₌ ФИЗИЧЕСКИЕ МЕТОДЫ ____ ИССЛЕДОВАНИЯ ____

УДК 541.49-74:541.127:546.655.4:[543.88+547.775]

КИНЕТИЧЕСКАЯ И ТЕРМОДИНАМИЧЕСКАЯ УСТОЙЧИВОСТЬ ПРОМЕЖУТОЧНЫХ КОМПЛЕКСОВ В РЕАКЦИЯХ ОКИСЛЕНИЯ ЦЕРИЕМ(IV) НЕКОТОРЫХ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ[#]

© 2019 г. О. О. Воскресенская^{1, *}, Н. А. Скорик², Е. Н. Наприенко²

¹Объединенный институт ядерных исследований, ул. Жолио-Кюри, 6, Дубна, Московской обл., 141980 Россия ²Томский государственный университет, пр-т Ленина, 36, Томск, 634050 Россия

> *e-mail: voskr@jinr.ru Поступила в редакцию 30.05.2018 г. После доработки 16.07.2018 г. Принята к публикации 15.08.2018 г.

Кинетические и термодинамические характеристики промежуточных комплексов церия(IV) с 8оксихинолином, 7-иод-8-гидроксихинолин-5-сульфокислотой и 1-фенил-2,3-диметил-4-диметиламинопиразолоном-5, образующихся на первой стадии окисления данных гетероциклических соединений церием(IV), изучены методами спектрофото-, фото- и pH-метрии при ионной силе I = 2в области pH 0.5–3.0 сернокислой среды и температурах 285.15–297.15 К. Установлены состав комплексов, форма присутствия в них органического лиганда, определены константы устойчивости и константы скорости их внутримолекулярного редокс-распада. Получено общее уравнение скорости наблюдаемого в системах редокс-процесса, предложена соответствующая ему реакционная модель. Рассмотрен тип линейных корреляций между термодинамической и кинетической устойчивостью промежуточных комплексов, который может применяться в координационной химии для количественного описания реакций окисления органических соединений ионами переходных металлов.

Ключевые слова: лантаноиды, 8-оксихинолин, амидопирин **DOI:** 10.1134/S0044457X19040202

введение

Гетероциклические соединения широко распространены в природе и применяются в различных областях медицины, биологии, химии и технологии. Многие из них занимают важное место среди лекарственных препаратов. Активно применяется в фармакологии и медицине 1-фенил-2,3-диметил-4-диметиламинопиразолон-5 С₁₇Н₁₃ON₃ (пирамидон, Pir), входящий в состав большого числа лекарственных форм. Соединения редкоземельных элементов (РЗЭ) с антипирином и его производными используют в качестве терапевтических препаратов, а также в технологии разделения РЗЭ [1-3]. Антиканцерогенные, нейропротекторные, антивирусные, антиоксидантные и другие биологически активные свойства 8-оксихинолина C₀H₇ON(HOxiN), его производных, соединений с металлами [4-8], а также продуктов его окисления с хиноидной структурой (производных хинолин-5,8-диона) [9–13] обусловливают их применение в медицине, радиобиологии и сельском хозяйстве в качестве селективных антиканцерогенных средств, антидиабетических, противомалярийных, фунгицидных препаратов и антисептиков наружного и амебоцидного действия [4, 5, 9, 14, 15].

Производные 8-оксихинолина и их соединения с РЗЭ и микроэлементами нашли широкое применение в аналитической химии, технологических процессах разделения РЗЭ [3], ингибирования коррозии [16], концентрирования микроэлементов [17]. Люминесцентные свойства комплексов РЗЭ [18], церия(IV) [19] и других элементов [20] с 8-оксихинолином и его производными применяют в люминесцентном анализе, технологии создания материалов с фото- и электролюминесцентными свойствами для оптоэлектроники, фотоники, хемо- и биосенсорики [18, 20]. 8-Оксихинолин используют при экстракционно-колориметрическом определении церия(IV) и, напротив, церий(IV) применяют при оксидиметрическом определении 8-оксихинолина [21-23]. Однако данные о термодинамической устойчивости 8-оксихинолинатного комплекса церия(IV) и его кинетической устойчивости относительно редокс-распада в литературе отсут-

[#] К статье имеются дополнительные материалы, доступные для авторизированных пользователей по doi: 10.1134/ S0044457X19040202.

ствуют. Доступны лишь сведения о величине произведения растворимости соли Ce(OxiN)₄ [24], а также о значении редокс-эквивалента церия(IV) по отношению к 8-оксихинолину [23]. Производные 8-оксихинолина с сульфогруппами, например, 7иод-8-оксихинолин-5-сульфокислота C₉H₆O₄NIS (H₂Fer, pearent на железо(III)), образуют с катионами металлов растворимые в воде комплексы и применяются для фотометрического определения элементов [22]. Однако, насколько нам известно, сведения о характеристиках 7-иод-8-оксихинолин-5-сульфонатного комплекса церия(IV) в литературе отсутствуют.

В аналитической химии комплексы металлов с производными антипирина активно используются как аналитические реагенты на церий(IV) [25]. Комплексообразующая способность амидопирина (пирамидона) описана в обзоре [26]. Данные об образовании окрашенного интермедиата при окислении амидопирина церием(IV) и о величине редокс-эквивалента церия(IV) по отношению к указанному соединению приведены в работах [27, 28]. Константа устойчивости комплекса $[CeOH(Pir)_2]^{3+}$ определена в [29], однако кинетическая устойчивость комплекса не исследована, кинетика редокс-взаимодействия в системе изучена недостаточно. При изучении процессов окисления гетероциклических соединений церием(IV) авторы акцентировали внимание на возможности синтеза органических соединений, не рассматривая их с кинетической точки зрения [30]. Мы полагаем, что изучение кинетики процессов данного типа представляет научный интерес.

В представленной работе обобщенные термодинамические методы изучения образования и внутримолекулярного редокс-распада комплексов металлов переменной валентности, а также кинетические аналоги этих методов [31] применены как для исследования термодинамических и кинетических характеристик промежуточных комплексов церия(IV), образующихся в системах $Ce^{4+}-SO_4^{2-}-R$ (R = HOxiN, H₂Fer, Pir) в начальный момент времени, так и для регистрации кинетики и выявления механизма окисления церием(IV) указанных органических молекул (R):

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Все использованные в работе реагенты имели квалификацию "ч. д. а.". В качестве источника церия(IV) использовали тетрагидрат сульфата церия(IV) Се(SO₄)₂ · 4H₂O. Содержание церия(IV) в свежеприготовленном растворе сульфата церия(IV) ($c_{\rm H_2SO_4} = 0.20$ моль/л) определяли обратным титрованием солью Мора в присутствии ферроина [23] перед началом эксперимента и по его окончании. Исходные растворы 8-оксихинолина, 7-иод-8-оксихинолин-5-сульфокислоты и амидопирина готовили по точной навеске. Определенную величину ионной силы I = 2 растворов ($c_{\rm SO_4} = 0.67$ моль/л) создавали сульфатом аммония.

