ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ

УДК 544.332,544.032.4

ТЕРМОХИМИЯ ТРИФТОРИДА НИКЕЛЯ

© 2019 г. М. И. Никитин^{1, *}, А. С. Алиханян^{1, *}

¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия *E-mail: nikmi46@mail.ru Поступила в редакцию 02.08.2018 г. После доработки 04.09.2018 г. Принята к публикации 09.10.2018 г.

Проанализированы литературные данные о термическом поведении кристаллических фторидов никеля NiF₃ и Ni₂F₅ в высших степенях окисления. Рассчитаны их энтальпии образования $\Delta_f H^{\circ}(\text{NiF}_6](\kappa), 0 \text{ K}) = -1370.5 \pm 8 \text{ и} \Delta_f H^{\circ}(\text{NiF}_3(\kappa), 0 \text{ K}) = -699.8 \pm 3 \text{ кДж/моль}$. Определено парциальное давление насыщенного пара систем NiF₃-Ni₂F₅ и Ni₂F₅-NiF₂ в широком интервале температур. Показана техническая невозможность создания измеримых давлений NiF₃. Проведено сравнение со сходными соединениями 3*d*-элементов и с трифторидами рутения и платины. Предложено использовать Ni₂F₅(к) как аккумулятор фтора.

Ключевые слова: фториды *d*-элементов в высших степенях окисления, энтальпии образования соединений, состав газовой фазы фторидных систем

DOI: 10.1134/S0044457X19050131

ВВЕДЕНИЕ

Кристаллические фториды никеля NiF₄, Ni₂F₆ [1–5] и Ni₂F₅ [6] в высших степенях окисления синтезированы и охарактеризованы как индивидуальные вещества сравнительно недавно. Среди них особый интерес представляют Ni₂F₅(к) и NiF₃(к), образующиеся, по данным [7, 8], на никелевом аноде при электрохимическом фторировании веществ и, по данным [9], на поверхности никеля при фторировании атомарным и молекулярным фтором.

Термодинамические характеристики фторидов никеля в высших степенях окисления ранее не определяли. Только в работе [10] методом калориметрии растворения в калориметре с изотермической оболочкой была определена энтальпия образования $\Delta_f H^{\circ}(\text{NiF}_3(\kappa), 298 \text{ K}) = -816 \pm 6 \text{ кДж/моль и}$ детально рассмотрена ее надежность. Вместо NiF₃(к) правильнее писать Ni[NiF₆](к), так как эта молекула содержит никель в степенях окисления +II и +IV [11]. Численные характеристики с разными обозначениями связаны соотношениями типа $\Delta_f H^{\circ}(\text{NiF}_6](\kappa), T, \text{K}) = \Delta_f H^{\circ}(\text{Ni}_2\text{F}_6(\kappa), T, \text{K}).$

Проведенные ниже расчеты выполнены по III закону термодинамики. Термодинамические функции и энтальпии образования участников реакций взяты из [12, 13]. Энтропийные вклады Со и Ni при 298 K по Латимеру одинаковы, поэтому термодинамические функции для NiF₃(к) приняты такими же, как для CoF₃(к). Приведенный термодинамический потенциал Ni₂F₅(к) равен сумме Φ° (NiF₃, (к), *T*, K) и Φ° (NiF₂, (к), *T*, K).

АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Расчеты констант равновесия реакций по данным [10]

$$NiF_3(\kappa) = NiF_2(\kappa) + F, \qquad (1)$$

$$2NiF_3(\kappa) = 2NiF_2(\kappa) + F_2$$
(2)

показывают, что кристаллический трифторид никеля термически весьма устойчив. Из табл. 1 видно, что заметное его разложение с выделением атомарного фтора происходит при температурах выше 1000—1100 К.

Однако даже визуальные наблюдения показывают, что NiF₃(κ) черного цвета начинает медленно терять фтор уже при 312 К и довольно быстро разлагается при 395 К [6], превращаясь в краснокоричневый Ni₂F₅(κ). По данным [14], NiF₃(κ) разлагается при 353 К до дифторида. Как видно, данные авторов о температурах разложения NiF₃(κ) разнятся. Это противоречие может быть разрешено при детальном рассмотрении экспериментальных данных и измерений, описанных в [6].

