СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 546.824-31:546.26-0.22.532

СИНТЕЗ КОМПОЗИТА ТіО₂/С ПИРОЛИЗОМ ГЛИЦЕРОЛАТА ТИТАНА

© 2019 г. Г. С. Захарова^{1, *}, З. А. Фаттахова^{1, 2}, Е. И. Андрейков³, И. С. Пузырев^{2, 3}

¹Институт химии твердого тела УрО РАН, Россия, 620990 Екатеринбург, ул. Первомайская, 91 ²Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, Россия, 620002 Екатеринбург, ул. Мира, 19

> ³Институт органического синтеза им. И.Я. Постовского УрО РАН, Россия, 620137 Екатеринбург, ул. Софьи Ковалевской, 22 *e-mail: volkov@ihim.uran.ru Поступила в редакцию 23.05.2018 г. После доработки 18.06.2018 г.

> > Принята к публикации 15.08.2018 г.

Термическим разложением глицеролата титана в инертной атмосфере в интервале температур $360-850^{\circ}$ С синтезирован композит на основе диоксида титана TiO_2/C . Показано, что структура соединения определяется условиями термообработки $Ti(C_3H_7O_3)_4$. Формирование композита (до 400° С) происходит через образование рентгеноаморфной фазы с характерным для анатазной модификации ближним порядком. Повышение температуры пиролиза ($400-600^{\circ}$ С) приводит к образованию TiO_2/C со структурой анатаза. Композит TiO_2/C , полученный при температуре выше 600° С, представляет собой смесь анатаза с рутилом. Частицы TiO_2/C имеют морфологию стержней диаметром 100-250 нм и длиной до 6.5 мкм, сохраняющуюся до 850° С. Наличие углерода в образцах подтверждено спектроскопией КР и термогравиметрией.

Ключевые слова: диоксид титана, углерод, композит, глицеролат титана, термолиз, наностержни, механизм формирования

DOI: 10.1134/S0044457X19030231

введение

Диоксид титана относится к группе широко востребованных многофункциональных материалов. отличаюшихся высокой химической стабильностью, экологической безопасностью, технологической простотой получения и низкой стоимостью. В настоящее время диоксил титана используется в качестве фотокатализаторов [1], пигментов [2], функциональных компонентов газовых сенсоров [3] и солнечных батарей [4], анодных материалов литиевых источников тока [5]. Однако широкое практическое применение TiO₂ сдерживается его низкой проводимостью. Поэтому многочисленные исследования направлены на ее повышение за счет допирования диоксида титана атомами серы [6], азота [7], иода [8], а также за счет формирования углеродсодержащего композита на его основе [9].

В последние годы синтез и использование композитного материала на основе диоксида титана с контролируемой кристаллической структурой и морфологией вызывают повышенный интерес. Известно множество способов получения композита TiO₂/C. Один из распространенных методов синтеза — карбонизация углеродной компоненты титансодержащего соединения в токе инертного газа при температуре 700–900°С [10, 11]. Широко используется введение углерода при осаждении TiO_2 из паровой фазы на подложку активированного углерода [12]. Снизить температуру синтеза композита позволяет карбонизация реакционной смеси, например глюкозы и гликолята титана, в гидротермальных условиях [13]. При этом формируется TiO_2/C со структурой анатаза. Композит TiO_2/C со смешанной структурой анатаза и рутила может быть получен окислением карбида титана при температуре 350–600°С [14].

Перспективным направлением в развитии подходов к синтезу композитных материалов является использование алкоксидов металлов в качестве твердофазных прекурсоров, являющихся одновременно источником углерода и оксида металла [15]. В результате термического разложения в токе инертного газа или воздуха алкоксиды металлов превращаются в композиты оксид металла/углерод или оксиды металлов соответственно. Морфологию, химический состав и кристаллическую структуру конечного продукта можно контролировать выбором подходящего алкоксида. Глицеролат титана, относящийся к классу алкоксидов, эффективно может быть использован в ка-

Рис. 1. Дифрактограмма и позиции брегговских пиков по данным [16] (а), СЭМ-изображение (б), изотермы сорбции и кривая распределения пор по размерам (в), кривые ТГ-ДСК-МС в токе азота порошка глицеролата титана (г).