Начальную величину оптической плотности реакционной смеси D^0 находили путем линейной экстраполяции кинетических кривых в координатах lg $D-\tau$ к начальному времени $\tau = 0$, так как изменение логарифма оптической плотности во времени $(\lg D)'_{\tau}$ подчинялось уравнению прямой lg $D = \log D^0 - k_{n_{\tau}=1}\tau$, где $k_{n_{\tau}=1}$, с⁻¹, – псевдоконстан-та скорости первого временно́го порядка (приложение, рис. S1). Начальную скорость наблюдаемого редокс-процесса $-\dot{D}^0 \equiv \partial D/\partial \tau$, с⁻¹, оценивали графически в тех же координатах по тангенсу угла наклона прямой, $-\dot{D}^0 = (D^0 - D^i)/(\tau^0 - \tau^i) = \text{const},$ а также рассчитывали линейным МНК. Начальную равновесную концентрацию промежуточного 1 : *n* комплекса определяли по формулам: $c_n^0 =$ $= (D^0 - D_M)/(D^0_{\infty} - D_M)c_M = \alpha^0_n c_M \quad M \quad \overline{c_l}^0 =$ $= -(\dot{D}^0 - \dot{D}_{\rm M})/(\dot{D}^0_{\infty} - \dot{D}_{\rm M})c_{\rm M} = \overline{\alpha}^0_n c_{\rm M} \ (c_{\rm M} \leq c_{\rm L})$ с использованием термодинамических методов и их кинетических аналогов соответственно. Здесь *D*_М – оптическая плотность раствора иона металла, $\dot{D}_{\rm M}$ — скорость ее изменения, $c_{\rm M}$ и $c_{\rm L}$ — концентрации исследуемых растворов церия(IV) и органического лиганда, α_n^0 ($\overline{\alpha}_n^0$) – выход комплекса в момент времени $\tau = 0$. Черта над символом здесь и далее означает величину, определенную кинетическим методом. Максимальные значения оптической плотности реакционной смеси D^0_{∞} и скорости ее изменения \dot{D}_{∞}^{0} , с⁻¹, находили из графиков зависимостей D^0 от pH и \dot{D}^0 от pH. При ис-пользовании метода изомолярных серий (метод $D^0\!-\!N_{\rm L},$ где $N_{\rm L}$ — мольная доля лиганда) начальную равновесную концентрацию монокомплекса

 c_1^0 рассчитывали по уравнению:

 SO_3^-

OH

$$\begin{pmatrix} \frac{1}{a} \frac{c_{\mathrm{M+L}}}{2} - c_{\mathrm{l}}^{0} \end{pmatrix}^{2} = \left(\frac{c_{\mathrm{M+L}}}{N_{\mathrm{L}} / (1 + N_{\mathrm{L}}) + 1} - c_{\mathrm{l}}^{0} \right) \times \\ \times \left(\frac{c_{\mathrm{M+L}}}{(1 - N_{\mathrm{L}}) / N_{\mathrm{L}} + 1} - c_{\mathrm{l}}^{0} \right),$$
(1)

где $1/a = \Delta D^0 / \Delta D_{\text{max}}^0$ — отношение приращения оптической плотности реакционной смеси в момент $\tau = 0$ к его максимальному значению в серии $D^0 - N_L$, $N_L \ge 0.5$, c_{M+L} – суммарная концентрация металла и лиганда в изомолярной серии.

Регистрацию оптической плотности *D* растворов осуществляли с помощью спектрофотометра SPECORD UV VIS с термостатируемым блоком и фотоэлектроколориметра КF-5 с регистрирующим устройством МЭА-4 и термостатируемой ячейкой. Измерение рН в смеси компонентов проводили прецизионным pH-метром DATA METER.

 SO_{2}

ÓН

Мольное отношение металл : лиганд (M : R) в комплексе, образующемся в момент смешения компонентов реакционной смеси, определяли с помощью метода $D^0 - N_1$ и его кинетических аналогов $\dot{D}^0 - N_L$, $(\lg D)'_{\tau} - N_L$ [23]. В расчетах использовали определенные для *I* ≈ 2 значения логарифмов общих констант протонирования анионов R^{m-} , m = 0-2, и отрицательных логарифмов констант диссоциации их протонированных форм: $\lg B_1 = \wp K_2 = 9.56$, $\lg B_2 = \lg B_1 + \wp K_1 = 14.76$, $pK_1 = 5.20$ (OxiN⁻) [32]; $\lg B_1 = 6.87$, $\lg B_2 = 9.57$, $pK_1 = 2.70$ (Fer²⁻) [33]; $\lg B_1 = 6.10$ (Pir) [29]. Otметим, что, согласно [33, 34], значения констант диссоциации К₁, К₂, полученные в [33] для 7-иод-8-оксихинолин-5-сульфокислоты, характеризуют равновесия:

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Положение экстремума на оси состава соответствует образованию в системах Ce⁴⁺-SO₄²⁻-HOxiN, $Ce^{4+}-SO_4^{2-}-H_2Fer$ в момент $\tau = 0$ ком-плексов с мольным отношением M : R = 1 : 1 (приложение, рис. S2). В системе $Ce^{4+}-SO_4^{2-}-$ Pir M : R = 1 : 2, что согласуется с результатами установления состава комплекса церия(IV) с амидопирином в работе [29]. Форму присутствия органического лиганда в комплексе определяли на основе диаграмм свойство-рН расширенными кинетическим ($\dot{D}^0, D^0 - pH$) и термодинамическим (D^0 , \dot{D}^0 -pH) методами, описанными в [31]. В качестве доминирующей формы церия(IV) в исследуемом интервале рН на сульфатном фоне была принята в соответствии с [31] моногидроксоформа $CeOH^{3+}$. Для определения формы при-сутствия лиганда в комплексе число протонов z (\overline{z}) , вытесненных ионом CeOH³⁺ из катионной формы лигандов $HR^+ = H_2OxN^+$, $HPir^+$ и цвиттериона H₂Fer [19] при установлении равновесий

