(32–56).

Фаза I мелкозернистая, белого цвета отобрана механически под бинокуляром из осадка, содержащего в незначительном количестве фазу II. Для осадка с фазой I, полученного при м. о. F/Ti = 6:

Nd	TiO ₂	F^{-}	SO_4^{2-}
69.0;	0.06;	28.3;	2.65.
71.7;	0.00;	28.3;	0.00.
	Nd 69.0; 71.7;	Nd TiO2 69.0; 0.06; 71.7; 0.00;	Nd TiO ₂ F^- 69.0; 0.06; 28.3; 71.7; 0.00; 28.3;

Фаза I при 20°С более аморфизована, чем при 75°С.

Фаза II аморфная, существующая вместе с фазой I, отдельно не выделена. Количество SO_4 -групп в ней уменьшается по мере увеличения м. о. F/Ti в исходной смеси и увеличивается с ростом содержания титана в исходном растворе. SO_4 -группа не отмывается при обильной промывке холодной водой (550 мл H₂O/г осадка). Осадок остается слабо-розовым.

Осадки с фазами I и II содержат капсулы (рис. 2а), состоящие из розовых ядра и оболочки (рис. 2б). Ядро представляет собой изометричные округлые немонофазные образования с белым с голубоватым оттенком анизотропным материалом (рис. 36, 3в) и изотропными зернами NdF₃ (рис. 2в, 2г). Рентгенограммы оболочки и ядра идентичны (табл. 1). Они содержат только интенсивные линии NdF₃ [1].

Оболочка, как и ядро, немонофазна и содержит, кроме прозрачных со слабым голубоватым оттенком частиц, в меньшем количестве примесь (табл. 2). При длительном выдерживании (~10 лет) оболочка становится черно-серой (рис. 2в). Установлено, что NdF₃ неустойчив и при хранении на воздухе подвергается медленному гидролизу. Черный цвет образующейся твердой фазы подтверждает образование оксида неодима. Между ядром и оболочкой имеется полый промежуточный слой.

В ИК-спектре ядра содержатся полосы при 841, 1400 и 1523 см⁻¹, отвечающие $Zr(NO_3)_4$ ·

Рис. 3. Микрофотографии ядер, образовавшихся в растворе с м. о. F/Ti = 4: а – общий вид (увеличение ~60); б, в – фрагменты ядра (увеличение ×600); в – при скрещенных николях.

 \cdot 5H₂O¹ [4]. Полагаем, что при значительном содержании нитрат-ионов в исходном растворе сначала осаждаются NdF₃ и Zr(NO₃)₄ · 5H₂O, об-

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 2 2019

разуя ядра. Затем, когда содержание нитрат-иона в растворе уменьшается, кристаллизуется фторид неодима, создающий оболочку.

При м. о. F/Ti = 6 в исходном растворе капсулы имеют сравнительно тонкую оболочку и большое легко рассыпающееся ядро (рис. 1б), после удаления которого в розовой оболочке остается пустота (рис. 1в). Такие структуры называют погремушечными или структурами "ядро—оболочка" [5]. При м. о. F/Ti = 4 капсулы имеют более толстую оболочку, чем при м. о. F/Ti = 6, но состав оболочек одинаковый. На внутренней поверхности оболочки формируется множество мелких сферолитоподобных частиц (шариков) (рис. 2а, 2б), состоящих в основном из анизотропного материала белого (голубоватого) цвета (рис. 36, 3в) (табл. 2).

