ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2019, том 64, № 4, с. 425-429

_ ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 541.123.7

ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМЕ Na,K||SO₄,CO₃,HCO₃,F-H₂O ПРИ 0°C В ОБЛАСТИ КРИСТАЛЛИЗАЦИИ НАХКОЛИТА (NaHCO₃)

© 2019 г. И. Низомов¹, Л. Солиев^{1, *}

¹Таджикский государственный педагогический университет им. С. Айни, пр-т Рудаки, 121, Душанбе, 733740 Республика Таджикистан *e-mail: soliev.lutfullo@vandex.com

> Поступила в редакцию 25.01.2018 г. После доработки 26.02.2018 г. Принята к публикации 12.07.2018 г.

Методом трансляции определены фазовые равновесия на геометрических образах системы Na,K||SO₄,CO₃,HCO₃,F-H₂O при 0°C в области кристаллизации нахколита (NaHCO₃). Установлено, что нахколит участвует в формировании 18 дивариантных полей, 16 моновариантных кривых и 5 нонвариантных точек. Построена замкнутая фазовая диаграмма (фазовый комплекс) исследуемой системы при 0°C в области кристаллизации нахколита.

Ключевые слова: метод трансляции, нахколит, шестикомпонентная система, нонвариантные точки

DOI: 10.1134/S0044457X19030140

ВВЕДЕНИЕ

Закономерности фазовых равновесий в системе Na,K SO4,CO3,HCO3,F-H2O определяют условия комплексной переработки полиминерального природного и сложного технического сырья, содержащего сульфаты, карбонаты, гидрокарбонаты, фториды натрия-калия. Перечисленные соли являются составными частями жидких отходов промышленного производства алюминия [1-3]. Нахколит является равновесной фазой в 6-и из 14 четырехкомпонентных систем и в 4-х из 6 пятикомпонентных систем, составляющих исследуемую шестикомпонентную систему. Фазовые равновесия в этих четырех- и пятикомпонентных системах исследованы ранее [4-8] методом трансляции.

Метод трансляции [9] вытекает из принципа совместимости элементов строения *n*- и (n + 1)-компонентных систем в одной диаграмме [10] и признан специалистами [11] как один из универсальных методов исследования многокомпонентных систем. Ранее методом трансляции было исследовано участие другой равновесной фазы шестикомпонентной системы Na,K $||SO_4,CO_3,HCO_3,F-H_2O$ – троны (NaHCO₃ · Na₂CO₃ · 2H₂O) в формировании ее геометрических образов [12].

Для прогнозирования участия нахколита в формировании геометрических образов шестикомпонентной системы Na,K $||SO_4,CO_3,HCO_3,F-H_2O$ при 0°C использованы данные о фазовом составе нонвариантных точек пятикомпонентных систем с участием нахколита, взятые из работ [5–8] и представленные в табл. 1.

В табл. 1 и далее Е обозначает нонвариантную точку, верхний индекс указывает на кратность точки (компонентность системы), нижний – на ее порядковый номер. Приняты следующие обозначения равновесных твердых фаз: $\mathbf{C} \times \mathbf{10} -$ Na₂CO₃ · 10H₂O, $\mathbf{Q} -$ Na₂CO₃ · K₂CO₃ · 6H₂O, $\mathbf{\Gamma}_3$ глазерит 3K₂SO₄ · Na₂SO₄, **Во** – вильомит NaF, **Мб** – мирабилит Na₂SO₄ · 10H₂O, **Кб** – кароббиит KF, **Hx** – нахколит NaHCO₃, **S** – 2KHCO₃ · K₂CO₃ · · 1.5H₂O и **Кц** – калицинит KHCO₃.