честве прекурсора для получения наночастиц ТіО₂ стержневой морфологии [16, 17].

В настоящей работе пиролизом глицеролата титана синтезирован композит TiO₂/C, исследована морфология, структура и последовательность фазовых превращений в процессе его синтеза.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных соединений использовали тетрабутоксититан марки "ч." и свежеперегнанный под вакуумом глицерин марки "ч. д. а.". Глицеролат титана (ГТ) синтезировали следующим образом: к 150 мл глицерина добавляли 15 мл тетрабутоксититана в атмосфере аргона, смесь перемешивали и выдерживали в течение 24 ч при 190°С. Затем реакционную массу охлаждали до комнатной температуры. Полученный осадок отделяли центрифугированием, промывали этанолом и сушили при 100°С до постоянной массы. Синтезированный ГТ использовали в качестве прекурсора для получения композита TiO₂/C.

Для этого ГТ прокаливали в токе азота со скоростью 5 град/мин при температуре 360-850°С в течение 0.5-2 ч. Продукты прокаливания обозначены как $TiO_2/C-X$, где X — температура.

Рентгенофазовый анализ (РФА) образцов выполняли на дифрактометре Shimadzu XRD-7000 в CuK_{α} -излучении ($\lambda = 1.5418$ Å). Исследование морфологии образцов проводили с помощью сканирующего электронного микроскопа (СЭМ) JEOL JSM 6390 LA, совмещенного с энерголисперсионным рентгеновским анализатором EX-23010BU. ИК-спектры образцов регистрировали на ИК-Фурье-спектрометре Spectrum One B (Perkin-Elmer). Удельную поверхность образцов измеряли на анализаторе удельной поверхности и пористости Gemini VII (Micromeritics). Термический анализ выполняли с использованием термоанализаторов TGA/DSC1 (Mettler Toledo) и STA 449 F₃ Jupiter (Netzsch), совмещенного с квадрупольным масс-спектрометром QMS 403, при скорости нагрева 10 град/мин в атмосфере воздуха до 850°С (ТГ-ДСК-МС). Спектры комбинационно-

230

Рис. 2. Схема образования формальдегида (1), ацетальдегида (2), акролеина (3), гидроксиацетона (4) при термодеструкции глицеролата титана.

го рассеяния (**КР**) регистрировали на КР-спектрометре U1000 (Renishaw) с помощью Не-Ne лазера мощностью 40 мВт и длиной волны 532 нм в диапазоне частот 50–4000 см⁻¹.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1а приведена дифрактограмма синтезированного ГТ, полностью совпадающая с литературными данными для глицеролата титана, индицированного в пр. гр. Р2/с с параметрами элементарной ячейки: *a* = 8.37515, *b* = 15.33781, *c* = = 5.57151 Å, β = 99.824° [16]. Согласно СЭМ (рис. 1б), порошок ГТ состоит из слабо агломерированных частиц стержневой морфологии диаметром 20-40 нм и длиной 300-500 нм. Исследования текстурных свойств методом низкотемпературной адсорбции азота показали, что, согласно классификации IUPAC, изотермы адсорбции ГТ относятся к IV типу с петлей гистерезиса H3 (рис. 1в). Петля гистерезиса наблюдается в области высоких относительных давлений ($P/P_0 > 0.8$), что указывает на наличие в ГТ мезопористой структуры. Удельная поверхность и преимущественный диаметр пор ГТ, вычисленные с использованием дифференциальной кривой десорбционной ветви полной изотермы сорбции азота, равны 47.6 м²/г и 38 нм соответственно.

