__ ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 541.123

ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМЕ ZnSO₄-H₂O ПРИ ТЕМПЕРАТУРАХ ДО 444°C И ДАВЛЕНИЯХ ДО 34 МПа

© 2019 г. М. А. Урусова¹, В. М. Валяшко^{1, *}

¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, Россия, 119991 Москва, Ленинский пр-т, 31 *e-mail: valyashko@mail.ru Поступила в релакцию 08.06.2018 г.

После доработки 13.07.2018 г. Принята к публикации 15.08.2018 г.

Исследованы фазовые равновесия в двойной системе $ZnSO_4-H_2O$ при температурах 240–450°С и давлениях до 34 МПа различными методами (визуальное наблюдение фазовых превращений в водно-солевых смесях разного состава (30–60 мас. %) в толстостенных кварцевых ампулах (внутренний диаметр 3 мм), отбор проб растворов и их химический анализ, автоклавные измерения P-V-T-параметров при фазовых переходах). Показано, что уменьшение растворимости $ZnSO_4$ с повышением температуры, наблюдаемое до 350–370°С, сменяется ее резким ростом при дальнейшем нагревании, т.е. отрицательный температурный коэффициент растворимости, характерный для систем 2-го типа, сменяется положительным, как в системах 1-го типа. Система $ZnSO_4-H_2O$ относится к 1-му типу, осложненному расслаиванием насыщенных (и ненасыщенных) растворов, что приводит к резкому увеличению растворимости соли выше 375° С.

Ключевые слова: расслаивание растворов, системы 1-го и 2-го типов, флюид, критические точки **DOI:** 10.1134/S0044457X19030218

введение

Как известно, водно-солевые системы и входяшие в них соли подразделяются на два типа [1, 2]. так же как и другие неорганические и органические бинарные смеси с компонентами разной летучести [3–5]. К 1-му типу относятся системы, в которых растворимость солей увеличивается с ростом температуры вплоть до температуры плавления и критические газово-жидкие явления (г = = ж) существуют только в ненасыщенных растворах. К 2-му типу относятся системы с солями, растворимость которых снижается при приближении к критической температуре воды, что приводит к появлению критической точки р ($\Gamma = m - TB$). При температурах выше Т_р возникает сверхкритическая область, где гомогенный флюид может быть в равновесии только с твердой фазой нелетучего компонента (фл-тв). Эта область заканчивается второй конечной критической точкой Q (г = жтв или $w_1 = w_2$ -тв), когда начинается разделение гомогенного флюида на два несмешивающихся раствора. При температурах выше То существуют двух- и трехфазные равновесия расслаивания (ж₁-ж₂) и (ж₁-ж₂-тв), переходящие постепенно в (г-ж) и (г-ж-тв).

Если обе инвариантные критические точки р и Q соответствуют одинаковому равновесию (г =

= ж–тв), то они принадлежат одной моновариантной критической кривой ($\Gamma = ж$), объединяющей критические точки ($\Gamma = ж$) чистых компонентов, что показано в нескольких органических системах [6–8].

Предполагается, что системы 2-го типа, в которых критическая точка Q отвечает равновесию ($w_1 = w_2$ -тв), в большинстве случаев относятся к усложненному типу с метастабильной областью расслаивания (Γ - w_1 - w_2) в пересыщенных растворах при более низких температурах и давлениях, чем в критической точке р, вплоть до параметров метастабильной критической точки (Γ - $w_1 = w_2$ -тв) [1–3]. Эта область расслаивания может стать стабильной при добавлении третьего компонента, что было установлено в системах SiO₂-Na₂O-H₂O [2, 9] и Li₂SO₄-KLiSO₄-H₂O [2, 10].

К такому усложненному 2-му (p–Q) типу относятся водные системы с сульфатами щелочных металлов (Li₂SO₄, Na₂SO₄, K₂SO₄) [1]. Растворимость в воде сульфатов двухвалентных металлов (MgSO₄, ZnSO₄, CdSO₄) до недавнего времени была изучена при температурах до ~250°C [11–14] и было показано, что она снижается при этом до нескольких мас. %. Однако последние исследования растворов некоторых из указанных солей (Li₂SO₄, MgSO₄, ZnSO₄, CdSO₄) в очень тонких

капиллярах (внутренний диаметр 0.05-0.3 мм) [15-18] обнаружили в них трехфазное расслаивание (Γ -ж₁-ж₂) при температурах 250-330°С и достаточно высоких концентрациях (до 2-3 m), хотя, согласно более ранним исследованиям, при таких параметрах должно существовать равновесие Γ -ж-тв.