Как следует из анализа зависимости (3), ион

$$CeOH^{s^{+}} + nHR^{+} \xleftarrow{K_{n},K_{n}} \rightarrow$$

$$\leftrightarrow \left[CeOH\left(H_{-z}R^{z^{-1}}\right)_{n}\right]^{3-n(z-1)} + nzH^{+},$$

$$CeOH^{3+} + nH_{2}Fer \xleftarrow{K_{n},\overline{K}_{n}} \rightarrow$$

$$\leftrightarrow \left[CeOH\left(H_{2-z}R^{-z}\right)_{n}\right]^{3-nz} + nzH^{+},$$

$$K_{n} = \beta_{n}^{ef} \left[H^{+}\right]^{nz}, \quad \overline{K}_{n} = \overline{\beta}_{n}^{ef} \left[H^{+}\right]^{n\overline{z}}, \quad n = 1, 2,$$

$$(2)$$

 SO_3^-

O⁻

оценивали численно и графически как угловые коэффициенты зависимостей:

$$\lg \beta_n^{\text{ef}} = \lg K_n + nzpH, \quad \lg \overline{\beta}_n^{\text{ef}} = \lg \overline{K}_n + n\overline{z}pH.$$
(3)

Эффективные константы устойчивости рассчитывали для каждого из значений pH серий \dot{D}^0 , D^{0} -рН и D^{0} , \dot{D}^{0} -рН по формулам:

$$\beta_{n}^{\text{ef}} = \frac{c_{n}^{0}}{\left(c_{\text{M}} - c_{n}^{0}\right)\left(c_{\text{L}} - c_{n}^{0}\right)^{n}},$$

$$\overline{\beta}_{n}^{\text{ef}} = \frac{\overline{c}_{n}^{0}}{\left(c_{\text{M}} - \overline{c}_{n}^{0}\right)\left(c_{\text{L}} - \overline{c}_{n}^{0}\right)^{n}}.$$
(4)

СеОН³⁺ при комплексообразовании вытесняет из

 H_2OxiN^+ и H_2Fer по два протона (приложение, рис. S3). Пространственная близость третичного атома азота и гидроксильной группы в молекулах 8-оксихинолина и 7-иод-8-оксихинолин-5-сульфокислоты может приводить к замыканию 5членных никлов

(M = CeOH³⁺) в образующихся комплексах [CeOHOxiN]²⁺, [CeOHFer]⁺ в соответствии с данными [35-38]. Заметим, что анализ ИК-спектров дает прямое доказательство участия атома азота в образовании хелатов РЗЭ с 8-оксихинолин-5сульфокислотой [3].

При образовании амидопиринатного бис-комплекса катион CeOH³⁺ вытесняет из каждой протонированной молекулы HPir⁺ по одному протону (приложение, рис. S3). Спектроскопические характеристики аналогичных комплексов (например, [Fe(Pir)₂]³⁺ [39]) позволяют предположить структуру комплекса $[CeOH(Pir)_2]^{3+}$, где каждая молекула Pir координируется катионом металла посредством карбонильной группы и экзоциклического атома азота с образованием пятичленного шикла:

Для равновесий комплексообразования с анионами $R^{m-} = OxiN^{-}$. Fer²⁻:

$$\operatorname{CeOH}^{3+} + \mathbb{R}^{m-} \xleftarrow{\beta_{l}, \overline{\beta}_{l}} [\operatorname{CeOHR}]^{(3-m)+}, \qquad (5)$$

$$\beta_1 = \beta_1^{\text{ef}} f_2, \ \overline{\beta}_1 = \overline{\beta}_1^{\text{ef}} f_2, \ f_2 = 1 + \sum_{i=1}^2 B_i [H]^i,$$
 (6)

и молекулой $\mathbf{R} = \mathbf{Pir}$:

$$\operatorname{CeOH}^{3+} + 2\operatorname{Pir} \longleftrightarrow^{\beta_2,\beta_2} \longrightarrow \left[\operatorname{CeOH}(\operatorname{Pir})_2\right]^{3+}, \quad (7)$$

$$\beta_2 = \beta_2^{\text{et}} f_1, \quad \overline{\beta}_2 = \overline{\beta}_2^{\text{et}} f_1, \quad f_1 = 1 + B_1[H], \quad (8)$$

концентрационные константы устойчивости комплексов β_n , $\overline{\beta}_n$ (n = 1, 2) рассчитывали для каждой точки зависимостей $\lg \beta_n = \lg \beta_n^{\text{ef}} + \lg f_{nz}$, $\lg \overline{\beta}_n = \lg \overline{\beta}_n^{\text{ef}} + \lg f_{nz} \ (n = 1, 2; z = 1, 2)$ с последующим усреднением значений по данным серий \dot{D}^0 ,

 D^{0} -рH, D^{0} , \dot{D}^{0} -рH и D^{0} , \dot{D}^{0} - N_{1} .

Доверительный интервал для усредненных значений констант устойчивости рассчитывали с доверительной вероятностью 0.95 при объеме выборки N = 16 с использованием программы СТА-ТОБРАБОТКА [40]. Усредненные значения $\lg \overline{\beta}_n$ (*n* = = 1, 2), определенные методом \dot{D}^0 , D^0 – pH, согласуются со значениями $\lg \beta_n$ (n = 1, 2), рассчитанными с использованием метода $D^0, \dot{D}^0 - pH$ (табл. 1– 3). Так, например, для комплекса $[CeOHOxiN]^{2+}$ $\lg \overline{\beta}_1 = 15.54 \pm 0.13, \quad \lg \beta_1 = 15.55 \pm 0.55$ (табл. 1). Введение в структуру оксина электроноакцепторных групп (сульфогруппа и атом иода) существенно понижает устойчивость комплекса $[CeOHFer]^+$ (lg $\beta_1 \sim 12.43$) по сравнению с [CeOHOxiN]²⁺. Устойчивость последних сопоста-вима с устойчивостью глицинатного комплекса церия(IV) (lg $\beta_1 \sim 13.70$) [41], имеющего тот же хелатообразующий скелет [19]. Определенная кинетическим методом величина $\lg \overline{\beta}_2 = 15.01 \pm 0.13$ [CeOH(Pir)₂]³⁺ близка комплекса к $\lg \beta_2 = 14.91 \pm 0.17$, найденной термодинамическим методом в [29]. Значения lg β_1 комплексов катиона СеОН³⁺ с органическими лигандами, полученные в данной и предшествующих работах [31, 41-43], коррелируют с соответствующими значениями величины $\lg \beta_1$ [39, 44, 45], полученными для комплексов железа(III) (рис. 1).