Термический анализ, совмещенный с массспектроскопией, позволил подробно исследовать термическое разложение ГТ. Термолиз ГТ в токе азота проходит в две стадии (рис. 1г). Согласно ГГ-кривой, в температурном интервале 300– 355°С наблюдается значительная потеря массы (~35 мас. %), обусловленная термической деструкцией ГТ. Процесс сопровождается сильным экзотермическим эффектом с максимумом при 353°С, отвечающим образованию фазы TiO₂. По

Рис. 3. Дифрактограммы композитов $TiO_2/C-360$ (1), $TiO_2/C-400$ (2), $TiO_2/C-500$ (3), $TiO_2/C-600$ (4), $TiO_2/C-850$ (5). Анатазная и рутильная модификации диоксида титана отмечены символами A и R соответственно.

данным масс-спектроскопии, при этом выделяется вода (m/z = 18 а.е.м.), диоксид углерода CO₂ (m/z == 44 а.е.м.), ацетальдегид $C_2H_4O~(m/z = 42 \text{ a.e.м.}),$ акролеин C₃H₄O (m/z = 27 а.е.м.), формальдегид CH₂O (m/z = 30 а.е.м.) и гидроксиацетон C₃H₆O₃ (m/z = 31 a.e.м.). Образование летучих органических продуктов пиролиза ГТ в инертной атмосфере может быть представлено в виде схемы (рис. 2). Помимо выделения углекислого газа и воды, происходит разрыв связей С-С углеродной цепи глицеринового остатка, приводящий к формированию углеродной составляющей композита и образованию низкомолекулярных органических соединений (формальдегида, ацетальдегида, акролеина, гидроксиацетона), осколочные ионы которых наблюдаются на соответствующих массспектрах.

В интервале температур 355–570°С происходит дальнейшая убыль массы (~6.3 мас. %), связанная с выделением остатков органической составляющей ГТ в виде диоксида углерода. Интересно отметить, что деструкция органической составляющей ГТ продолжается и после образования диоксида титана. Поэтому можно предположить, что вторая стадия термического разложения ГТ обусловлена разложением кислородсодержащих группировок углеродной составляющей композита.

Формирование композита на основе кристаллической структуры диоксида титана в процессе термической обработки ГТ детально изучено ме-

Рис. 4. КР-спектры композитов $TiO_2/C-300$ (1), $TiO_2/C-360$ (2), $TiO_2/C-400$ (3), $TiO_2/C-600$ (4), $TiO_2/C-850$ (5).

тодами РФА, КР- и ИК-спектроскопии. Согласно данным РФА (рис. 3), термическая обработка ГТ в токе азота при температуре ниже 400°С приводит к образованию рентгеноаморфной фазы. Очевидно, что выбранные условия термолиза являются недостаточными для формирования кристаллической структуры диоксида титана. Увеличение температуры термообработки до 600°С сопровождается формированием TiO₂ со структурой анатаза. Дальнейшее повышение температуры пиролиза ГТ до 850°С приводит к появлению на рентгенограмме анатазной формы диоксида титана дополнительных пиков, относящихся к рутильной модификации TiO₂.

Установлено, что с ростом температуры пиролиза глицеролата титана размер кристаллитов TiO_2/C увеличивается, о чем свидетельствуют увеличение интенсивностей и уменьшение полуширин дифракционных пиков. С использованием уравнения Шеррера (1) была проведена оценка среднего размера частиц композита TiO_2/C , синтезированного при 500 и 600°C:

$$D = \frac{k\lambda}{\Delta(2\theta)\cos\theta},\tag{1}$$

где D — размер частиц в направлении, перпендикулярном плоскости (*hkl*), от которой получен рефлекс, k — безразмерный коэффициент формы частиц (постоянная Шеррера), $\Delta(2\theta)$ — полуширина угла дифракции, θ — брегговский угол, λ длина волны рассеянного излучения. Расчет вели по интенсивному и хорошо разрешенному дифракционному пику (101). Средний размер частиц композита TiO₂/C, полученного термолизом

Рис. 5. ИК-спектры глицеролата титана (*1*) и композитов TiO₂/C-300 (*2*), TiO₂/C-360 (*3*).

ГТ при 500 и 600°С, равен 4.1 и 4.8 нм соответственно.

