#### \_\_\_ КООРДИНАЦИОННЫЕ \_\_ СОЕДИНЕНИЯ \_\_\_

УДК 548.73+546.94

### ОСОБЕННОСТИ СТРОЕНИЯ МОНОМЕРНЫХ ОКТАЭДРИЧЕСКИХ МОНООКСОКОМПЛЕКСОВ *d*<sup>2</sup>-РЕНИЯ(V)[ReO(L")<sub>2</sub>(L<sub>моно</sub>)] С АТОМАМИ КИСЛОРОДА БИДЕНТАТНО-ХЕЛАТНЫХ (O, N) ЛИГАНДОВ (L"). ЧАСТЬ 2. КОМПЛЕКСЫ [ReO(L")<sub>2</sub>(L<sub>моно</sub>)] С ШЕСТИЧЛЕННЫМИ МЕТАЛЛОЦИКЛАМИ ReNC<sub>3</sub>O

© 2019 г. В. С. Сергиенко<sup>1, 2, \*</sup>

<sup>1</sup>Институт общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия <sup>2</sup>Всероссийский институт научной и технической информации РАН, ул. Усиевича, 20, Москва, 125190 Россия \*E-mail: sergienko@igic.ras.ru Поступила в редакцию 07.12.2017 г. После доработки 25.12.2018 г. Принята к публикации 25.12.2018 г.

Рассмотрены особенности строения 24 моноядерных октаэдрических монооксокомплексов  $d^2$ -Re(V) с однозарядными атомами кислорода бидентатно-хелатных (O, N) лигандов ( $L^n$ ) – [ReO( $L^n$ )<sub>2</sub>( $L_{MOHO}$ )] ( $L_{MOHO}$  – монодентатный лиганд), содержащих шестичленные металлоциклы ReNC<sub>3</sub>O. Атомы O( $L^n$ ), за исключением трех, находятся в *транс*-положениях к лигандам O(оксо). В двух комплексах *транс*-позиции к оксолигандам занимают атомы кислорода ацидолиганда OMe<sup>-</sup>, в одном – атом O нейтрального лиганда H<sub>2</sub>O. В случае комплексов [ReO( $L^n$ )<sub>2</sub>( $L_{MOHO}$ )] с пятичленными хелатными циклами ReNC<sub>2</sub>O также известна структура трех комплексов с лигандами  $L_{MOHO}$  в *транс*-положениях к оксолигандам: одного с  $L_{MOHO} = Cl^-$  и двух с  $L_{MOHO} = OMe^-$ .

*Ключевые слова:* кристаллическая структура, рентгеноструктурный анализ, октаэдрические монооксокомплексы *d*<sup>2</sup>-Re, бидентатно-хелатные (O, N) лиганды

DOI: 10.1134/S0044457X19050167

В первой части данного обзора [1] рассмотрена кристаллическая структура 14 октаэдрических монооксокомплексов [ReO( $L^n$ )<sub>2</sub>( $L_{MOHO}$ )] с пятичленными металлоциклами ReNC<sub>2</sub>O и атомами O( $L^n$ ) в *транс*-позициях к оксолигандам, где  $L^n$  – бидентатно-хелатные кислородсодержащие (O, N) лиганды,  $L_{MOHO}$  – монодентатные лиганды.

Для удобства изложения в обеих частях данного обзора мы применяем сквозную нумерацию комплексов и лигандов  $L^n$  (I–XIV, n = 1-13 в первой части и XV–XLI, n = 14-30 во второй части).

Ранее [2, 3] мы опубликовали обзорную статью об особенностях кристаллической структуры [ $\operatorname{ReO}(L^n)(L_{\text{моно}})_3$ ], где  $L^n$  – бидентатно-хелатные кислородсодержащие (O, N), а  $L_{\text{моно}}$  – монодентатные лиганды.