В работе [39] показано, что в системе железо(III)-амидопирин наряду с доминирующим бис-комплексом $[Fe(Pir)_2]^{3+}$ образуется до 15% монокомплекса [FePir]³⁺. Это позволяет предположить ненулевой выход [CeOHPir]³⁺ и в системе церий(IV)-амидопирин. Рассмотренная выше корреляция (рис. S4) дает возможность оценить значение константы устойчивости [CeOHPir]³⁺: $\lg \beta_1 \cong 8.63$. Заметим, что введение в структуру амидопирина сульфогруппы, как и в случае оксина, понижает устойчивость комплексов церия(IV) и железа(III) со структурным аналогом амидопирина — анальгином (Anal): $\lg \beta_1 \cong 6.42$ для [CeOHAnal]³⁺.

Для нахождения констант скоростей внутримолекулярного редокс-распада комплексов, характеризующих их кинетическую устойчивость по отношению к редокс-распаду, анализ нелинейных зависимостей $-\dot{D}^0 = f(pH)$ дополняли анализом зависимостей $-\dot{D}^{0}=\phi\left(c_{n}^{0}
ight)$ вида $-\dot{D}^{0}=A+k_{n}^{
m obs}\left(c_{n}^{0}
ight)^{n_{c}}$, где n_{c} – кон-

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 Nº 4 2019

Таблица 1. Константы устойчивости и константы скорости редокс-распада комплекса [CeOHOxiN]²⁺, определенные методами \dot{D}^0 , $D^0 - pH(1)$ и \dot{D}^0 , $D^0 - pH(2)$ при $c_M = 1.56 \times 10^{-4}$, $c_L = 4.69 \times 10^{-4}$ моль/л, $\dot{D}^0_{\infty} = 2.03 \times 10^{-2} c^{-1}$, $D_{\infty}^{0} = 0.162, I = 2, T = 289.15$ К, $\lambda_{ef} = 515$ нм, l = 1 см

1. Метод \dot{D}^0 , D^0 – pH									
$\dot{D}^0 \times 10^2$, c ⁻¹	рН	$\overline{c}_{l}^{0} \times 10^{4},$ моль/л	$lg\overline{\beta}_l^{ef}$	$\lg \overline{\beta}_1$	$10\Delta D^0$	$lg\epsilon_1$	$\lg \overline{k}_{n=1}$		
-0.16	0.60	0.12	2.27	15.83	0.13	3.01	-0.91		
-0.23	0.82	0.18	2.46	15.58	0.19	3.03	-0.89		
-0.28	0.90	0.22	2.57	15.53	0.23	3.02	-0.90		
-0.39	1.05	0.31	2.75	15.41	0.31	3.03	-0.89		
-0.51	1.12	0.40	2.91	15.43	0.42	3.00	-0.87		
-0.77	1.23	0.60	3.19	15.49	0.60	3.00	-0.88		
-1.28	1.43	1.00	3.68	15.58	1.03	3.03	-0.89		
-1.64	1.70	1.28	4.13	15.49	1.38	3.01	-0.90		
Примечание. Величина $\lg \overline{\beta}_1 = 15.54 \pm 0.13$, $\lg \overline{k}_{n=1} = -0.89 \pm 0.01$.									

имечание. Величина
$$\lg \beta_1 = 15.54 \pm 0.13$$
, $\lg k_{n=1} = -0.89 \pm 0.01$

2. Метод
$$D^0, \dot{D}^0 - pH$$

$10\Delta D^0$	pН	$c_1^0 imes 10^4,$ моль/л	$\lg \overline{\beta}_l^{ef}$	$\lg \overline{\beta}_l$	$\dot{D}^0 \times 10^2$, c ⁻¹	$\lg k_{n=1}^{obs}$	$\lg k_{n=1}$
0.13	0.60	0.13	2.28	15.84	-0.16	2.10	-0.91
0.19	0.82	0.19	2.45	15.57	-0.23	2.11	-0.90
0.23	0.90	0.23	2.57	15.53	-0.28	2.11	-0.91
0.31	1.05	0.31	2.74	15.40	-0.39	2.12	-0.90
0.42	1.12	0.42	2.91	15.43	-0.51	2.10	-0.91
0.60	1.23	0.60	3.16	15.46	-0.77	2.12	-0.89
1.03	1.43	1.03	3.67	15.57	-1.28	2.11	-0.91
1.38	1.70	1.38	4.24	15.60	-1.64	2.09	-0.92

Примечание. Величина $\lg \beta_1 = 15.55 \pm 0.14$, $\lg k_{n=1} = -0.91 \pm 0.01$.

центрационный порядок редокс-процесса по отношению к комплексу, $\lg k_{n=1}^{obs} = \lg(-\dot{D}^0) - \lg c_n^0$ (приложение, рис. S4, линии 4 и 5). Нулевое значение интерсепта графиков свидетельствует о несущественности вклада бимолекулярного пути в наблюдаемый редокс-процесс. Линейность графиков зависимостей соответствует $n_c = 1$ и является признаком доминирования одного промежуточного комплекса в исследованных системах ($Int_1 = MR_n$, n = 1, 2). Константы скорости $\lg k_n$ первого концентрационного порядка по комплексу $(k_{n=1} \equiv k_{n=1})$ при использовании расширенных термодинамических ($D^0, \dot{D}^0 - pH, D^0, \dot{D}^0 - N_1$) и кинетических (\dot{D}^0 , $D^0 - pH$) методов рассчитывали по формулам $\lg k_{n=1} = \lg k_{n=1}^{obs} - \lg (l \varepsilon_n^{ex}),$ $\lg \overline{k}_{n=1} = \lg \left(k_{n=1}^{obs}\right)^{ex} - \lg (l\overline{\epsilon}_n)$ (*n* = 1, 2), где $\epsilon_n^{\rm ex} = D_{\infty}^0/c_{\rm M}~(c_{\rm M} \le c_{\rm L}),~\overline{\epsilon}_n = D^0 \big/ \overline{c}_n^0,~\pi/({
m Mode mode cm}),~$ коэффициент экстинкции комплекса MR_n $(\varepsilon_{\rm M} \approx \varepsilon_{\rm L} \approx 0), l, cm, -$ толщина поглощающего

слоя раствора [31]. Как видно из таблиц, $\lg k_{n=1}$ и lg $\overline{k}_{n=1}$ сохраняют в сериях $\dot{D}^0, D^0 - pH, D^0, \dot{D}^0 - pH$ постоянное значение. Полученные значения $\lg k_{n=1}$ и $\lg \overline{k}_{n=1}$ хорошо согласуются между собой. Так, например, для $[CeOH(Pir)_2]^{3+} \lg \overline{k}_{n=1}$ $= -2.00 \pm 0.02$, $\lg k_{n=1} = -2.01 \pm 0.02$.