Цель настоящей работы — установление характера фазовых равновесий в системе ZnSO₄—H₂O.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В системе ZnSO₄–H₂O растворимость соли достаточно высока при невысоких температурах (до 46 мас. % при 63°С), но далее начинает снижаться с ростом температуры (до нескольких мас. % при 250°С [10–14]). В данной работе приведены результаты изучения фазовых равновесий в указанной системе выше 250°С.

Один из методов исследования — наблюдение за изменением фазового состояния в смеси $ZnSO_4$ с водой при изменении температуры в запаянных толстостенных кварцевых ампулах (внутренний диаметр 3 мм) [1, 2, 10]. Таким образом, были получены данные для составов с 30, 40, 50 и 65 мас. % ZnSO₄.

При нагревании 30%-ного раствора $ZnSO_4$ в присутствии пара при 200°С было отмечено появление кристаллов, и с ростом температуры их количество увеличивалось. Когда содержание $ZnSO_4$ в смеси $ZnSO_4 + H_2O$ составляло 40 и 50 мас. %, твердая фаза присутствовала изначально. При 65% вся загрузка представляла собой твердые кристаллогидраты, и в этом случае возникновение раствора было замечено лишь выше 380°С.

Если в ампуле было достаточное количество жидкой фазы (30 и 40 мас. % ZnSO₄ в смеси), то при 380°C наблюдались критические явления между раствором и паром в присутствии кристаллов ($\Gamma = x - TB$), сразу после этого возникало небольшое количество очень концентрированного вязкого раствора. При 30% ZnSO₄ твердая фаза сразу вся переходила в раствор, а при 40% она растворялась постепенно с ростом температуры, исчезая лишь к 408°С. При 50 и 60% ZnSO₄ критические явления не наблюдались из-за слишком малого количества раствора, но к 380–390°С становилось заметным появление концентрированной жидкой фазы, объем которой увеличивался с возрастанием температуры при одновременном уменьшении количества кристаллов.

В процессе охлаждения вновь становилось больше кристаллов, а при 375°С появлялся еще и разбавленный раствор. Однако при 40% ZnSO₄, когда было достигнуто полное растворение соли, происходило переохлаждение возникшего концентрированного раствора и появление при 375°С разбавленного раствора в присутствии второй жидкости без твердой фазы, т.е. возникновение равновесия ($r-m_1-m_2$). И только при 360°С наблюдали кристаллизацию соли, быстрое уменьшение количества концентрированной жидкости и возвращение к равновесию (r-m-TB), которое имеет место при этой температуре для составов смеси ZnSO₄ + H₂O от 30 до 65 мас. % ZnSO₄.

На основании проведенных наблюдений можно предположить, что в системе ZnSO₄-H₂O происходит расслаивание насыщенных растворов и, как результат, резкое увеличение растворимости соли при температуре, близкой к критической температуре воды, т.е. возникает инвариантное равновесие (г-ж₁-ж₂-тв). Указанное равновесие существует при строго определенной температуре, но переход от равновесия (г-ж-тв) к (г-ж₁ж₂-тв) не происходит мгновенно. Небольшое увеличение температуры приводит к тому, что еще до расслаивания жидких фаз разбавленный насыщенный раствор достигает критической точки (г = ж-тв) и только после этого отделяется концентрированная жидкая фаза. При нагревании смеси с 30 и 40 мас. % ZnSO это выглядит как "плавление" твердой фазы сразу после критических явлений в насыщенном растворе ($\Gamma = m - TB$) и возникновение двух растворов разной концентрации и плотности, которые сохраняются при повышении температуры (двухфазное равновесие (г/ж₁-ж₂) или (фл-ж)).

Если в процессе нагревания критические явления наблюдаются при 380°С, то в процессе охлаждения при этой температуре такие явления не обнаруживаются, но при 375°С происходит образование капли (или капель) легкой жидкости, количество которой быстро увеличивается, а концентрированный раствор исчезает при понижении температуры.