В настоящей статье рассмотрены особенности строения 24 мономерных октаэдрических монооксокомплексов [ReO( $L^n$ )<sub>2</sub>( $L_{\text{моно}}$ )], содержащих два одинаковых (за одним исключением — см. далее) лиганда  $L^n$  и один  $L_{\text{моно}}$ . Первые из них в кри-

сталлической структуре комплексов  $\text{ReO}_{okco}^{3+}$  выполняют бидентатно-хелатную функцию, преимущественно (за исключением трех случаев) с ацидоатомом кислорода  $O(L^n)$  в *транс*-позиции к оксолиганду. При этом во всем массиве структур реализуются три геометрических изомера: одноименные атомы азота и кислорода двух лигандов  $L^n$  располагаются в *транс*(N,N), *цис*(O,O)-; *цис*(N,N), *цис*(O,O)-; *транс*(N,N), *транс*(O,O)позициях друг к другу. Поскольку последний изомер реализуется только в шести комплексах с лигандом  $L_{моно}$  (глава II), в главе I для краткости первые два изомера, в которых атомы кислорода всегда расположены в *цис*-позициях друг к другу, мы будем обозначать как *транс*(N, N) и *цис*(N, N).



Рис. 1. Строение комплексов:  $a - [ReO(L^{14})_2Cl]$  (XV),  $6 - [ReO(L^{17})_2Cl]$  (XX),  $B - [ReO(L^{18})_2Cl]$  (XXI).

#### I. СТРУКТУРА МОНОМЕРНЫХ ОКТАЭДРИЧЕСКИХ МОНООКСОКОМПЛЕКСОВ [ReO(L<sup>n</sup>)<sub>2</sub>(L<sub>моно</sub>)] С ШЕСТИЧЛЕННЫМИ МЕТАЛЛОЦИКЛАМИ ReNC<sub>3</sub>O И АТОМАМИ O(L<sup>n</sup>) В *ТРАНС*-ПОЗИЦИЯХ К ЛИГАНДАМ O(OKCO)

Основные длины связей в 21 структурно исследованном комплексе указанного в названии главы I типа приведены в табл. 1.

В большинстве комплексов, рассмотренных в главе I, в однозарядных лигандах  $(L^n)^-$  шестичленные хелатные кольца Re–N(1)–C(1)–C(2)–C(3)–O по связям N(1)–C(1), C(1)–C(2), C(2)–C(3) включены в би-, три- и тетрациклические системы. В пяти случаях дополнительные циклы не образуются.

## *I.1. Моноциклические комплексы* [*ReO*(*L<sup>n</sup>*)<sub>2</sub>(*L*<sub>моно</sub>)] с заместителями при атомах *N*(1), *C*(1), *C*(3)

Известна структура пяти соединений с общей формулой [Re(L<sup>n</sup>)<sub>2</sub>(Hal)] [4] с  $\beta$ -кетоиминатными лигандами — 4-(R-имино)пент-2-ен-2-олато, N(R)C(Me)CH<sub>2</sub>C(Me)O, где R = C<sub>6</sub>H<sub>3</sub>Me<sub>2</sub> (*n* = 14), C<sub>6</sub>H<sub>4</sub>Me (*n* = 15), C<sub>6</sub>H<sub>5</sub> (*n* = 16). Во всех этих комплексах атомы кислорода лигандов L<sup>n</sup>, как обычно, расположены в *цис*-позициях друг к другу. В структуре [ReO(L<sup>14</sup>)<sub>2</sub>Cl] (**XV**) (рис. 1) реализуется *транс*(N, N)-изомер. Для комплекса [Re(L<sup>15</sup>)<sub>2</sub>Cl] определена кристаллическая структура двух геометрических изомеров: *транс*(N, N) (XVI) и цис(N, N) (XVII). Изомер цис(N, N) комплекса [ReO(L<sup>16</sup>)Br] кристаллизуется в двух модификациях: моноклинной, пр. гр.  $P2_1/c$  (XVIII) и триклинной, пр. гр.  $P\overline{1}$  (XIX). В комплексах XV– XIX в металлоциклах ReNC<sub>3</sub>O у атомов N(1), C(1), C(3) есть заместители – соответственно R, Me, Me. Отметим нетипичный факт: связи Re– O(L<sup>n</sup>) в *транс*-положениях к O(оксо) во всех пяти структурах не удлинены, как обычно, относительно связей Re–O(L<sup>n</sup>)<sub>цис</sub>, а несколько укорочены либо соизмеримы по длине (величина параметров  $\Delta$  составляет –0.024, –0.045, –0.004, 0.001 и –0.004 Å соответственно в структуре XV, XVI, XVII, XVIII и XIX).