Фаза III белого цвета отобрана под бинокуляром из осадков, содержащих другие фазы, при высоком содержании титана в исходной смеси, причем во всех случаях м. о. F/Ti = 4-5 (рис. 1). Отдельного поля ее образования не имеется. Слабо раскристаллизованная фаза III неустойчива. Из нее выделяется газообразный продукт, разъедающий стекло, вероятно, HF. Рентгенограммы этой фазы и двойного сульфата титана с неодимом $Nd_2(SO_4)_3 \cdot 4Ti(SO_4)_2$ сходны, но не идентичны (табл. 1) [3, 6]. В табл. 1 представлены данные для свежеполученного образца. При более поздних записях отсутствует линия при 14 Å. Полагаем, что соотношение неодима к титану в фазе III соответствует найденному в фазе $Nd_2(SO_4)_3$ · · 4Ti(SO₄)₂. По данным ТГ рассчитан состав фазы III с учетом конечных продуктов прокаливания при 1000°С. Известно, что термическая диссоциация безводных сульфатов РЗЭ протекает в две стадии: с образованием R₂O₂SO₄ и далее R₂O₃. Исключением является сульфат церия, для которого сразу образуется оксид [7]. Для фаз V и VI конечными продуктами являются (NdO)₂SO₄ и Nd₂(SO₄)₃. Такие продукты должны быть и для фазы III. Однако при этом велика разница между вычисленными и экспериментальными значениями для остатка после прокаливания. Если конечными продуктами прокаливания являются оксиды Nd₂O₃ и 4TiO₂, то эти значения близки и формульный состав фазы III – $NdTi_2O_{4.75}(SO_4)_{0.31} \cdot 3H_2O$. Учитывая, что при нагревании до 1000°С часть SO₃ (~0.2 моля) и фтора $(t_{пл}(NdF_3) = 1377^{\circ}C[8])$ не удаляется из сульфатоцирконатов калия [9], формулу соединения, по данным ТГ, можно записать как NdTi₂O_{4.75}F_{0.5}(SO₄)_{0.5} · 3H₂O (табл. 3).

Фаза IV светло-розового цвета образует радиально-лучистые сростки игольчатых кристаллов длиной ~10 мкм (рис. 4). Рентгенограмма этой фазы в основном соответствует представленной ранее [1],

¹ Обнаружены О.А. Залкиндом.

но имеется небольшой сдвиг в сторону увеличения межплоскостных расстояний (табл. 1).

	Nd	Ti	$\Sigma(SO_3 + F)$	H_2O
			(по ТГ)	(по ТГ)
Найдено, мас. %:	_	_	29.96;	23.74.
Для фазы IV				
вычислено, мас. %:	27.35;	9.08;	30.36, 3.60;	20.50.

Фаза V образует ярко-розовые (красные) крупные кристаллы, структура которых определена методом PCA [10, 11]. Соединение содержит два типа SO₄-групп: бидентатно-мостиковую и тридентатно-мостиковую.

Фаза VI состоит из кристаллов игольчатого облика длиной 5–15 мкм и шириной ~1 мкм. Данные по структуре этой фазы отсутствуют, но ее рентгенограмма сходна с таковой для $Ce_2(SO_4)_3 \cdot 4H_2O$ [6, карта 73-195, 2].

Фаза VII. Ее содержание в смеси с фазами I, III и V незначительно. Она состоит из сферолитоподобных образований (шариков), которые были отобраны под бинокуляром (табл. 1, рис. 2а). Их состав, по данным РМА, $H_{6.2}NdF_{7.8}(SO_4)_{0.5}$ · 3.75 H_2O^2 . Свежеполученные частицы выделяют летучий компонент, разъедающий стекло, вероятно, HF. После длительного выдерживания фтор в составе фазы не обнаружен. В меньшем количестве в сферолитоподобных частицах (шариках) присутствуют изотропные зерна NdF_3 . Шарики покрыты тончайшей оболочкой (рис. 3а). Состав оболочки шариков и анизотропного материала не установлен.

Фаза VIII (табл. 1). Содержание кристаллической фазы VIII в осадках также незначительно. Она отмечена в кислых растворах при м. о. $H_2SO_4/Ti = 5$, Nd/Ti = 0.5, HF/Ti = 4 и 4.5–7.4 мас. % TiO₂ в смесях с фазами III, V и VII. Ее состав не установлен.

Помимо кристаллических фаз с неодимом отмечены аморфные фазы, вероятно, содержащие титан. В системе обнаружены в единичных точках не имеющие своих полей образования фазы, состав которых не установлен или требует уточнения. К ним относятся фазы II, VII, VIII.