Таблица 1. Парциальное давление насыщенного пара $NiF_3(\kappa)$, атм

<i>Т</i> , К	<i>P</i> (F)	<i>P</i> (F ₂)	$P^{\circ}(\text{NiF}_2)$
400	1.2×10^{-24}	7.4×10^{-34}	3.0×10^{-23}
700	1.9×10^{-11}	1.7×10^{-16}	4.1×10^{-14}
1100	4.0×10^{-5}	2.8×10^{-8}	6.7×10^{-6}

Авторы [6] разлагали 5.53 ммоль NiF₃(к) в камере объемом 5–6 мл при 395 К по реакции:

$$2NiF_{3}(\kappa) = Ni_{2}F_{5}(\kappa) + 1/2F_{2}$$
(3)

с образованием 2.73 ммоль $Ni_{2}F_{5}(\kappa)$. По мере накопления фтора в камере его несколько раз откачивали. Если бы его не удаляли, давление F₂ достигло бы 8 атм. Эта величина дает верхний предел $K^{\circ}((3), 395 \text{ K}) = 2.8$. Следует отметить, что реактор выдерживает давление по меньшей мере 12.5 атм [6]. Очевидно, откачку проводили из-за замедления разложения NiF₃(к) вплоть до его прекращения. Причина этого – установление равновесия реакции (3) при давлении фтора, существенно меньшем 8 атм. В то же время последнее откачивание, до которого накопления фтора не происходило, указывало на окончание разложения – $(a(NiF_3) < 1)$ и переход системы от состава конденсированной фазы NiF₃-Ni₂F₅ к составу Ni₂F₅-NiF₂ с единичными активностями компонентов. Принимая $P(F_2) = 0.1$ атм (80 откачек), получим нижний предел $K^{\circ}((3), 395 \text{ K}) = 0.32$. Таким образом, энтальпия реакции (2) попадает в интервал 26.1 кДж/моль $\leq \Delta r H^{\circ}((3), 0 \text{ K}) \leq 33.3 кДж/моль.$ Реальное число откачиваний, определяемое в [6] словом "несколько", вероятнее всего близко к 9 (среднему квадратичному из числа откачек). То есть равновесное давление $P(F_2) = 8/9 \approx 0.9$ атм, $K^{\circ}((3), 395 \text{ K}) = 0.95 \text{ M}$

$$\Delta_r H^{\circ}((3), 0\mathbf{K}) = \Delta_f H^{\circ}(\mathrm{Ni}_2 \mathrm{F}_5, (\mathbf{K}), 0\mathbf{K}) - 2\Delta_f H^{\circ}(\mathrm{Ni} \mathrm{F}_3, (\mathbf{K}), 0\mathbf{K}) = 29.7 \ \mathrm{K} \mathrm{Д} \mathrm{ж} / \mathrm{MOЛb.}$$
(4)

В работе [6] было рассмотрено также взаимодействие кристаллических NiF₃ и XeF₂:

$$4\operatorname{NiF}_{3}(\kappa) + \operatorname{XeF}_{2}(\kappa) = 2\operatorname{Ni}_{2}F_{5}(\kappa) + \operatorname{XeF}_{4}(\kappa).$$
(5)

Исходную смесь NiF₃(κ) с избытком XeF₂(κ) выдерживали несколько дней при 293 К. Образование Ni₂F₅(κ) устанавливали визуально и методом РФА. Наличие фторида ксенона в конденсированной фазе определяли методом ИК-спектрометрии при исследовании газообразных продуктов реакции во время их откачки при комнатной температуре.

Используя выражение (4), можно количественно охарактеризовать достижение равновесия реакцией (5): $\Delta_r \Phi^{\circ}(0 \text{ K}, (5)) = 0.345 \text{ Дж/моль K};$ $\Delta_r H^{\circ}(0 \text{ K}), (5)) = -44.368 \text{ кДж/моль; } K_p^{\circ}$ (293 K, (5)) = 8.45 × 10⁷; активность *a*(NiF₃) равна 0.010, а остальных веществ – 1.

Отсутствие фазы NiF₃(κ) позволяет предположить наличие NiF₂(κ) с $a \le 1$ и допустить существование равновесия реакции:

$$2Ni_2F_5(\kappa) + XeF_2(\kappa) = 4NiF_2(\kappa) + XeF_4(\kappa),$$
 (6)

для которой: $K_p^{\circ}(293 \text{ K}, (6)) \le 1$; $\Delta_r \Phi^{\circ}(0 \text{ K}, (6)) = 0.345 \text{ Дж/моль K}$; $\Delta_r H^{\circ}(0 \text{ K}, (6)) \ge 0.10 \text{ кДж/моль.}$ Отсюда $\Delta_r H^{\circ}(\text{Ni}_2\text{F}_5(\text{K}), 0 \text{ K}) \le -1362.543 \text{ кДж/моль.}$

Использование в [6] более сильного восстановителя — газообразного ксенона — приводило к образованию XeF₂(к):

$$4NiF_{3}(\kappa) + Xe = 2Ni_{2}F_{5}(\kappa) + XeF_{2}(\kappa)$$

и продукта более глубокого восстановления $NiF_3(\kappa) - NiF_2(\kappa)$:

$$2Ni_2F_5(\kappa) + Xe = 4NiF_2(\kappa) + XeF_2(\kappa), \qquad (7)$$

причем $a(Ni_2F_5) \le a(NiF_2) = 1$.