Поскольку с увеличением числа компонентов строение диаграмм фазовых равновесий многокомпонентных систем становится затруднительным для чтения, что связано с увеличением числа геометрических образов, рекомендуется использовать принцип фрагментации диаграмм исследуемой системы [13, 14]. На рис. 1 представлен фрагмент схематической диаграммы фазовых равновесий системы Na,K||SO₄,CO₃,HCO₃,F–H₂O при 0°C на уровне пятикомпонентного состава в области кристаллизации нахколита, построенной по данным табл. 1, где отражено взаимное расположение геометрических образов исследуемой

осалков:

системы при 0°С в области кристаллизации нахколита. Фазовый состав осадков пятерных нонвариантных точек приведен в табл. 1. Фазовый состав осадков дивариантных полей указан на

рис. 1. Моновариантные кривые, проходящие

между пятерными нонвариантными точками, ха-

рактеризуются следующим фазовым составом

Трансляция пятерных нонвариантных точек на уровень шестикомпонентного состава приводит к образованию шестерных нонвариантных

точек с характерными для них равновесными твердыми фазами:

 $E_1^5 + E_{18}^5 + E_{22}^5 \dots E_1^6 = M6 + Hx + C \times 10 + \Gamma_3 + Bo;$ $E_4^5 + E_{15}^5 + E_{20}^5 \dots E_2^6 = \Gamma_3 + H_X + K_{II} + S + K_{05};$ $E_5^5 + E_{13}^5 + C \times 10 + Bo + Hx;$ $E_7^5 + E_{17}^5 \dots E_4^6 = Hx + Q + S + \Gamma_3 + K6;$ $F_{ac}^{5} + E_{21}^{5} \dots E_{5}^{6} = Hx + Q + Bo + \Gamma_{3} + K6.$

Таблица 1. Фазовый состав осадков в нонвариантных точках системы Na,K SO4,CO3,HCO3,F-H2O при 0°C в области кристаллизации нахколита на уровне пятикомпонентного состава

Нонвариантная точка	Фазовый состав осадков	Нонвариантная точка	Фазовый состав осадков
Система Na,K SO ₄ ,CO ₃ , HCO ₃ -H ₂ O		Система Na,K SO ₄ ,HCO ₃ ,F–H ₂ O	
E_1^5	$M\delta + Hx + C \times 10 + \Gamma_3$	E_{18}^{5}	$Bo + \Gamma_3 + M\delta + Hx$
E_4^5	$\Gamma_3 + H_X + K_{II} + S$	E_{20}^{5}	$\Gamma_3 + K\delta + K\mu + Hx$
E_5^5	$\Gamma_3 + Q + C \times 10 + Hx$	E_{21}^{5}	$Bo + \Gamma_3 + Kb + Hx$
E ₇ ⁵	$\Gamma_3 + S + Q + H_X$	Система Na ₂ SO ₄ –Na ₂ CO E ⁵ 22	$D_3 - NaHCO_3 - NaF - H_2O$ Bo + M6 + Hx + C × 10
Система Na,К CO ₃ ,HCO ₃ ,F-H ₂ O		- 22	
E_{13}^{5}	$C \times 10 + Bo + Hx + Q$		
E_{15}^{5}	$S + K \delta + K \mu + H x$		
E_{16}^{5}	$Q + Bo + K\delta + Hx$		
E_{17}^{5}	$Q + S + Bo + K\delta + Hx$		

Рис. 1. Фрагмент схематической диаграммы фазовых равновесий системы Na,K∥SO₄,CO₃,HCO₃,F−H₂O при 0°C на уровне пятикомпонентного состава в области кристаллизации нахколита.

Рис. 2. Фрагмент схематической совмещенной диаграммы фазовых равновесий системы Na,K∥SO₄,CO₃,HCO₃,F-H₂O при 0°C на уровнях пяти- и шестикомпонентного составов в области кристаллизации нахколита.

Видно, что все 5 нонвариантных точек образованы в результате "сквозной" трансляции [9]. На рис. 2 представлен фрагмент схематической диаграммы [14] системы Na,K||SO₄,CO₃,HCO₃,F–H₂O при 0°C в области кристаллизации нахколита на уровне шестикомпонентного состава. На основе полученных данных построена совмещенная диаграмма фазовых равновесий исследованной системы на уровнях пяти- и шестикомпонентно-го составов.