Фазы III–VI являются гидратами, о чем свидетельствуют низкотемпературные эндоэффекты на кривых ДТА (рис. 5а). Причем в фазе III вода связана наиболее слабо, а в фазе VI – прочно. За эндоэффектами следуют небольшие экзоэффекты, вызванные, очевидно, кристаллизацией аморфных промежуточных продуктов дегидратации. Высокотемпературные эндоэффекты обусловлены убы-

Таблица 1. Рентгенометрические характеристики фаз

Ι		II	[IV	r	VI	I	VII	Ι
<i>d</i> , Å	$I_{\rm oth}$	d, Å	$I_{\rm oth}$	d, Å	$I_{\rm oth}$	d, Å	$I_{\rm oth}$	d, Å	$I_{\rm oth}$
3.58	49	14.0	83	8.0	28	6.75	83	12.8	12
3.50	44	6.50	37	7.0	60	6.4	53	6.75 ³	4
3.13	100	6.30	37	6.40 ¹	14	5.75	60	6.00 ³	100
2.51	17	5.10	22	5.80 ¹	49	5.15	27	4.85 ³	6
2.04	55	3.50	100	5.40 ¹	29	4.62	100	4.67	13
2.01	65	3.29	70	4.70	67	4.27	63	4.52	5
1.975	42	2.98	57	4.32	55	3.93	40	4.20 ³	4
1.780	52	2.76	30	4.00	41	3.79	43	3.81 ³	9
1.767	47	2.16	38	3.81 ¹	100	3.70	57	3.75 ³	16
1.710	16	2.07	62	3.70 ¹	56	3.51 ²	53	3.54	7
		1.990	47	3.56	40	3.40	93	3.42 ³	13
		1.863	40	3.44	96	3.15 ²	67	3.20 ³	9
		1.783	28	3.26 ¹	19	2.99	60	3.08	17
		1.770	28	3.16 ¹	12	2.87	37	3.03 ³	17
		1.673	30	3.10	14	2.60	67	3.01 ³	13
		1.648	25	3.02 ¹	43	2.55	67	2.74 ³	4
				2.90	16	2.36	43	2.66 ³	5
				2.78	11	2.33	50	2.60 ³	4
				2.71	7	2.26	37	2.53 ³	11
				2.61	43	2.15	57	2.42 ³	3
				2.59	73	2.07	37	2.26 ³	8
				2.52	16	2.025^2	77	2.20^{3}	
				2.46	13	1.977 ²	57	2.15 ³	
				2.37	16			2.10	
				2.34	16			2.01	
				2.30	27			1.926	
				2.26	16			1.878	
				2.21	5			1.870	
				2.16	29				
				2.10^{1}	37				
				2.06	16				
				2.03 ¹	17				
				1.984 ¹	38				
				1.956	34				
				1.906	27				
				1.884	14				

Примечание. ¹ NdFSO₄ · nH₂O [1], ² NdF₃, ³ Nd₂(SO₄)₃ · 8H₂O.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 2 2019

² Состав определен методом РМА В.В. Семушиным.

Соединение	Lecumue	Ourrequire	Показатели преломления		
(по данным РФА)	Габитус	Окраска	$N_{ m g}$	N _p	
Ι	Изотропные зерна без определенного облика	Белая со слабой голубизной	1.580 ± 0.005		
II	Мелкозернистая стекло- подобная масса	Розовая	1.554-1.570		
Zr(NO ₃) ₄ · 5H ₂ O (примесь в ядре)	Изометричные округлые образования		1.515-1.528		
Примесь в оболочке	Мелкозернистая масса с волнистым погасанием		1.536 ± 0.005	1.524 ± 0.005	
III (14 Å + белая фаза)	Мелкозернистая масса		>1.562		
IV	Радиально-лучистые сростки. Игольчатый	Розовая	1.554	1.536	
V	Неопределенный	Розовая	1.562	1.541	
VI	Неопределенный	Розовая	1.634	1.602	

Таблица 2. Кристаллооптические характеристики соединений

лью SO3, их температура возрастает в ряду фаз I < < IV < V < VI.

Частицы микро- и наноразмеров помимо пространственных характеристик могут обладать внутренней полой структурой в виде нанотрубок или в форме ядро-оболочки. В целом наноматериалы с многоуровневой внутренней структурой делят на ядро-полая оболочка и многооболочечные и многостенные [5]. Частицы, исследованные в данной работе для соединений с неодимом, не относятся к наноматериалам. Это микрочастицы с внутренней структурой ядро-оболочка, которая ранее для него не была известна. Погремушечные структуры ранее получали несколькими методами: с применением коллоидного раствора и вытравливанием промежуточного слоя SiO₂, с использованием разницы в скорости диффузии. Наличие частиц ядро-оболочка приписывают также оствальдовскому старению, когда молекулы маленьких кристаллов диффундируют и рекристаллизуются на поверхности больших кристаллических частиц [5]. Однако кристалличность NdF₃ низкая. Вероятно, образование структуры ядро-оболочка вызвано наличием промежуточного коллоидного титансодержащего раствора, из которого в итоге формируется аморфная фаза.