Завершение восстановления NiF₃(к) фиксировали визуально по изменению цвета в течение 24 ч. Начальное давление Xe (2.79 ммоль) было равно 12.3 атм. Равновесное давление Xe может быть меньше 10 атм; $K_p^{\circ}(293 \text{ K}, (7)) \ge 0.1$; $\Delta_r \Phi^{\circ}(0 \text{ K}, (7)) = -109.764 \text{ Дж/моль K}; \Delta_r H^{\circ}(0, (7)) \le -26.6 \text{ кДж/моль; } \Delta_f H^{\circ}(\text{Ni}_2\text{F}_5, (\kappa), 0 \text{ K}) \ge -1378.498 \text{ кДж/моль.}$

Полученные в настоящей работе данные приведены в табл. 2. В качестве рекомендованных значений энтальпий образования приняты средние арифметические величин интервалов $\Delta_{f}H^{\circ}(\text{Ni}_{2}\text{F}_{5}, (\kappa), 0 \text{ K}) = -1370.5 \pm 8 \text{ кДж/моль и}$ $\Delta_{f}H^{\circ}(\text{NiF}_{3}, (\kappa), 0 \text{ K}) = -699.8 \pm 3 \text{ кДж/моль, по$ грешности определяются границами этих интервалов.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Рассчитанная по представленным данным разность – $\Delta_f H^{\circ}(Ni_2F_5, (\kappa), 0 \text{ K}) - \Delta_f H^{\circ}(NiF_3, (\kappa), 0 \text{ K}) = -670.7 \text{ кДж/моль}$ – не противоречит приведенному ниже значению.

Самая надежная оценка разности энтальпий образования $Ni_2F_5(\kappa)$ и $NiF_3(\kappa)$ следует из допущения, что система NiF_2-NiF_3 является идеальным твердым раствором. Для мольного состава 1 : 1 активность компонентов равна 0.5. Для реакции

$$NiF_{3}(\kappa) + NiF_{2}(\kappa) = Ni_{2}F_{5}(p-p)$$
(8)

 $K_p^{\circ}(298 \text{ K}, (8)) \ge 4$; $\Delta_r \Phi^{\circ}(298 \text{ K}, (8)) \approx 0$ Дж/моль K; $\Delta_r H^{\circ}(0 \text{ K}, (8)) \le -3.4$ кДж/моль.

 $\Delta_{f}H^{\circ}(Ni_{2}F_{5}, \kappa, 0 K) - \Delta_{f}H^{\circ}(NiF_{3}, \kappa, 0 K) \le \le -658.6 \kappa Дж/моль.$

Реакция	Условия	$\Delta_r H^{\circ}(0)$	$\Delta_{f} H^{\circ}(\mathrm{NiF}_{3(\mathrm{K})}, 0 \mathrm{K})$	$\Delta_{f} H^{\circ}(\mathrm{Ni}_{2} \mathrm{F}_{5(\kappa)}, 0 \mathrm{K})$
(3)	<i>P</i> (F ₂) ≤ 8 атм	≥26.1		
(3)	<i>P</i> (F ₂) ≥ 0.1 атм	≤33.3		
(3)	Принято <i>P</i> (F ₂) = 0.9 атм	29.7		
(6)	$a(\text{NiF}_2) \le 1$	≥0.10	(≤−696.972)	≤-1362.543
(7)	$a(NiF_2) = 1$	≤-26.6	(≥−702.549)	≥-1378.498

Таблица 2. Энтальпии реакций образования соединений (кДж/моль), в скобках – величины, рассчитанные с использованием принятой $\Delta_r H^{\circ}(0 \text{ K})$ (3)

Большое расхождение величин энтальпий образования NiF₃(κ), взятых из [10] и настоящей работы, может быть связано с взаимодействием исследуемого препарата с влагой при проведении процедур перед растворением.