На рис. 2 тонкие сплошные линии являются моновариантными кривыми уровня пятикомпонентного состава, а полужирные сплошные линии — уровня шестикомпонентного состава и соединяют соответственно пятерные и шестерные нонвариантные точки. Фазовый состав осадков, со-

Равновесные твердые фазы полей	Контуры полей на диаграмме (рис. 2)	Равновесные твердые фазы полей	Контуры полей на диаграмме (рис. 2)
$Hx + C \times 10 + \Gamma_3$	$ \begin{array}{c c} E_1^5 - \cdots & F_1^6 \\ \vdots \\ E_5^5 - \cdots & F_3^6 \end{array} $	Hx + Q + Bo	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$Hx + \Gamma_3 + M6$		$Hx + Bo + C \times 10$	$\begin{bmatrix} E_{13}^{5} \bullet & E_{3}^{6} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
$Hx + C \times 10 + M6$	$ \begin{array}{c} E_1^5 \rightarrow E_1^6 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Hx + S + Кб	$ \begin{array}{c} E_{15}^{5} \rightarrow E_{2}^{6} \\ \\ E_{17}^{5} \rightarrow E_{4}^{6} \end{array} $
$Hx + \Gamma_3 + S$	$ \begin{array}{c} E_4^5 + E_2^6 \\ $	Hx + Кб + Кц	$\begin{bmatrix} E_{15}^{5} \rightarrow & E_{2}^{6} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Нх + S + Кц	$E_4^5 \rightarrow E_2^6$ $\downarrow \qquad \qquad$	Hx + Q + Кб	$ \begin{array}{c c} E_{16}^{5} & E_{5}^{6} \\ \vdots \\ E_{17}^{5} & F_{4}^{6} \end{array} $
Нх + Кц + Гз	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hx + Bo + Кб	$\begin{bmatrix} E_{16}^{5} & E_{5}^{6} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
$Hx + C \times 10 + Q$	$ \begin{array}{c} E_{5}^{5} \rightarrow E_{3}^{6} \\ $	Hx + Bo + Γ3	$E_{18}^{5} - \cdots \rightarrow E_{1}^{6}$ $E_{21}^{5} - \cdots \rightarrow E_{5}^{6} - \cdots \rightarrow E_{3}^{6}$
$Hx + Q + \Gamma_3$	$ \begin{array}{c} E_5^5 - \cdots - \bullet E_3^6 \\ \\ E_7^5 - \cdots \bullet E_4^6 - \bullet E_5^6 \end{array} $	Hx + Bo + Mб	$\begin{bmatrix} E_{18}^{5} & - & - & - & - & - & - & * & E_{1}^{6} \\ & & & & & & \\ & & & & & & \\ & & & & $
Hx + Q + S	$E_7^5 E_4^6$	Нх + Γ3 + Кб	$ \begin{array}{c c} E_{20}^{5} & - & - & - & - & \bullet \\ E_{20}^{5} & - & - & \bullet & \bullet \\ E_{21}^{5} & - & - & \bullet & \bullet & \bullet \\ \end{array} $

Таблица 2. Равновесные твердые фазы и контуры дивариантных полей системы Na,K∥SO₄,CO₃,HCO₃,F−H₂O при 0°С в области кристаллизации нахколита

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 4 2019 Анализ строения фрагмента диаграммы фазовых равновесий исследованной системы при 0°С на уровне пяти- (А) и шестикомпонентного (Б) составов показывает на участие нахколита в формировании следующего количества геометрических образов:

ответствующих моновариантным кривым, проходящим между пятерными точками, приведен вы-

ше. Ниже представлен фазовый состав осадков,

отвечающих моновариантным кривым, проходя-

 E_1^6 - $E_3^6 = C \times 10 + \Gamma_3 + Bo + Hx;$ E_2^6 - $E_4^6 = \Gamma_3 + Hx + S + K6;$