Согласно данным КР-спектроскопии (рис. 4), композит TiO₂/C-X, полученный в интервале температур 300-600°С, демонстрирует активные моды, соответствующие анатазной модификации TiO₂ [18]. Очевидно, что формирование структуры диоксида титана, которое начинается при 300°С, протекает через образование в интервале температур 300-400°С рентгеноаморфной фазы TiO₂ с характерным для структуры анатаза ближним порядком. По мере увеличения температуры термолиза ГТ интенсивность пиков значительно возрастает, что указывает на повышение степени кристалличности TiO₂. На колебательном спектре композита, синтезированного при 850°C, наблюдаются дополнительные пики при 255, 421 и 608 см⁻¹, соответствующие рутильной модификации ТіО₂ [19]. Таким образом, данные спектроскопии КР, описывающие последовательность фазовых превращений ГТ в процессе получения композита TiO₂/C-X, хорошо коррелируют с результатами РФА (рис. 3).

Наличие углерода в композите $TiO_2/C-X$ подтверждено методом спектроскопии КР (рис. 4). В высокочастотной области КР-спектра наблюдаются две достаточно интенсивные полосы при 1350 и 1600 см⁻¹, характерные для мелкокристаллического графита [20]. Полоса при 1350 см⁻¹ соответствует D-линии, которая обусловлена колебаниями связей С—С с *sp*³-типом гибридизации, а также ответственна за структурное разупорядочение и служит характеристикой степени дефектно-

СИНТЕЗ КОМПОЗИТА ТіО2/С

Рис. 6. СЭМ-изображения композитов TiO₂/C-360 (a), TiO₂/C-400 (б), TiO₂/C-600 (в), TiO₂/C- 850 (г).

сти углеродсодержащей компоненты. Значительное уширение данной линии, а также ее высокая интенсивность указывают на то, что углерод, присутствующий в данном образце, находится в аморфном состоянии. Положение и интенсивность G-линии при 1600 см⁻¹ позволяют определить степень графитизации углерода. Данная линия превышает по интенсивности D-линию и соответствует колебаниям атомов углерода в *sp*²-гибридизации, что свидетельствует о наличии в образце не только аморфного, но и графитоподобного углерода [21].

С помошью ИК-спектроскопии подробно изучено термическое разложение ГТ и превращение его в композит TiO₂/C (рис. 5). В ИК-спектре ГТ сохраняются основные полосы поглощения связей С-О глицерина, первичных гидроксилов при 1043 см⁻¹ и вторичного гидроксила при 1111 см⁻¹. Колебания связей С-О-Ті описываются полосой поглощения при 1079 см⁻¹ и плечом при 1131 см⁻¹. Интенсивная полоса при 598 см⁻¹ может быть отнесена к валентным колебаниям связи v(C-O-Ti). Широкая интенсивная полоса с максимумом при 3436 см⁻¹ характеризует валентные колебания ОН-групп. Поглощение при 2921 и 2863 см⁻¹ соответствует колебаниям –СН₂-связей. Деформационные колебания воды проявляются в виде очень слабой полосы при 1633 см⁻¹. Колебания

титан-кислородных связей проявляются в виде сильного поглошения в интервале 500-800 см⁻¹. характерного для диоксида титана [22]. Термообработка ГТ при 300°С приводит к исчезновению основных полос поглощения связей С-О, характерных для структуры глицерина, и появлению сильного поглощения валентных колебаний v(Ti-O) в октаэдре TiO₆ в интервале 500-800 см⁻¹. При этом остается слабое поглошение колебаний -СН₂-связей, которое практически исчезает при дальнейшем повышении температуры прокаливания. Слабовыраженные полосы поглощения вблизи 1444 см⁻¹ можно отнести к мостиковым колебаниям δ(≡Ti–O(H)–Ti≡)-связей [23]. Полоса поглощения в интервале 3100-3600 см⁻¹, характеризующая валентные колебания гидроксильных групп, координированных титаном, после термообработки становится более интенсивной, наблюдается сдвиг ее максимума в низкочастотную область.