Используя рекомендованное в [12] значение (без учета других, в том числе и более новых данных о трифторидах железа и кобальта [15, 16]) $\Delta_f H^{\circ}(\text{NiF}_3, (\kappa), 0 \text{ K}) = -456.214 \text{ кДж/моль, полу$ $чим } \Delta_s H^{\circ}(\text{NiF}_3, (\kappa), 0 \text{ K}) = 243.6 \text{ и } D_0^{\circ} (\text{NiF}_2 - \text{F}) =$ = 185 кДж/моль. Такие же характеристики ближайшего аналога – трифторида платины Pt[PtF_6] – могут быть рассчитаны по данным [17]: 214.2 и 282.8 кДж/моль соответственно. Таким образом, значения, приведенные в [13], представляются вполне реальными, хотя термическая устойчивость NiF_3(к) может быть и заметно меньше.

В табл. 3 проиллюстрировано термическое поведение высших фторидов никеля и возможность получения измеримых концентраций молекул NiF₃(к) в газовой фазе в условиях эффузионного эксперимента с масс-спектрометрическим анализом состава пара.

Парциальное давление в системе $NiF_3 - Ni_2F_5$ для NiF_3 рассчитано с использованием приведенной энтальпии сублимации; для F и $F_2 - c$ использованием определенной в этой работе разности (4). Для системы $Ni_2F_5 - NiF_2$ использовали рассчитанную нами энтальпию образования $Ni_2F_5(\kappa)$. Активность соединений в конденсированной фазе обеих систем принимали равной единице.

Измерение давления насыщенного пара NiF₃ в настоящее время технически невозможно, поэтому такие данные в табл. 3 отсутствуют; более того, энергия диссоциации D_0° (NiF₂-F) [13] представляется завышенной. Кристаллический трифторид никеля скорее похож на трифторид меди [18, 19], газообразный NiF₃ – на необнаруженные CuF₃ и ZnF₃, а не на известные трифториды металлов VIII группы.

Сведения о термической устойчивости $Ni_{2}F_{5}(\kappa)$ крайне ограничены: в [6] сказано только, что это наиболее устойчивый из высших фторидов никеля; в [14] хотя и отмечено разложение $NiF_3(\kappa)$ до $NiF_2(\kappa)$ (см. выше), не ясно, образовывался ли Ni₂F₅(к) как промежуточный продукт. Приведенное в табл. 3 давление F₂ при 400 К отвечает количеству ~ 0.5 ммоль F_2 , удаленного в течение 24 ч с поверхности рассыпанного в лодочке препарата ~2 см², или 1 ммоль разложившегося $Ni_2F_5(\kappa)$. Именно такие навески веществ исследовали в [6]. При этом для устранения диффузионного ограничения отвода пара от поверхности разложение должно проводиться в высоком вакууме или в потоке инертного газа достаточно большой плотности.

Быстрое разложение $Ni_2F_5(\kappa)$ при атмосферном давлении возможно при ~800 К и выше. Поэтому это соединение может применяться как внут-

Таблица 3. Состав и давление пара (атм) систем $\mathrm{NiF}_3\mathrm{-NiF}_2$

<i>Т</i> , К	<i>P</i> (F)	<i>P</i> (F ₂)	$P(NiF_3)$	$P^{\circ}(\mathrm{NiF}_2)$	
NiF ₃ -Ni ₂ F ₅					
300	7.2×10^{-13}	0.00235	2.6×10^{-32}		
400	4.7×10^{-8}	1.14	1.1×10^{-21}		
500	3.4×10^{-5}	37.6	2.2×10^{-15}		
Ni ₂ F ₅ -NiF ₂					
300	3.7×10^{-18}	3.4×10^{-14}			
400	5.0×10^{-12}	8.5×10^{-9}			
500	2.2×10^{-8}	1.2×10^{-6}			
600	5.9×10^{-6}	0.0013			
700	3.1×10^{-4}	0.036			
800	0.0059	0.40		2.8×10^{-11}	
900	0.058	2.6		4.5×10^{-9}	
1000	0.36	11		2.5×10^{-7}	
1100	1.6	36		6.7×10^{-6}	

ТЕРМОХИМИЯ ТРИФТОРИДА НИКЕЛЯ

Параметр	MnF ₂ -MnF ₃	FeF ₂ -FeF ₃	CoF ₂ –CoF ₃	TbF ₃ –TbF ₄	NiF ₂ -Ni ₂ F ₅
<i>P</i> (F)	6.0×10^{-22}	5.2×10^{-31}	1.4×10^{-21}	1.1×10^{-10}	2.2×10^{-8}
$P(\mathbf{F}_2)$	6.3×10^{-33}	9.2×10^{-51}	3.7×10^{-32}	3.0×10^{-10}	1.2×10^{-6}

Таблица 4. Парциальное давление фтора в системах фторидов некоторых металлов при 500 К, атм

ренний источник фтора до температуры ~550 К, при которой давление молекулярного фтора не превышает верхнего предела ~10⁻⁶-10⁻⁴ атм для эффузионных камер, обычно используемых в высокотемпературной масс-спектрометрии.