Полые микроструктуры привлекают большое внимание за счет разнообразной внутренней структуры, гибкого химического состава, большой удельной поверхности и многофазных ани-

Рис. 4. Микрофотография кристаллов фазы IV; увеличение ×200.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 2 2019

Убыль массы, % Остаток, %	Остаток, %						
ϕ_{a3a} $t, ^{\circ}C$ Эффект найдено вычис- отне- найдено вычис- сение найдено лено сение сение найдено лено состав	ŝ						
Состав исходной фазы III по данным ТГ NdTi ₂ O _{4.75} F _{0.5} (SO ₄) _{0.5} · 3H ₂ O							
III 65–220 Эндо 10.57 H ₂ O							
220—310 Эндо 2.84 H ₂ O							
Σ 13.41 13.20 H ₂ O							
310–496 2.60 2.44 HF							
496—506 Экзо — — Кр							
610–1000 5.83 6.06 SO ₃							
824—842 Эндо — — Пл							
65–1000 78.16 76.71 Nd ₂ O ₃ , 4TiO ₂							
$65-1000 78.16 85.57 4[(NdO)_2SO_4, Nd_2]$	$SO_4)_3 \cdot 8TiO_2$						
Состав исходной фазы IV NdTiF $_3(SO_4)_2 \cdot 6H_2O$							
IV 100-130 сл Эндо 3.32 H ₂ O							
144—183 у. с Эндо 20.42 H ₂ O							
$\Sigma 23.74$ 20.50 H ₂ O							
525—534 Эндо 1.02 SO ₃							
534–562 Экзо Кр							
620—629 Эндо 2.53 SO ₃							
694—705 Эндо 5.84 SO ₃							
834-855 Эндо Пл							
880-888 Эндо							
897–922 Эндо 20.39 SO ₃ , F							
1000 Σ 29.96 30.36 SO ₃ , F 46.47 47.05 1/2Nd ₂ O ₃ , TiO ₂							
1000 46.47 62.23 $\frac{1}{4}$ [4TiO ₂ , (NdO) ₂ SO	$_{4}, \mathrm{Nd}_{2}(\mathrm{SO}_{4})_{3}]$						
Состав исходной фазы V $Nd_2(SO_4)_3 \cdot 8.3H_2O$							
V 147–165 Эндо 4.73 H ₂ O							
165—180 Эндо 16.00 H ₂ O Nd ₂ (SO ₄) ₃							
$\Sigma 20.73$ 20.02 H ₂ O							
484—500 Экзо — — Кр							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(J ₄) ₃]						
1000 69.01 46.68 Nd ₂ O ₃							
Состав исходной фазы VI Nd ₂ (SO ₄) ₃ · 4.28H ₂ O							
VI 229–264 Эндо 11.61 11.11 H ₂ O Nd ₂ (SO ₄) ₃							
$600-1000 - 13.54 + 44.42 = SO_3 - 74.85 + 76.55 + (NdO)_2SO_4, Nd_2(SO_4) + 76.55 + $	V ₄) ₃						

Таблица 3. Данные термического анализа

Примечание. Кр – кристаллизация, Пл – плавление, у – узкий, с – сильный, сл – слабый.

Рис. 5. Кривые термического анализа: а – ДТА, б – ТГ. 1 – NdTi₂O_{4.75}F_{0.5}(SO₄)_{0.5} · 3H₂O, 2 – NdTiOF(SO₄)₂ · 6H₂O, 3 – Nd₂(SO₄)₃ · 8H₂O, 4 – Nd₂(SO₄)₃ · 4H₂O. Скорость нагревания 10 град/мин. Навеска, мг: 1 – 30, 2 – 14, 3 – 36, 4 – 28.