На рис. 6 представлены типичные СЭМ-изображения композита $TiO_2/C-X$. Независимо от температуры синтеза частицы композита имеют стержневую морфологию, сохраняющуюся до 850°С. Наностержни $TiO_2/C-X$ склонны к агрегации с образованием ансамблей, напоминающих по форме хризантемы. Длина отдельных наностержней равна 3.5–6.5 мкм, диаметр – 100–250 нм, что

Рис. 7. Кривые ТГ-ДТА композитов TiO₂/C-360 (a), TiO₂/C-480 (б), TiO₂/C-600 (в), TiO₂/C-850 (г) в атмосфере воздуха.

значительно больше по сравнению с частицами ГТ, используемого в качестве прекурсора.

Термогравиметрический анализ (ТГА) в окислительной атмосфере был использован для определения содержания углерода в композите TiO₂/C и получения информации о его реакционной способности (рис. 7). В интервале температур 20-220°С для композитов $TiO_2/C-X$ (X < 600) наблюдается незначительная убыль массы (~4%), которую можно отнести к потере адсорбционной воды. В интервале температур 220-500°С происходит убыль массы, связанная с окислением углерода, входящего в состав композита. При этом на кривых ДТА фиксируются два экзотермических эффекта, интенсивность и положение которых зависят от температуры получения композита. Очевидно, что в композите TiO₂/C присутствует углерод с различной реакционной способностью к газообразному кислороду. Окисление углерода композита TiO₂/C-850 протекает в одну стадию с экзоэффектом при температуре 491°С. По данным ТГА, в токе воздуха содержание углерода в композитах составляет 29, 26, 26 и 16 мас. % для TiO₂/C-360, TiO₂/C-480, TiO₂/C-600 и TiO₂/C-850 соответственно. Значительное снижение содержания углерода в образце TiO₂/C-850 объясняется карботермическим восстановлением TiO₂ за счет наиболее реакционноспособного углерода [24].

На рис. 8 представлены результаты исследования удельной поверхности и пористости композитного материала на основе диоксида титана, полученного термическим разложением ГТ при различных температурах. В соответствии с классификацией ИЮПАК [25], изотермы сорбции композита TiO₂/C-X относятся к IV типу с петлей гистерезиса H3 (X = 360, 480, 600) и H4 (X = 850). Удельная поверхность композитов TiO₂/C-360, TiO₂/C-480, TiO₂/C-600 и TiO₂/C-850 равна 30.2, 33.4, 78.5 и 305.6 м²/г соответственно. Резкое увеличение площади удельной поверхности композита TiO₂/C-850, по-видимому, связано с образованием дефектов в структуре композитного мате-

Рис. 8. Изотермы сорбции (*1* – адсорбция, *2* – десорбция) и кривые распределения пор по размерам (вставки) композита TiO₂/C-360 (a), TiO₂/C-480 (b), TiO₂/C-600 (в), TiO₂/C-850 (г).

риала при карботермическом восстановлении TiO₂. Распределение пор по размерам композитов TiO₂/C-X происходит в широком диапазоне (рис. 8, вставки). Для TiO₂/C-360 характерно мономодальное распределение пор с преимущественным размером ~35 нм. Бимодальное распределение пор наблюдается для композитов ТіО₂/С-480 и TiO₂/C-600. Наряду с макропорами (преимущественный размер пор ~70 нм) в указанных композитах присутствуют мезопоры с преимущественным диаметром 3-5 нм. В композите TiO₂/C-850 преобладают мезопоры диаметром ~4 нм. Существование неоднородной пористой структуры композита ТіО₂/С-Х, возможно, связано с микрорастрескиванием образца при нагревании, которое может происходить на границе раздела двух фаз, обладающих разным химическим составом и, следовательно, коэффициентом термического расширения.

ЗАКЛЮЧЕНИЕ

Таким образом, установлено, что термическим разложением в инертной атмосфере ГТ как твердо-

фазного прекурсора может быть получен композитный материал TiO₂/C. Формирование композита протекает через образование рентгеноаморфной фазы с последующей ее кристаллизацией в анатазной модификации. Повышение температуры синтеза до 850°C приводит к образованию в композите примеси рутила в смеси с анатазом как основной фазы. Частицы TiO₂/C имеют стержневую морфологию, которая сохраняется до температуры 850°C. Содержание углерода в образцах зависит от температуры пиролиза ГТ и составляет 16-29 мас. %.