#### *I.2. Бициклические комплексы [Re(L<sup>n</sup>)<sub>2</sub>Cl]*, сочлененные по связям C(2)–C(3) с заместителями при атомах N(1)

Известна структура двух комплексов, полученных по реакциям (NBu)[ReOCl<sub>4</sub>] с бидентатными салицилиденаминными лигандами: [ReO(L<sup>n</sup>)<sub>2</sub>Cl] [5], где L<sup>17</sup> – циклогексилсалицилидениминат N(Ph)CH<sub>2</sub> · C<sub>6</sub>H<sub>4</sub> · O (**XX**, рис. 1б) и L<sup>18</sup> – N-(R-(+)-фенилэтил)3,5-дихлорсалицилидениминат N(CPhMe)CH<sub>2</sub> · C<sub>5</sub>H<sub>2</sub>Cl<sub>2</sub> · O (**XXI**, рис. 1в). В двух структурах реализуются разные геометрические изомеры: *цис*(N, N) в XX и *mpahc*(N, N) в XXI.

#### ОСОБЕННОСТИ СТРОЕНИЯ

**Таблица 1.** Основные геометрические параметры (Å) мономерных октаэдрических монооксокомплексов [ReO( $L^n$ )<sub>2</sub>( $L_{MOHO}$ )] с бидентатно-хелатными (O, N) лигандами ( $L^n$ ) (n = 14-25), содержащими шестичленные металлоциклы ReNC<sub>3</sub>O, и с атомами O( $L^n$ ) в *транс*-позициях к O(оксо);  $L_{MOHO}$  – монодентатный лиганд