С использованием (2), (4) уравнение скорости, например в случае R = Pir, может быть записано следующим образом:

$$-\frac{\partial c_{\mathrm{M}}}{\partial \tau} \approx k_2 \Big[\mathrm{CeOH} (\mathrm{Pir})_2^{3+} \Big] =$$

$$= k_2 \beta_2 \Big[\mathrm{CeOH}^{3+} \Big] [\mathrm{Pir}]^2 .$$
(9)

С учетом комплексообразования церия(IV) с анионами фона и ступенчатого комплексообразования в системе Ce^{4+} – SO_4^{2-} – Pir уравнение приобретает вид:

$$\frac{\partial c_{\mathrm{M}}}{\partial \tau} = (k_1 \beta_1 + k_2 \beta_2 [\mathrm{Pir}]) [\mathrm{CeOH}(\mathrm{SO}_4)_3^{3-}] [\mathrm{Pir}].$$
(10)

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 2019 № 4

Таблица 2. Кинетическая и термодинамическая устойчивость комплекса [CeOHFer]⁺, определенные методами \dot{D}^0 , $D^0 - \mathrm{pH}$ при $c_{\mathrm{M}} = c_{\mathrm{L}} = 4.77 \times 10^{-4}$ моль/л, $\dot{D}^0_{\infty} = 6.30 \times 10^{-2} \mathrm{c}^{-1}$, $D^0_{\infty} = 0.745$ (1) и D^0 , $\dot{D}^0 - \mathrm{N}_{\mathrm{L}}$ при $c_{\mathrm{M}+\mathrm{L}} = 9.53 \times 10^{-4}$ моль/л (2), I = 2, T = 289.15 K, $\lambda_{\mathrm{ef}} = 515$ нм, I = 1 см

1. Метод $\dot{D}^0, D^0-\mathrm{pH}$									
$10\dot{D}^{0}, c^{-1}$	рН	$\overline{c}_{1}^{0} \times 10^{4},$ моль/л	$lg\overline{\beta}_l^{ef}$	$\lg \overline{\beta}_l$	$10\Delta D^0$	$\lg \epsilon_1$	$\lg \overline{k}_{n=1}$		
-0.38	0.50	2.86	3.90	12.47	3.46	3.08	-0.96		
-0.38	0.60	2.88	3.91	12.28	4.73	3.17	-0.98		
-0.34	0.63	2.59	4.15	12.46	4.07	3.10	-0.99		
-0.50	0.90	3.79	4.46	12.23	6.20	3.20	-1.08		
-0.55	1.05	4.16	5.05	12.53	6.48	3.30	-1.18		
-0.55	1.12	4.16	5.05	12.39	6.43	3.21	-1.05		
-0.56	1.23	4.25	5.21	12.33	6.63	3.17	-1.07		

Примечание. Величина lg $\overline{\beta}_{l} = 12.38 \pm 0.11$, lg $\overline{k}_{n=l} = -1.05 \pm 0.07$.

2. Метод <i>I</i>	D^0, \dot{D}	$^{0}-N_{L}$
-------------------	----------------	--------------

ΔD^0	$N_{\rm L}$	$c_1^0 imes 10^4,$ моль/л	$lg\overline{\beta}_l^{ef}$	$\lg \overline{\beta}_l$	$\dot{D}^0 \times 10^2$, c ⁻¹	$\lg k_{n=1}^{obs}$	$\lg k_{n=1}$
0.40	0.55	5.90	4.47	12.80	-7.66	2.11	-1.08
0.35	0.63	6.07	3.85	12.18	-7.70	2.07	-1.12
0.36	0.65	4.92	4.06	12.39	-6.25	2.06	-1.13
0.28	0.70	1.89	3.94	12.27	-2.57	2.13	-1.06
0.21	0.75	1.67	4.49	12.82	-2.09	2.10	-1.09
0.15	0.80	0.95	4.05	12.38	-1.29	2.13	-1.06
0.17	0.82	1.16	4.44	12.77	-1.47	2.10	-1.09
0.14	0.85	0.87	3.90	12.23	-1.10	2.10	-1.09
0.11	0.90	0.53	4.22	12.55	-0.70	2.12	-1.07

Примечание. Величина $\lg \beta_1 = 12.49 \pm 0.25$, $\lg k_{n=1} = -1.09 \pm 0.02$.

Последнее уравнение может быть представлено в форме:

$$-\frac{\partial c_{\mathrm{M}}}{\partial \tau} = \left(k_{1}\beta_{1} + k_{2}\beta_{2}\frac{[\mathrm{HPir}^{+}]}{1 + B_{\mathrm{I}}[\mathrm{H}]}\right) \times \frac{\kappa_{1\mathrm{SO}_{4}}\kappa_{2\mathrm{SO}_{4}}\kappa_{3\mathrm{SO}_{4}}\beta_{1\mathrm{h}}K_{\mathrm{w}}[\mathrm{H}_{2}\mathrm{O}]}{(1 + B_{\mathrm{I}}[\mathrm{H}])[\mathrm{H}]} \times \left(\frac{c_{\mathrm{SO}_{4}}}{1 + B_{\mathrm{ISO}_{4}}[\mathrm{H}]}\right)^{3}[\mathrm{Ce}^{4+}][\mathrm{HPir}^{+}], \qquad (11)$$

в явном виде учитывающей основные быстро устанавливающиеся равновесия, приводящие к образованию комплексов CeOH(SO₄)₃Pir³⁻, CeOH(SO₄)₃ (Pir)₂³⁻ (его параметры K_w , B_{ISO_4} , B_1 , κ_{ISO_4} , κ_{2SO_4} , κ_{3SO_4} , β_{1h} характеризуются уравнениями (12)–(18), приведенными ниже). Данному общему уравнению скорости соответствует следующая модель начальных стадий редокс-процесса:

 $H_2O \longleftrightarrow K_w \longrightarrow H^+ + OH^-,$ (12)

$$\mathrm{SO}_4^{2-} + \mathrm{H}^+ \xleftarrow{B_{\mathrm{ISO}_4}} \mathrm{HSO}_4^-,$$
 (13)

$$\operatorname{Pir} + \operatorname{H}^{+} \xleftarrow{B_{1}} \operatorname{HPir}^{+}, \qquad (14)$$

$$\operatorname{Ce}^{4+} + \operatorname{SO}_{4}^{2-} \xleftarrow{\kappa_{\mathrm{ISO}_{4}}} \operatorname{CeSO}_{4}^{2+},$$
 (15)

$$\operatorname{CeSO}_{4}^{2+} + \operatorname{SO}_{4}^{2-} \xleftarrow{\kappa_{2SO_{4}}} \operatorname{Ce}(\operatorname{SO}_{4})_{2}, \qquad (16)$$

$$\operatorname{Ce}(\mathrm{SO}_4)_2 + \mathrm{SO}_4^{2-} \xleftarrow{\kappa_{3SO_4}} \operatorname{Ce}(\mathrm{SO}_4)_3^{2-}, \qquad (17)$$

$$\operatorname{Ce}(\operatorname{SO}_{4})_{3}^{2-} + \operatorname{OH}^{-} \longleftrightarrow \operatorname{CeOH}(\operatorname{SO}_{4})_{3}^{3-}, \quad (18)$$

$$CeOH(SO_4)_3^{3-} + Pir \xleftarrow{\beta_1} CeOH(SO_4)_3 Pir^{3-}, (19)$$

$$CeOH(SO_4)_3 Pir^{3-} \xrightarrow{k_1}$$
(20)

$$\rightarrow$$
 Ce(SO₄)₂ + Продукты,

$$\leftrightarrow \operatorname{CeOH}(\operatorname{SO}_4)_3 (\operatorname{Pir})_2^{3-},$$
(21)

CeOH(SO₄)₃ (Pir)₂³⁻
$$\xrightarrow{k_2}$$
 (22)
 \rightarrow Ce(SO₄)₂⁻ + Продукты.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 4 2019

Таблица 3. Константы скорости редокс-распада комплекса [CeOH(Pir)2]³⁺ и его константы устойчивости, определенные методами \dot{D}^0 , D^0 -pH (1) и D^0 , \dot{D}^0 - pH (2) при $c_{\rm M} = 4.0 \times 10^{-3}$ моль/л, $c_{\rm L} = 8.0 \times 10^{-3}$ моль/л, I = 2, T = 289.15 K, $\dot{D}_{\infty}^0 = 7.5 \times 10^{-3}$ с⁻¹, $D_{\infty}^0 = 0.750$, $\lambda_{\rm ef} = 540$ нм, I = 1 см

1. Метод \dot{D}^0 , D^0 – pH									
$\dot{D}^0 \times 10^2$, c ⁻¹	рН	$\overline{c_1}^0 \times 10^3,$ моль/л	$lg\overline{\beta}_2^{ef}$	$\lg \overline{\beta}_2$	$10\Delta D^0$	$lg\epsilon_2$	$\lg \overline{k}_{n=1}$		
-0.25	0.82	1.33	4.24	14.80	2.54	2.28	-2.01		
-0.29	0.85	1.55	4.42	14.92	2.76	2.25	-1.98		
-0.38	0.94	2.03	4.82	15.14	3.81	2.27	-2.00		
-0.41	1.03	2.19	4.97	15.11	4.13	2.27	-2.00		
-0.43	1.08	2.35	5.12	15.16	4.23	2.25	-1.98		
-0.51	1.33	2.72	5.51	15.05	5.48	2.30	-2.03		
-0.53	1.43	2.83	5.64	14.98	5.47	2.29	-2.01		
-0.65	2.02	3.47	6.72	14.93	6.48	2.27	-2.00		
Примечание. Величина $\lg \overline{\beta}_2 = 15.01 \pm 0.13$, $\lg \overline{k}_{n=1} = -2.00 \pm 0.02$.									
2. Метод $D^0, \dot{D}^0 - pH$									
$10\Delta D^0$	pН	$c_2^0 \times 10^4$,	$\lg \beta_2^{ef}$	$\lg \beta_2$	$\dot{D}^0 \times 10^2$, c ⁻¹	$\lg k_{n=1}^{obs}$	$\lg k_{n=1}$		

$10\Delta D^0$	pН	$c_2^0 \times 10^4,$ моль/л	$lg\beta_2^{ef}$	$\lg\beta_2$	$\dot{D}^0 \times 10^2$, c ⁻¹	$\lg k_{n=1}^{obs}$	$\lg k_{n=1}$
2.54	0.82	1.37	4.26	14.82	-0.25	0.29	-1.98
2.76	0.85	1.49	4.36	14.86	-0.29	0.27	-2.00
3.81	0.94	2.05	4.83	15.15	-0.38	0.26	-2.01
4.13	1.03	2.23	4.99	15.13	-0.41	0.25	-2.02
4.23	1.08	2.28	4.72	14.76	-0.43	0.28	-2.00
5.48	1.33	2.95	5.79	15.33	-0.51	0.24	-2.04
5.47	1.43	2.95	5.78	15.12	-0.53	0.25	-2.02
6.48	2.02	3.49	6.79	14.95	-0.65	0.27	-2.00

Примечание. Величина $\lg \beta_2 = 15.01 \pm 0.20$, $\lg k_{n=1} = -2.01 \pm 0.02$.

Продуктом окисления амидопирина церием(IV) является диоксиамидопирин, образованию которого соответствует редокс-эквивалент церия(IV) по Pir $Eq_{Ce(IV)} \approx 4$ [28]. Промежуточным продуктам окисления молекул R = H₂Fer и HOxiN отвечают $Eq_{Ce(IV)} = 2$ (1 – $N_L = 0.67$) и $Eq_{Ce(IV)} = 4$ (1 – $N_L = 0.80$) соответственно (приложение, рис. S5, кривые *I*, *2*). Первым продуктом окисления HOxiN является соединение хиноидной структуры, конечным продуктом – хинолиновая кислота, $Eq_{Ce(IV)} = 13$ ($c_L = 1.75 \times 10^{-5}$ моль/л; рис. S5, кривая *3*):

$$2C_{9}H_{7}ON + 26Ce^{4+} + 14H_{2}O =$$

= 2C_{7}H_{5}O_{4}N + 3HCOOH +
+ CO_{2} + 26H^{+} + 26Ce^{3+},

как и при окислении HOxiN ванадием(V) или перманганатом калия [46, 47]. Различие промежуточных продуктов окисления церием(IV) H_2 Fer (Int₂ = R**) и HOxiN (Int₃ = R****) можно объяснить сдвигом влево равновесий в схеме:

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 4 2019

$$R + 4Ce^{4+} \xleftarrow{-2e}{} R^{**} + 2Ce^{3+} + 2Ce^{4+} \xleftarrow{-2e}{} R^{****} + 4Ce^{3+}$$
(23)

под действием электроноакцепторных групп в молекуле $\mathbf{R} = \mathbf{H}_2 \mathbf{F} \mathbf{e} \mathbf{r}$.