Для определения растворимости ZnSO₄ в исследуемой системе проводили анализ проб жидких фаз, отобранных при известной температуре в условиях равновесия с твердой фазой и паром (г-ж-тв), что осуществлялось в специальных "бомбах"-автоклавах [1]. При достижении заданной температуры открывался запорный шток, разделяющий "бомбу" и пробоотборник, и раствор под давлением пара переходил в пробоотборник через фильтр из спрессованной серебряной проволоки, после чего шток закрывался. Состав охлажденных проб устанавливали титрованием Zn²⁺ раствором трилона Б, результаты приведены в табл. 1 и на рис. 1. Таким образом, определена растворимость ZnSO₄ при 250, 310, 355 и 370°С, которая очень мала выше 300°С и слегка возрастает к 370°С.

При более высоких температурах пробы жидких фаз не отбирались в связи с их очень высокой вязкостью и малым количеством, однако были отобраны пробы газовых фаз (при повороте "бомбы" пробоотборником кверху), состав которых также представлен в табл. 1 (0.1–0.2 мас. % при 409–427°C), хотя не установлено, к двух- (г–ж) или трехфазному (г–ж–тв) равновесию они относятся. Тем не менее можно утверждать, что содержание ZnSO₄ в газовых фазах, сосуществующих с насыщенными растворами при этих температурах, не превышает найденных значений, так как концентрация газовой фазы в равновесии (г–ж–тв) минимальна при T = const.

Поскольку исследования, проведенные в кварцевых ампулах и "бомбах", не позволяют установить состав концентрированных жидких фаз, возникающих после расслаивания растворов (выше 380°С), были поставлены опыты по определению равновесных давлений в системе $ZnSO_4$ — H_2O при различных температурах и составах. Эту работу осуществляли в автоклаве с ртутным затвором [1], позволяющем изменять объем исследуемой смеси и давление в ней. Давление измеряли образцовым манометром на 60 МПа.

Температуры, при которых проводили работы в автоклаве и "бомбах", не превышали 444°С, так как было замечено, что воздействие высоких температур приводит к появлению небольшого количества нерастворимого остатка в смесях ZnSO₄ + + Н₂О после опытов. Из литературы известно, что ZnSO₄ начинает разлагаться ниже температуры плавления, поэтому расплавы с ним исследованы до 600°С [19]. Возможно, в присутствии воды разложение ZnSO₄ усиливается, но не настолько, чтобы существенно изменились фазовые равновесия в системе ZnSO₄-H₂O. Были поставлены специальные опыты, когда кварцевую пробирку со смесью ZnSO₄ + H₂O помещали в автоклав и нагревали до 405-408°C при подъеме давления до ~30 МПа. После охлаждения анализ содержимого пробирок показал, что первоначальное количество ZnSO₄ практически не менялось, а нерастворимый остаток составлял ~2 мас. % от него и при 31, и при 55 мас. % ZnSO₄.

В автоклаве было измерено давление, возникающее в системе $ZnSO_4-H_2O$, когда при загрузке оставалось большое паровое пространство $(10-11 \text{ см}^3)$ и при нагревании значительное количество воды переходило в газовую фазу, а жидкий раствор концентрировался. Таким образом, были получены данные по давлению пара для исходных составов 31, 40, 47, 54 и 65 мас. % ZnSO₄ в интервале температур 348-444°С при изменении объема пара, что осуществлялось посредством выпуска ртути. При определении давления пара делали поправку на давление воздуха, изначально присутствовавшего в автоклаве, и паров ртути [20]. Давление воздуха было принято равным ~0.2 МПа, так как объем пара существенно не изменялся при нагревании, а возрастание температуры от комнатной до 444°С (от 293 до 717 К) приводило к увеличению давления в ~2 раза.

В табл. 2 приведены значения давления пара насыщенных растворов. Эти данные получены, когда давление при T = const не изменялось при выпуске ртути, т.е. при увеличении количества

Таблица 1. Состав жидких и паровых фаз в системе $ZnSO_4-H_2O$

	Общее	ZnSO ₄	ZnSO ₄
<i>T</i> , °C	содержание	в жидкой фазе,	в паровой фазе,
	ZnSO ₄ , мас. %	мас. %	мас. %
243	29.6	4.0	
310	30.0	1.3	
355	30.0	1.6	
370	30.7	4.1	
409	30.7		0.11
415	30.7		0.12
427	54.0		0.19

перешедшей в пар воды сохранялся состав жидкой фазы, что отвечает трехфазному равновесию (г-ж-тв). На рис. 2 показана зависимость этого давления от температуры, представляющая собой непрерывную кривую вплоть до 444°С, что характерно для систем 1-го типа.