| №<br>комплекса | Соединение                                                                                                | Re=O     | Re-L <sub>uuc</sub> Re-O <sub>mpahc</sub>                                                              |                           | $\Delta \left( \Delta' \right)$ | Лите-<br>ратура |
|----------------|-----------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------|-----------------|
| XV             | $[\text{ReO}(\text{L}^{14})_2\text{Cl}]$                                                                  | 1.685(3) | 2.035(3) O(L <sup>14</sup> ) 2.112(4) $\pm$ 0.016 N(L <sup>14</sup> )<br>2.397(1) Cl                   | 2.001(3)                  | -0.024                          | [4]             |
| XVI            | $[\operatorname{ReO}(\mathrm{L}^{15})_2\mathrm{Cl}](\mu uc)$                                              | 1.688(4) | 2.037(4) O(L <sup>15</sup> ) 2.130(4) $\pm$ 0.005 N(L <sup>15</sup> ) 2.433(1) Cl                      | 1.992(3)                  | -0.045                          | [4]             |
| XVII           | [ReO (L <sup>15</sup> ) <sub>2</sub> Cl]<br>( <i>mpahc</i> )                                              | 1.704(7) | 2.017(7) O(L <sup>15</sup> ) 2.123(8) $\pm$ 0.008 N(L <sup>15</sup> ) 2.452(2) Cl                      | 2.013(8)                  | -0.004                          | [4]             |
| XVIII          | [ReO(L <sup>16</sup> ) <sub>2</sub> Br]<br>(монокл.)                                                      | 1.689(4) | 2.015(4) O(L <sup>16</sup> ) 2.135(5) $\pm$ 0.001 N(L <sup>16</sup> )<br>2.5393(7) Br                  | 2.016(4)                  | 0.001                           | [4]             |
| XIX            | [ReO(L <sup>16</sup> ) <sub>2</sub> Br]<br>(трикл.)                                                       | 1.676(4) | 2.016(3) O(L <sup>16</sup> ) 2.116(4) $\pm$ 0.021 N(L <sup>16</sup> ) 2.012(4)<br>2.5502(7) Br         |                           | -0.004                          | [4]             |
| XX             | $[\text{ReO}(\text{L}^{17})_2\text{Cl}]$                                                                  | 1.671(5) | 1.973(6) $O(L^{17})$ 2.125(7) $\pm$ 0.002 $N(L^{17})$ 2.380(2) Cl                                      | 1.978(6)                  | 0.005                           | [5]             |
| XXI            | $[\text{ReO}(\text{L}^{18})_2\text{Cl}]$                                                                  | 1.683(9) | 1.985(9) $O(L^{18})$ 2.089(9) ± 0.002 $N(L^{18})$<br>2.386(4) Cl                                       | 1.953(9)                  | -0.032                          | [5]             |
| XXII           | [ReO(L <sup>19</sup> ) <sub>2</sub> Cl] ( <i>транс</i> )                                                  | 1.692(3) | 2.001(3) O(L <sup>19</sup> ) 2.093(3) $\pm$ 0.029 N(L <sup>19</sup> )<br>2.409(1) Cl                   | 2.007(3)                  | 0.006                           | [6]             |
| XXIIa          | [ReO(L <sup>19</sup> ) <sub>2</sub> Cl] ( <i>транс</i> )                                                  | 1.671    | 1.990 O(L <sup>19</sup> ) 2.064 $\pm$ 0.026 N(L <sup>19</sup> )<br>2.382 Cl                            | 1.977                     | -0.013                          | [7]             |
| XXIII          | [ReO(L <sup>19</sup> ) <sub>2</sub> Cl] ( <i>цис</i> )                                                    | 1.689(8) | 1.999(7) O(L <sup>19</sup> ) 2.117(10) $\pm$ 0.001 N(L <sup>19</sup> )<br>2.383(3) Cl                  | 1.983(7)                  | -0.016                          | [6]             |
| XXIV           | $[\operatorname{ReO}(\operatorname{L}^{19})_2\operatorname{Cl}]\cdot\operatorname{C}_7\operatorname{H}_8$ | 1.690    | 1.986 O(L <sup>19</sup> ) 2.107 ± 0.006 N(L <sup>19</sup> )<br>2.370 Cl                                | 2.001                     | 0.015                           | [7]             |
| XXV            | $[\text{ReO}(\text{L}^{19})_2\text{Br}]$                                                                  | 1.681(4) | 2.013(4) O(L <sup>19</sup> ) 2.072(5) $\pm$ 0.027 N(L <sup>19</sup> )<br>2.5804(7) Br                  | 1.988(4)                  | -0.026                          | [8]             |
| XVI            | $[\text{ReO}(\text{L}^{20})_2\text{Cl}]$                                                                  | 1.718(6) | 1.993(6) $O(L^{20})$ 2.086(7) ± 0.005 $N(L^{20})$<br>2.401(4) Cl                                       | 2.039(6)                  | 0.046                           | [9]             |
| XXVII          | $[\text{ReO}(\text{L}^{21\text{a}})_2\text{Cl}]$                                                          | 1.690(1) | 1.992(1) $O(L^{21a})$ 2.113(1) $\pm$ 0.006 $N(L^{21a})$<br>2.3563(4) Cl                                | 2.002(1)                  | 0.010                           | [10]            |
| XXVIII         | $[\operatorname{ReO}(\mathrm{L}^{216})_2\mathrm{Cl}]$                                                     | 1.697(3) | 2.000(3) O(L <sup>216</sup> ) 2.140(3) $\pm$ 0.002 N(L <sup>216</sup> )<br>2.3709(9) Cl                | 1.947(3)                  | -0.053                          | [10]            |
| XXIX           | $[\text{ReO}(\text{L}^{22})_2\text{Cl}] (mpahc)$                                                          | 1.692    | 1.990 O(L <sup>22</sup> ) 2.087 $\pm$ 0.008 N(L <sup>22</sup> )<br>2.417 Cl                            | 1.978                     | -0.012                          | [7]             |
| XXX            | $[\operatorname{ReO}(\mathrm{L}^{22})_2\mathrm{Cl}] (uuc)$                                                | 1.688(3) | 1.983(3) $O(L^{22})$ 2.107(4) ± 0.004 $N(L^{22})$<br>2.3669(11) Cl                                     | 1.997(3)                  | -0.014                          | [11]            |
| XXXI           | $[\text{ReO}(\text{L}^{19})(\text{L}^{22})\text{Cl}]$                                                     | 1.681    | 2.004 O(L <sup>19</sup> ) 2.062 N(L <sup>19</sup> ) 2.102 N(L <sup>22</sup> )<br>2.406 Cl              | 1.993 O(L <sup>22</sup> ) | -0.011                          | [7]             |
| XXXII          | $[\text{ReO}(\text{L}^{23})_2(\text{HL}^{23})]\text{Cl}$                                                  | 1.693(3) | 1.968(3) O(L <sup>23</sup> ) 2.112(4) $\pm$ 0.013 N(L <sup>23</sup> )<br>1.999(3) O(HL <sup>23</sup> ) | 2.043(3)                  | 0.075                           | [12]            |