БЛАГОДАРНОСТЬ

Работа частично выполнена при финансовой поддержке УрО РАН в рамках научного проекта № 18-10-3-32. Работа выполнена с использованием оборудования Центра коллективного пользования "Спектроскопия и анализ органических соединений" (ЦКП "САОС").

СПИСОК ЛИТЕРАТУРЫ

- 1. Dagan G., Tomkiewicz M. // J. Phys. Chem. 1993. V. 97. № 49. P. 12651.
- Hsu W.P., Yu R., Matijevic E. // J. Colloid Interface Sci. 1993. V. 156. № 1. P. 56.
- Abdullah M., Kamarudin S.K. // Renewable Sustainable Energy Rev. 2017. V. 76. P. 212.
- Gratzel M.J. // J. Photochem. Photobiol. C. 2003. V. 4. № 2. P. 145.
- 5. *Yaroslavtsev A.B., Kulova T.L., Skundin A.M.* // J. Russ. Chem. Rev. 2015. V. 84. № 8. P. 826.
- Park C-S., Bangi K.H., Park H-H. // Mater. Lett. 2013. V. 106. P. 401.
- Peng F., Cai L., Huang L. et al. // J. Phys. Solids. 2008. V. 69. № 7. P. 1657.
- Wang W., Shi Q., Wang Y. et al. // Appl. Surf. Sci. 2011. V. 257. № 8. P. 3688.
- 9. Leary R., Westwood A. // Carbon. 2011. V. 49. № 3. P. 741.
- 10. *Tryba B., Morawski A.W., Inagaki M.* // Appl. Catal. B. 2003. V. 46. № 1. P. 203.
- 11. Kang K-Y., Lee Y-G., Kim S. et al. // Mater. Chem. Phys. 2012. V. 137. № 1. P. 169.
- 12. Puma G.L., Bono A., Krishnaiah D., Collin J.G. // J. Hazard. Mater. 2008. V. 157. № 2–3. P. 209.
- Cheng G., Stadler F.J. // J. Colloid Interface Sci. 2015. V. 438. P. 169.

- 14. *Zhang L., Tse M.S., Tan O.K. et al.* // J. Mater. Chem. A. 2013. V. 1. № 14. P. 4497.
- *Zhao J., Liu Y., Fan M.* // Inorg. Chem. Front. 2015.
 V. 2. № 3. P. 198.
- Das J., Freitas F.S., Evans I.R. et al. // J. Mater. Chem. 2010. V. 20. № 21. P. 4425.
- Захарова Г.С., Андрейков Е.И., Осипова В.А. и др. // Неорган. материалы. 2013. Т. 49. № 11. С. 1127. [Zakharova G.S., Andreikov E.I., Osipova V.A. et al. // J. Inorg. Mater. 2013. V. 49. № 11. Р. 1127. doi 10.1134/S0020168513100154]
- Taziwa Z., Meyer E.L., Chinyama K.G. // J. Mater. Sci. 2012. V. 47. № 3. P. 1531.
- Balachandran U., Eror N.G. // Solid State Chem. 1982. V. 42. № 3. P. 276.
- Bai X., Li T., Qi Y-X. et al. // Electrochim. Acta. 2015.
 V. 169. P. 241.
- Ferrari A.C., Robetson J. // Phys. Rev. B. 2001. V. 64. № 7. P. 075414.
- 22. Viana B.C., Ferreira O.P., Filho A.G. et al. // Vibrational Spectroscopy. 2011. V. 55. № 2. P. 183.
- Кострикин А.В., Кузнецова Р.В., Кузнецова О.В. и др. // Вопросы современной науки и практики. 2007. Т. 8. № 2. С. 181.
- Zhang H., Li F., Jia Q. // J. Sol-Gel Sci. Technol. 2008. V. 46. № 2. P. 217.
- 25. *Rouquerol J., Avnir D., Fairbridge C.W. et al.* // Pure Appl. Chem. 1994. V. 66. № 8. P. 1739.