Значение $\lg k_1$ для комплекса [CeOHPir]³⁺ в модели (12)–(22) может быть предварительно оценено по линейной корреляционной зависимости (рис. 2):

$$\lg k_{n=1} = \lg k_{n=1}^{0} + \rho \lg \beta_{1}, \qquad (24)$$

которую, согласно [48], можно рассматривать как аналог широко применяемого в органической химии уравнения Гаммета—Тафта. В рассматриваемом случае реакционная константа ρ характеризует чувствительность логарифма константы скорости редокс-распада промежуточного комплекса к определенным структурным изменениям органического лиганда, входящего в его состав. Так, найденное для [CeOHPir]³⁺ из (24) значение $\lg k_{n=1} \approx -1.28$ выше значения $\lg k_{n=1} \approx -1.41$ для [CeOHAnal]³⁺, как и для пары комплексов

Рис. 1. Корреляционная зависимость между значениями $\lg\beta_1$ комплексов катионов CeOH³⁺ (I = 2.0) и Fe³⁺ (I = 0.1) с анионами: $I - NO_3^-$, $2 - SO_4^{2-}$, $3 - Acet^-$ (уксусная), $4 - Mal^{2-}$ (малоновая), $5 - Suc^{2-}$ (янтарная), $6 - Glut^{2-}$ (глутаровая) кислоты, $7 - Fer^{2-}$ (феррон), $8 - Glu^-$ (глицин), $9 - OxiN^-$ (оксихинолин), $10 - Cit^{2-}$ (лимонная кислота).

 $[\text{CeOHOxiN}]^{2^+}$, $[\text{CeOHFer}]^+$ (рис. 2). Оно также выше, чем $\lg k_{n=1} = -2.02$ для $[\text{CeOH}(\text{Pir})_2]^{3^+}$. Последнее согласуется с представлением о том, что в ряду ступенчато образующихся комплексов простейший комплекс является наиболее кинетически активным [32]. Аналогичное соотношение между значениями $\lg k_{n_{\tau}=1}$ для амидопиринатных комплексов железа(III) ($\lg k_{n_{\tau}=1} = -1.82$ для $[\text{FePir}]^{3^+}$ и $\lg k_{n_{\tau}=1} = -2.55$ для $[\text{Fe}(\text{Pir})_2]^{3^+}$ [39]) также подтверждает полученное значение $\lg k_{n=1}$ для $[\text{CeOHPir}]^{3^+}$.

В отличие от комплексов церия(IV) с алифатическими органическими лигандами, координированными через атомы кислорода (дикарбоновыми, оксикарбоновыми кислотами, многоатомными спиртами), для которых характерны преимущественно ионный тип связи и обратная линейная корреляция между $\lg k_{n=1}$ и $\lg \beta_1$:

$$\lg k_{n=1} = \lg k_{n=1}^{0} - \rho \lg \beta_1$$
 (25)

[31], комплексные соединения церия(IV) с рассмотренными выше гетероциклическими соединениями, координированными через атомы азота и кислорода, демонстрируют прямую корреляцию между $\lg k_{n=1}$ и $\lg \beta_1$ (24). Последнее согласу-

Рис. 2. Зависимость $\lg k_{n=1}$ от $\lg \beta_1$ для комплексов [CeOHAnal]³⁺ (*I*), [CeOHPir]³⁺ (*2*), [CeOHFer]⁺ (*3*), [CeOHOxiN]²⁺ (*4*) при I = 2, T = 289.15 К.

ется с прямой зависимостью условной скорости редокс-распада комплекса от логарифма константы его устойчивости [49, 50], которая наблюдалась для комплексонатов марганца(III) и ванадия(V), имеющих преимущественно ковалентный тип связи; эта зависимость трактуется авторами [50] в терминах "восстановительной способности" лиганда. В связи с этим применение уравнений типа Гаммета—Тафта для описания окислительно-восстановительных реакций данного типа представляется естественным, так как восстановительная способность органических соединений может коррелировать с их нуклеофильностью.

В координационной химии корреляционные уравнения типа (24), (25) могут быть применены для описания реакций окисления органических соединений ионами переходных металлов. Изучение данных корреляционных зависимостей в координационной химии находится в начальной стадии и заслуживает дальнейших исследований.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Крыльский Д.В., Сливкин А.И*. Гетероциклические лекарственные вещества. Воронеж: Изд-во Воронежского гос. ун-та, 2007.
- 2. *Солодунова Г.Н., Озеров А.А.* Фармацевтическая химия. Ч. V. Волгоград: Изд-во ВолгГМУ, 2017.
- Яцимирский К.Б., Костромина Н.А., Шека З.А. и др. Химия комплексных соединений редкоземельных элементов. Киев: Наукова думка, 1966.
- Oliveri V., Vecchio G. // Eur. J. Med. Chem. 2016. V. 120. P. 252. doi 10.1016/j.ejmech.2016.05.007