Пунктирные линии также являются монова-

риантными кривыми уровня шестикомпонент-

ного состава. Они образованы в результате транс-

ляции пятерных точек на уровень шестикомпо-

нентного состава, где направления трансляции указаны стрелками. Фазовый состав осалков, от-

вечающих этим моновариантным кривым, иден-

тичен фазовому составу осалков в соответствую-

фазы и контуры дивариантных полей системы

Na,K||SO₄,CO₃,HCO₃,F-H₂O при 0°C в области

В табл. 2 представлены равновесные твердые

щих транслированных пятерных точках.

 $E_2^6 - E_5^6 = \Gamma_3 + H_X + B_0 + Q;$

 $E_4^6 - E_5^6 = \Gamma_3 + H_X + Q + K \delta.$

щим между шестерными точками:

Уровень компонентности	А	Б
Нонвариантные точки	12	5
Моновариантные кривые	18	16
Дивариантные поля	8	18

1. *Морозова В.А., Ржечицкий Э.П.* // Журн. прикл. химии. 1976. Т. 49. № 5. С. 1152.

СПИСОК ЛИТЕРАТУРЫ

- 2. *Морозова В.А., Ржечицкий Э.П.* // Журн. неорган. химии. 1977. Т. 22. № 3. С. 873.
- 3. *Азизов Б.С., Сафиев Х.С., Рузиев Дж.Р.* Комплексная переработка отходов производства алюминия. Душанбе: Эр-граф, 2005. 149 с.
- 4. Солиев Л., Авлоев Ш., Турсунбадалов Ш. и др. // Вестник педагогического университета. Серия естественных наук. 2008. Т. 31. № 3. С. 49.
- Soliev L., Tursunbadalov Sh. // Russ. J. Inorg. Chem. 2010.
 V. 55. № 8. Р. 1295. [Солиев Л., Турсунбадалов Ш. // Журн. неорган. химии. 2010. Т. 55. № 8. С. 1373.]
- 6. Soliev L., Nizomov I. // Russ. J. Inorg. Chem. 2011. V. 56. № 2. Р. 293. [Солиев Л., Низомов И. // Журн. неорган. химии. 2011. Т. 56. № 2. С. 331.]
- Soliev L., Musojonova Dzh. // Russ. J. Inorg. Chem. 2011.
 V. 56. № 7. Р. 1123. [Солиев Л., Мусоджонова Дж. // Журн. неорган. химии. 2011. Т. 56. № 7. С. 1188.]
- 8. Солиев Л., Рузиев Дж., Холмуродов С. // Докл. АН Республики Таджикистан. 2008. Т. 51. № 6. С. 447.
- 9. *Солиев Л.* Прогнозирование строения диаграмм фазовых равновесий многокомпонентных водносолевых систем методом трансляции. М., 1987. 28 с. Деп. ВИНИТИ СССР 20.12.87 г. №8950-В 87.
- Горощенко Я.Г. Массцентрический метод изображения многокомпонентных систем. Киев: Наук. думка, 1982. 264 с.
- 11. *Горощенко Я.Г., Солиев Л. //* Журн. неорган. химии. 1987. Т. 32. № 7. С. 1676.
- Soliev L., Avloev Sh., Nuri V. // Russ. J. Inorg. Chem. 2013. V. 58. № 2. Р. 224. [Солиев Л., Авлоев Ш.Х., Нури В. // Журн. неорган. химии. 2013. Т. 58. № 2. С. 262.]
- Солиев Л. // Журн. неорган. химии. 1988. Т. 33. № 5. С. 1305.
- 14. Солиев Л. Прогнозирование строения диаграмм фазовых равновесий многокомпонентных водносолевых систем методом трансляции. Кн. 2. Душанбе: Шуљоиён, 2011. 147 с.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 4 2019