Составы насыщенных растворов при 399, 411 и 423°С оценены приближенно при построении зависимостей давления пара от состава раствора при T = солst. Если раствор ненасыщен, увеличение объема пара, оцениваемого по количеству выпущенной ртути, приводит к снижению давления и увеличению концентрации раствора.

Зная объем пара при известных значениях T и P и принимая газовую фазу за чистый водяной пар (ее состав указан в табл. 1), можно определить количество воды, перешедшее в пар [21], и рассчитать концентрацию раствора, если известны состав исходной смеси ZnSO₄ + H₂O и ее количество. В табл. 3 представлены результаты такого

Рис. 1. Диаграмма растворимости системы ZnSO₄– H₂O при повышенных температурах по данным [12– 14] (сплошная кривая) и наши данные по составу равновесных паровых (точечная кривая) (табл. 1) и жидких насыщенных растворов ZnSO₄ (пунктирная линия) при 243–370 (табл. 1) и 399–423°С (табл. 3).

Таблица 2. Д	авление пара насыщенных растворов в си	[-
стеме ZnSO	H ₂ O	

	Общее содержание ZnSO ₄ , мас. %				
<i>T</i> , °C	65	54	39.8	30.7	
	давление, МПа				
348	15.7	15.0			
358	16.4	16.9	16.9		
370	18.3	19.3	19.3	19.3	
381	20.8				
393	22.6				
399	23.7				
405	24.8				
410	25.1				
417	26.0				
429	26.5				
440	27.5				
444	28.0				

расчета для температур 399, 411 и 423°С при исходных составах 47 и 54 мас. % ZnSO₄. На рис. 3 показаны изотермы зависимости давления пара от состава раствора, экстраполированные до давления пара насыщенного раствора. Таким образом, найдены приближенные значения растворимости ZnSO₄ при указанных температурах и равновесных давлениях (табл. 3).

На рис. 1 представлена фазовая диаграмма системы $ZnSO_4$ — H_2O , построенная на основании наших и литературных данных [11–14]. Резкое изменение хода кривой растворимости соли при 250–260°C, вероятно, связано с изменением со-

Рис. 2. Давление пара насыщенных растворов в системе ZnSO₄-H₂O.

става равновесной твердой фазы и переходом кристаллогидрата $ZnSO_4 \cdot H_2O$ в безводную соль. Согласно данным [14], твердая фаза представляет собой $ZnSO_4 \cdot H_2O$ при 210°C и $ZnSO_4$ при 244°C, а по данным [13], при 250°С присутствует смесь кристаллов ZnSO₄ · H₂O и ZnSO₄. Около 375°C в рассматриваемой системе имеет место расслаивание насыщенных растворов (возникает инвариантное равновесие $(-m_1 - m_2 - TB)$, в результате которого растворимость соли резко возрастает и продолжает увеличиваться при дальнейшем повышении температуры. Проследить распространение расслаивания жидкостей в ненасыщенную область не удается, так как обычно применяемый метод получения кривых Р-V (зависимость давления от объема при T = const) [1] не дает четких результатов. Изломы, обнаруживаемые на таких кривых, лишь ориентировочно показывают, что двухфазное равновесие $m_1(\Gamma) - m_2$ существует до достаточно высоких давлений – 80–90 МПа при 380-400°С, что было найдено при использовании манометра на 160 МПа.

ЗАКЛЮЧЕНИЕ

Таким образом, установлено, что система $ZnSO_4-H_2O$ относится к 1-му типу водно-солевых систем с инвариантной точкой г—ж₁—ж₂—тв при температуре, близкой к критической температуре воды, поэтому наблюдаемую критическую точку г = ж—тв следует считать метастабильной.

Высокая растворимость соли и расслаивание растворов в системе $ZnSO_4$ — H_2O , как и в некоторых других водно-солевых системах, обнаруженные при исследовании в очень тонких капиллярах

Рис. 3. Изотермы (399, 411, 423°С) зависимости давления пара растворов $ZnSO_4$ от состава, построенные на основании расчета (табл. 3) для исходных смесей с 47 и 54 мас. % $ZnSO_4$.