Таблица 1. Окончание

| №<br>комплекса | Соединение                                                                        | Re=O      | Re–L <sub>µuc</sub>                                                                 | Re–O <sub><i>mpaнc</i></sub> | $\Delta \left( \Delta' \right)$ | Лите-<br>ратура |
|----------------|-----------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------|------------------------------|---------------------------------|-----------------|
| XXXIII         | $[\text{ReO}(\text{L}^{24})_2\text{Cl}] \cdot \\ \cdot 1.5\text{CH}_2\text{Cl}_2$ | 1.679(4)  | 1.971(4) O(L <sup>24</sup> ) 2.140(4) $\pm$ 0.004 N(L <sup>24</sup> ) 2.365(1) Cl   | 1.984(3)                     | 0.013                           | [13]            |
| XXXIV          | $[\operatorname{ReO}(\mathrm{L}^{25})_2\mathrm{Cl}](\mathrm{A})$                  | 1.672(3)  | 1.969(2) O(L <sup>25</sup> ) 2.108(2) $\pm$ 0.016 N(L <sup>25</sup> ) 2.3845(11) Cl | 2.079(2)                     | 0.110                           | [14]            |
| XXXV           | [ReO(L <sup>25</sup> ) <sub>2</sub> Cl] (Б)                                       | 1.673(10) | 1.975(5) O(L <sup>25</sup> ) 2.114(6) $\pm$ 0.023 N(L <sup>25</sup> ) 2.436(2) Cl   | 2.003(5)                     | 0.028                           | [14]            |

Условные обозначения лигандов:  $L^{14}-L^{16} = N(R)C(Me)CH_2C(Me)O$ ;  $R = C_6H_3Me_2(L^{14})$ ,  $C_6H_4Me$  ( $L^{15}$ ),  $C_6H_5$  ( $L^{16}$ );  $L^{17} = N(Ph)CH_2C_6H_4O$ ;  $L^{18} = N(CPhMe)CH_2C_6H_2Cl_2O$ ;  $L^{19} = N(CH_2)_2OCC_6H_4O$ ;  $L^{20} = NC(u_{30}-Pr)CH_2OCC_6H_4O$ ;  $L^{21n} = NN(Me)(CH)_2CC_6H_3RO$ ; R = OMe (n = a),  $NO_2$  (n = 6);  $L^{22} = N(CH_2)_2SCC_6H_4O$ ;  $L^{23} = NC_6H_4N(H)CC_6H_4O$ ;  $L^{24} = NC_6H_4SCC_6H_4O$ ;  $L^{25} = NC(Me_2)CH_2OC_{10}H_6O$ .