Для сравнения в табл. 4 приведены аналогичные данные по другим соединениям [16, 20].

Видно, что при 500 К Ni_2F_5 превосходит по эффективности фторирования даже $TbF_4(\kappa)$.

ЗАКЛЮЧЕНИЕ

Предложенный набор энтальпий образования фторидов никеля в высших степенях окисления хорошо описывает их экспериментально наблюдавшееся термическое поведение и может быть включен в справочные базы данных. Представляется целесообразным использовать Ni₂F₅(к) как эффективный фторирующий агент для препаративных синтезов и как аккумулятор фтора.

СПИСОК ЛИТЕРАТУРЫ

- Nag K., Chakravorty A. // Coord. Chem. Rev. 1980.
 V. 33. № 2. P. 87. doi 10.1016/S0010-8545(00)80405-1
- Žemva B., Lutar K., Jesih A. et al. // J. Chem. Soc. Chem. Commun. 1989. № 6. P. 346. doi 10.1039/C39890000346
- Žemva B., Lutar K., Chacón L. et al. // J. Am. Chem. Soc. 1995. V. 117. № 40. P. 10025. doi 10.1021/ja00145a013
- Higelin A., Riedel S. Modern Synthesis Processes and Reactivity of Fluorinated Compounds. Elsevier, 2017. P. 561. doi 10.1016/B978-0-12-803740-9.00019-6
- 5. Court T.L., Dove M.F.A. // J. Chem. Soc., Dalton Trans. 1973. № 19. P. 1995. doi 10.1039/DT9730001995
- Tramšek M., Žemva B. // Acta Chim. Slov. 2002. V. 49. P. 209.

- Gramstead T., Haszeldine R.N. // J. Chem. Soc. 1956. P. 173. doi 10.1039/JR9560000173
- 8. Simons J.H. // J. Electrochem. Soc. 1949. V. 95. P. 47.
- Chilingarov N.S., Rau J.V., Nikitin A.V., Sidorov L.N. Proceedings of the Symposium on High Temperature Corrosion and Materials Chemisrty. New Jersey, 1998. P. 570.
- 10. Соловьев С.Н., Корунов А.А., Зубков К.Г., Фирер А.А. // Журн. физ. химии. 2012. Т. 86. № 3. С. 590.
- 11. Shen C., Chacón L.C., Rosov N. et al. // Acad. Sci. Paris. 1999. V. 2. № 11–13. P. 557.
- 12. Термодинамические свойства индивидуальных веществ. Электронное справочное издание. Т. 5. Элементы Mn. Cr. V. Sc и их соединения. http://www.chem.msu.su/rus/tsiv/.
- Гурвич Л.В., Вейц И.В., Медведев В.А. и др. // Термодинамические свойства индивидуальных веществ. Справочное издание в 4-х томах. М.: Наука, 1978– 1982.
- Vasiliev A.A., Bezmelnitsyn V.N., Sinianski V.F., Chaivanov B.B. // J. Fluor. Chem. 1999. V. 95. № 1–2. P. 153. doi 10.1016/S0022-1139(99)00015-9
- 15. Осина Е.Л., Чилингаров Н.С., Осин С.Б. и др. // Журн. физ. химии. 2019. № 3. в печати.
- Никитин М.И., Чилингаров Н.С., Алиханян А.С. // Журн. неорган. химии. 2019. № 3. С. 302. doi 10.1134/S0044457X19030139 [Nikitin M.I., Chilingarov N.S., Alikhanyan A.S. // Russ. J. Inorg. Chem. 2019. T. 64. № 3. Р. 377. doi 10.1134/S0036023619030136]
- 17. *Никитин М. И., Збежнева С.Г.* // Теплофизика высоких температур. 2012. Т. 50. № 2. С. 204.
- Nakajima T., Zemva B., Tressaud A. // Advanced Inorganic Fluorides: Synthesis, Characterization and Applications. Elsevier, 2000. P. 108.
- 19. Zemva B. // Advanced Inorganic Fluorides. Lausanne: Elsevier, 2000. P. 79.
- 20. *Никулин В.В., Горяченков С.А., Коробов М.В. и др.* // Журн. неорган. химии. 1985. Т. 30. № 10. С. 2530.