зотропных границ разделов. Однако исследования пока в самой начальной точке своего развития [1, 5]. До этой работы авторам было известно только одно соединение титана со структурой ядро-оболочка, в котором ядро TiO_2 покрыто оболочкой NiTiO₃ [12]. Особого внимания заслуживают наночастицы типа ядро-оболочка, обладающие способностью комбинировать свойства нескольких материалов в одной частице [13].

Многоуровневые сложные структуры обладают огромным потенциалом в энергетике, защите окружающей среды, биоинженерии и многих других областях науки.

ЗАКЛЮЧЕНИЕ

Выделены фазы NdF₃, X, NdTi₂O_{4,75}F_{0.5}(SO₄)_{0.5} \cdot 3H₂O, NdTiOF(SO₄)₂ \cdot 6H₂O, Nd₂(SO₄)₃ \cdot 8H₂O, Nd₂(SO₄)₃ \cdot 4H₂O и H₆NdF_{7.8}(SO₄)_{0.5} \cdot 3.75H₂O. Схематично представлены области их существования. Отмечены частицы со структурой ядро-оболочка и объяснено их образование. Фазы NdTi₂O_{4.75}F_{0.5}(SO₄)_{0.5} \cdot 3H₂O и H_{6.2}NdF_{7.8}(SO₄)_{0.5} \cdot 3.75H₂O.

выдерживания (~10 мес.) фтор в них не обнаружен. Показано, что ранее полученная фаза NdTiOF(SO₄)₂ · 6H₂O образуется при выстаивании фазы NdTiF₃(SO₄)₂ · 6H₂O.

СПИСОК ЛИТЕРАТУРЫ

ные частицы теряют HF. После длительного

- 1. Панасенко Е.Б., Белокосков В.И., Бегунова Р.Г. // Журн. неорган. химии. 1986. Т. 31. № 10. С. 2669.
- 2. Панасенко Е.Б., Загинайченко Н.И., Белокосков В.И. и др. // Журн. неорган. химии. 1988. Т. 33. № 12. С. 3171.
- 3. Филатова С.А., Горощенко Я.Г., Янкович В.Н., Антишко А.Н. // Журн. неорган. химии. 1977. Т. 22. № 4. С. 956.
- Nyquist R.A., Kogal R.O. Infrared Spectra Inorganic Compounds. New-York–London: Academic Press, 1971. 500 p.
- Полые наноматериалы с многоуровневой внутренней структурой // [Реферат подготовлен аспирантом МГУ Сивовым Романом (перевод тематического литературного обзора)] // Сайт нанотехнологического сообщества URL: http://www.nanometer.ru. 2010.07.15.12791485338975_215354.html из кеша Google (дата обращения 28.11. 2017).

- 6. The Powder Diffraction File (International Centre for Diffraction Data). Cardes 23-1262, 83-2244, 73-195.
- 7. Покровский А.Н., Ковба Л.М. // Журн. неорган. химии. 1976. Т. 21. № 2. С 567.
- Химический энциклопедический словарь / Под ред. Кнунянц И.Л. М.: Сов. энцикл., 1983. 792 с.
- Годнева М.М., Мотов Д.Л. Химия подгруппы титана: сульфаты, фториды, фторосульфаты из водных сред. М.: Наука, 2006. 302 с. [Motov D.L., Godneva M.M. Fluoric, Sulfatic and Fluorosulfatic Compounds of Group IV Elements. SPB.: Nauka, 2009, 307 p.]
- 10. Асланов Л.А., Рыбаков В.Б., Ионов В.М. и др. // Докл. АН СССР. 1972. Т. 204. № 5. С. 1122.
- Комиссарова Л.Н., Пушкина Г.Я., Шацкий В.М. и др. Соединения редкоземельных элементов. Сульфаты, селенаты, теллураты, хроматы. М.: Наука, 1986. 366 с.
- He Xuanmeng, Wang Fen, Lui Hui et al. // J. Eur. Ceram. Soc. 2017. V. 37. № 8. C. 2965. PXX 18.01-19M.247.
- Рудаковская П.Г., Белоглазкина Е.К., Мажуга А.Г. и др. // Вестн. Моск. ун-та. Сер. 2. Химия. 2015. Т. 56. № 3. С. 181.