t, °C	Давление, МПа	Объем пара, см ³	Н ₂ О в паре, г	ZnSO ₄ в растворе, мас. %			
47.15 мас. % ZnSO ₄ в 11.45 г смеси ZnSO ₄ + H ₂ O							
399	27.9	11	2.8	62.5			
	26.6	14	2.9	63			
	25.1	17.5	3.0	64			
	23.5			66*			
47.15 мас. % ZnSO ₄ в 11.45 г смеси ZnSO ₄ + H_2O							
411	31.0	11	3.0	64			
	29.7	14	3.2	65.5			
	29.2	15.4	3.4	67			
	28.2	17.5	3.5	68			
	27.0	20.5	3.6	68.5			
	25.1			72*			
	47.15 мас. %	ZnSO ₄ в 11.45 г смеси Z	$2nSO_4 + H_2O$	1			
423	34.6	11	3.2	65.5			
	32.1	14	3.3	66.5			
	31.4	15.4	3.4	67			
	29.4	20.5	3.8	70.5			
	26.0			75*			
54 мас. % $ZnSO_4$ в 9.14 г смеси $ZnSO_4 + H_2O$							
423	29.8	12	2.3	72			
	29.2	13	2.4	73			
	27.9	15	2.5	74			
	26.0			76*			

Таблица 3. Расчет состава растворов с учетом перехода воды в пар

* Насыщенный раствор (экстраполяция).

[15–18], связаны, очевидно, с особенностями межмолекулярных взаимодействий при развитии капиллярных сил, что приводит к существенному изменению набора фазовых равновесий и, возможно, к переходу метастабильных равновесий в стабильные.

БЛАГОДАРНОСТЬ

Работа выполнена в рамках госзадания № 46.4 "Теоретические основы химической технологии и разработка эффективных химико-технологических процессов".

СПИСОК ЛИТЕРАТУРЫ

- 1. Равич М.И. Водно-солевые системы при повышенных температурах и давлениях. М.: Наука, 1974. 151 с.
- 2. Валяшко В.М. Фазовые равновесия и свойства гидротермальных систем. М.: Наука, 1990. 270 с.
- 3. *Buchner E.H.* Die heterogenen Gleichgewicte von H.W.B. Roozeboom. Braunschweig, T. 2. H. 2. 226 s.
- 4. Ван-дер-Ваальс И.Д., Констамм Ф. Курс термодинамики Ч. 1, 2. М.: ОНТИ, 1963.
- 5. *Roulinson J.S.* Liquids and liquid mixtures. L.: Butterworth, 1969.
- 6. Smins A.Z. // Z. Phys. Chem. 1905. V. 51. P. 193.
- Pott W., De Loos T.W. // Fluid Phase Equil. 2003. V. 221. P. 165.
- Pott W., De Loos T.W. // Ind. Eng., Chem Res. 2008. V. 47. P. 5146.

- 9. Валяшко В.М., Кравчук К.Г. // Журн. неорган. химии. 1977. Т. 22. С. 278.
- 10. *Равич М.И., Валяшко В.М. //* Журн. неорган. химии. 1969. Т. 14. С. 1650.
- Киргинцев А.Н., Трушникова Л.Н., Лаврентьева В.Г. Растворимость неорганических веществ в воде. Л.: Химия, 1972. 244 с.
- 12. Benrath A. // Z. Anorg. Allg. Chem. 1941. B. 247. S. 147.
- 13. Jones E.V., Lietzke M.H., Marshall W.L. // J. Am. Chem. Soc. 1957. V. 79. P. 267.
- 14. *Rundulph W.W., Brooker M.H., Tremaine //* J. Solution Chem. 1999. V. 28. P. 621.
- 15. *Wang X., Chou I.-M., Hu W. et al.* // Geochim. Cosmochim. Acta. 2013. V. 103. P. 1.
- Wang X., Wang X., Chou I.-M. et al. // Chem. Geology. 2017. V. 451. P. 104.
- 17. *Wan J., Wang X., Hu W. et al.* // Geochim. Cosmochim. Acta. 2017. V. 211. P. 133.
- 18. Wang X., Wan Y., Hu W. et al. // Geochim. Cosmochim. Acta. 2016. V. 181. P. 126.
- 19. *Евсеева Н.М., Бергман А.Г.* // Изв. Сектора физ.хим. анализа ИОНХ РАН. 1959. Т. 21. С. 208.
- Бабичев А.П., Бабушкина Н.А., Братковский А.М. и др. Физические величины. Справочник / Под ред. Григорьева И.С., Мейлихова Е.З. М.: Энергоатомиздат, 1991. 1231 с.
- 21. Вукалович М.П., Ривкин С.Л., Александров А.А. Таблицы теплофизических свойств воды и водяного пара. М.: Изд-во Стандартов, 1969. 408 с.