## *I.3. Трициклические комплексы, сочлененные по связям N(1)–C(1) и C(2)–C(3)*

Известна структура ряда соединений, содержащих шестичленные металлоциклы, сочлененные по связям N(1)–C(1) с пятичленными кольцами NC<sub>3</sub>X (X = O, N, S), а по связям C(2)–C(3) – с шестичленными циклами C<sub>6</sub>.

**I.3.1. Трициклические соединения ReNC<sub>3</sub>O–** NC<sub>2</sub>OC–C<sub>6</sub>. Определена кристаллическая структура двух геометрических изомеров [ReO(L<sup>19</sup>)<sub>2</sub>Cl]: *транс* (XXII [6], XXIIa [7]) и *цис* (XXIII [6], XXIV (сольват (1 : 1) с толуолом [7], где L<sup>19</sup> – 2-(4,5-дигидро-1,3-оксазол-2-ил)фенолят N(CH<sub>2</sub>)<sub>2</sub>OCC<sub>6</sub>H<sub>4</sub>O)). В структурах XXII и XXIIa сильно различаются по длине две связи Re–N(L<sup>19</sup>): 2.064 и 2.112, 2.038 и 2.090 Å. Отметим существенное различие одноименных длин связей в двух исследованиях *транс*-изомера XXII, XXIIa (табл. 1).

Известна структура бромного *транс*-изомера комплекса XXII (XXIIa), [ReO( $L^{19}$ )<sub>2</sub>Br] (**XXV**) [8], в котором, как и в структуре хлорного аналога [6, 7], заметно различаются по длине две связи Re– $N(L^{19})$ : 2.045 и 2.098 Å. Атом рения смещен из экваториальной плоскости OBrN<sub>2</sub> к оксолиганду на 0.19 Å.

Структура [ReO(L<sup>20</sup>)<sub>2</sub>Cl [9] (**XXVI**) (рис. 2a) отличается от структуры XXII (XXIIa) только наличием заместителя *изо*-Pr при одном из атомов углерода пятичленного цикла NC<sub>2</sub>OC лиганда 2-(4-*изо*-пропил-4,5-дигидро-1,3-оксазол-2-ил)фенолята NC(*изо*-Pr)CH<sub>2</sub>OCC<sub>6+</sub>H<sub>4</sub> (L<sup>20</sup>). Атомы N в структуре XXVI, как и в XXII, находятся в *транс*положениях друг к другу.

**I.3.2.** Трициклические комплексы  $\text{ReNC}_{3}\text{O}-N_2\text{C}_3-\text{C}_6$ . В двух комплексах [ $\text{ReO}(L^{21n})_2\text{Cl}$ ] [10] содержатся приконденсированные к металлоциклам пятичленные пиразолильные кольца  $N_2\text{C}_3$ . Эти соединения различаются только заместителями R в позициях 4 кольца C<sub>6</sub>, сочлененного с шестичленным металлоциклом по связи C(2)–C(3), лигандов L<sup>21n</sup> – 2-(1-метилпиразол-3ил)-4-R-фенолят NN(Me)(CH)<sub>2</sub>CC<sub>6</sub>H<sub>3</sub>RO, где R = OMe (**XXVII**, n = a, рис. 26) и NO<sub>2</sub> (**XXVIII**, n = 6). Атомы азота находятся в *цис*-позициях друг к другу. Следует отметить нетипичный факт – достачно большую разницу в расстояниях Re–O(L<sup>216</sup>): связь в *цис*-позиции к O(оксо) 2.000(3) Å не короче (вследствие структурного проявления трансвлияния (**СПТВ**) кратносвязанного оксолиганда), а заметно длиннее (на 0.053 Å), чем Re– O(L<sup>216</sup>)<sub>транс</sub> 1.947(3) Å.

**I.3.3. Трициклические комплексы ReNC<sub>3</sub>O–** NC<sub>2</sub>SC–C<sub>6</sub>. Известна структура двух геометрических изомеров комплекса [ReO(L<sup>22</sup>)Cl] – *транс* (XXIX) [7] (рис. 2в) и *цис* (XXX) [11]; L<sup>22</sup> – 2-(4,5-дигидро-1,3-тиазол-2-ил)фенолят, N(CH<sub>2</sub>)<sub>2</sub>SCC<sub>6</sub>H<sub>4</sub>O. Для комплекса XXX авторы [11] отмечают отсутствие делокализации  $\pi$ -электронов связей C=N с атомами серы (C–S 1.743(4) и 1.795(6) Å).