- 5. Suwanjang W, Prachayasittikul S., Prachayasittikul V.// PeerJ. 2016. V. 4. P. e2389. doi 10.7717/peerj.2389
- Dalecki A.G.D., Crawford C.L., Wolschendorf F. // Advances in Microbial Physiology / Ed. Poole R. Elsevier Ltd, 2017. V. 70. P. 193. doi 10.1016/bs.ampbs.2017.01.007
- Kuhlmann F.M., Fleckenstein J.M. // Infectious Diseases. V. 2. / Eds. Cohen G., Powderly W.G., Opal S.M. Elsevier Ltd, 2017. P. 1345. doi 10.1016/B978-0-7020-6285-8.00273-2
- Kubanik M., Lam N.Y.S., Holtkamp H.U. et al. // Chem. Commun. 2018. V. 54. P. 992. doi 10.1039/ c7cc09478g
- Bayrak N. // Chem. Cent. J. 2018. V. 12. P. 21. doi 10.1186/s13065-018-0388-3
- Novais J.S., Campos V.R., Silva A.C.J.A. et al. // RSC Adv. 2017. V. 7. № 30. P. 18311. doi 10.1039/ C7RA00825B
- Kubanik M., Kandioller W., Kim K. et al. // J. Chem. Soc., Dalton Trans. 2016. V. 45. P. 13091. doi 10.1039/C6DT01110A
- Ling Y., Yang Q.-X., Teng Y.-N. et al. // Eur. J. Med. Chem. 2018. In press. doi 10.1016/j.ejmech.2018.05.025
- 13. Bayrak N., Yildirim H., Tuyun A.F. et al. // J. Chem. Soc. Pak. 2016. V. 38. № 6. P. 1211.
- 14. *Gawne P., Man F., Fonslet J. et al.* // J. Chem. Soc., Dalton Trans. 2018. In press. doi 10.1039/c8dt00100f
- Jensen A.I., Severin G.W., Hansen A.E. et al. // J. Controlled Release. 2018. V. 269. P. 100. doi 10.1016/j.jconrel.2017.11.006
- Obot I.B., Ankah N.K., Sorour A.A. et al. // Sustainable Materials and Technologies. 2017. V. 14. P. 1. doi 10.1016/j.susmat.2017.09.001
- 17. *Антонова Е.В.* Дис. ... канд. хим. наук. Саранск: Изд-во МордГУ, 2010. 148 с.
- Колоколов Ф.А., Панюшкин В.Т., Михайлов И.Е. и др. // Наука Юга России (Вестник Южного Научного Центра). 2016. Т. 12. № 4. С. 25.
- 19. Soroka K., Vithanage R.S., Phillips D.A. et al. // Anal. Chem. 1967. V. 59. P. 629.
- Petrova O.B., Anurova M. O., Akkuzina A.A. // Opt. Mater. 2017. V. 69. P. 141. http://dx.doi.org/10.1016/ j.optmat.2017.04.014.
- Cerium: Molecular Structure, Technological Applications and Health Effects / Eds. Izyumov A., Plaksin G. N.Y.: Nova Science Publishers, Inc., 2013.
- 22. Марченко З. Фотометрическое определение элементов. М.: Мир, 1970.
- 23. *Kolthof I. et al.* Volumetric Analysis. N.Y.: Interscience, 1957.
- 24. Коренман И.М., Туманов А.А., Сорокина В.М. // Изв. Вузов СССР. 1960. Т. III. С. 580.
- Канаев Н.А. // Журн. аналит. химии. 1963. Т. 18. № 5. С. 575.
- Каткова О.В. Дис. ... канд. хим. наук. Кемерово: Изд-во КузГТУ, 2005.
- 27. Шемякин Ф.М., Карпов А.Н., Бруснецов А.Н. Аналитическая химия. М.: Высшая школа, 1973.
- 28. Черкасов В.М., Петрова В.А. // Журн. аналит. химии. 1950. Т. 5. № 5. С. 305.
- 29. Voskresenskaya O.O., Naprienko E.N., Skorik N.A. // Russ. J. Inorg. Chem. 1999. V. 44. № 9. Р. 1428. [Воскресенская О.О., Наприенко Е.Н., Скорик Н.А. // Журн. неорган. химии. 1999. Т. 44. № 9. С. 1507.]

- Tandon P.K., Khanam S.Z., Singh S.B. // Open Catal. J. 2012. V. 5. P. 1.
- Воскресенская О.О., Скорик Н.А. Термодинамические и кинетические аспекты образования и редокс-распада комплексов церия(IV) с рядом гидроксилсодержащих органических соединений. Томск: НТЛ, 2011. 220 с.
- 32. *Näsänen R., Lumme P., Mukula A.-L.* // Acta Chem. Scand. 1951. V. 5. P. 1199.
- Näsänen R., Ekman A. // Acta Chem. Scand. 1952. V. 6. P. 1384.
- 34. *Langmyhr F.G., Storm Å.R.* // Acta Chem. Scand. 1961. V. 7. P. 1465.
- 35. *Мишукова Т.Г., Карева Е.Ю., Кунавина Е.А.* // Современные научные исследования и инновации. 2016. № 10. http://web.snauka.ru/issues/2016/10/72821
- Amolegbe S.A., Adewuyi Sh., Akinremi C.A. et al. // Arab. J. Chem. 2015. V. 8. P. 542. doi 10.1016/j.arabjc.2014.11.040
- 37. Barilli A., Atzeri C., Bassanetti I. et al. // Mol. Pharmacol. 2014. V. 11. № 4. P. 1151. doi 10.1021/mp400592n
- Ramos M.L., Justino L.L.G., Barata R. et al. // J. Chem. Soc., Dalton Trans. 2017. V. 46. P. 9358. doi 10.1039/C7DT01324H
- 39. *Наприенко Е.Н.* Дис. ... канд. хим. наук. Томск: Изд-во ТГУ, 2001.
- Скорик Н.А., Чернов Е.Б. Расчеты с использованием персональных компьютеров в химии комплексных соединений. Томск: Изд-во ТГУ, 2009.
- 41. Voskresenskaya O.O., Skorik N.A., Stepanova N.V. // Russ. J. Appl. Chem. 2016. V. 89. № 11. Р. 1747. doi 10.1134/S1070427216110033 [Воскресенская О.О., Скорик Н.А., Степанова Н.В. // Журн. прикл. химии. 2016. Т. 89. № 11. С. 1375.]
- 42. Voskresenskaya O.O., Skorik N.A., Yuzhakova Yu.V. // Russ. J. Phys. Chem. (A) 2017. V. 91. № 4. Р. 627. doi 10.1134/S0036024417040318 [Воскресенская О.О., Скорик Н.А., Южакова Ю.В. // Журн. физ. химии. 2017. Т. 91. № 4. С. 601.]
- Voskresenskaya O.O., Skorik N.A., Yuzhakova Yu.V. // Russ. J. Gen. Chem. 2018. V. 88. № 4. Р. 721. doi 10.1134/S1070363218040163 [Воскресенская О.О., Скорик Н.А., Южакова Ю.В. // Журн. общ. химии. 2018. Т. 88. № 4. С. 640.]
- 44. *Sillen L.G., Martell A.* Stability Constants of Metal-Ion Complexes. London: Chemical Society, Burlington House, 1964.
- 45. *Martell A.E., Smith R.M.* Critical Stability Constants. V. 4. New York: Springer Science, 1977.
- 46. *Бусев А.И*. Аналитическая химия молибдена. М.: Изд-во АН СССР, 1962.
- Агрономов А.Е. Избранные главы органической химии. М.: Химия, 1990.
- 48. Андреев В.П., Соболев П.С. Молекулярные комплексы металлопорфиринов как модельная система исследования донорно-акцепторных взаимодействий *n*,*v*-типа. Петрозаводск: Изд-во ПетрГУ, 2015.
- Координационная химия редкоземельных элементов / Под ред. Спицына В.И., Мартыненко Л.И. М.: Изд-во Моск. ун-та, 1974.
- 50. *Kiselev Yu.M.* // Russ. J. Inorg. Chem. 2002. V. 47. № 4. Р. 473. [*Киселев Ю.М.* // Журн. неорган. химии. 2002. Т. 47. № 4. С. 540.]

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 4 2019