**I.3.4. Комплекс с двумя разными трициклическими лигандами [ReO(L<sup>19</sup>)(L<sup>22</sup>)Cl] (XXXI). В кристаллической структуре XXXI [7] (рис. 2г) два лиганда L<sup>n</sup> различаются сочлененными по связям N(1)-C(1) с металлоциклами ReNC<sub>3</sub>O пятичленными кольцами NC<sub>2</sub>XC – оксазолиновым (X = O, n = 19) и тиазолиновым (X = S, n = 22). Атомы азота расположены в** *транс***-позиции друг к другу.** 

## I.4. Тетрациклические комплексы, сочлененные по связям N(1)-C(1) и C(2)-C(3)

Известна структура четырех комплексов указанного в заголовке главы I.4 типа, в которых реализуются два вида расположения и сочленения шести- и пятичленных циклов.

I.4.1. Тетрациклические комплексы с приконденсированными к металлоциклам  $ReNC_3O$  по связям N(1)-C(1) бициклами  $NC_7X$  (X = N, S), а по



**Рис. 2.** Строение комплексов:  $a - [ReO(L^{20})_2Cl]$  (XXVI),  $6 - [ReO(L^{21a})_2Cl]$  (XXVII),  $B - [ReO(L^{22})_2Cl]$  (XXIX),  $\Gamma - [ReO(L^{19})(L^{22})]$  (XXXI).

связям C(2)-C(3) – кольцами  $C_6$ . Известна структура двух комплексов, содержащих сочлененные с шестичленным металлоциклом ReNC<sub>3</sub>O по связям N(1)-C(2) бициклы, включающие пятичленное кольцо NC<sub>2</sub>XC и шестичленное  $C_6$ :  $[\text{ReO}(L^{23})_2(\text{HL}^{23})]$ Cl (XXXII) [12] (рис. 3a), гле L<sup>23</sup> 1Н-бензимидазол-2-ил)фенолат, \_  $NC_6H_4N(H)CC_6H_4O$  (X = HN), и [ReO(L<sup>24</sup>)<sub>2</sub>Cl] (**XXXIII**] [13], где L<sup>24</sup> – 1Н-бензотиазол-2-ил)фенолат,  $NC_6H_4SCC_6H_4O$  (X = S). В обеих структурах реализуются цис-изомеры. В структуре XXXII имеет место разветвленная система BC N–H...Cl, N– H...O, C–H...N, соединяющая комплексные катионы в 1D-цепочки: H...Cl 2.34–2.75; H...O 2.04, 2.17; H...N 2.55; N...Cl 3.124–3.395; N...O 2.684, 2.855; C...N 2.869 Å; углы NHCl 133°–153°; NHO 118°, 157°, CHN 100°. В структуре XXXIII параметр  $\Delta_{Re} = 0.205$  Å.

I.4.2. Тетрациклические комплексы с приконденсированными к металлоциклам ReNC<sub>3</sub>O по связям N-C(1) кольцами NCOC<sub>2</sub>, а по связям C(2)-C(3) – бициклами C<sub>10</sub>. Известна структура двух мо-



**Рис. 3.** Строение комплексов:  $a - [ReO(L^{23})_2(HL^{23})]^+(XXXII), 6 - [ReO(L^{25})_2Cl](XXXIV).$ 

ноклинных модификаций [ReO(L<sup>25</sup>)<sub>2</sub>Cl] [14] (пр. гр.  $P2_1/c$ ): **XXXIV** (**A**, рис. 36) и **XXXV** (**B**), L<sup>25</sup> – (4,4диметил-4,5-дигидрооксазол-2-ил)-нафталат, NC(Me<sub>2</sub>)CH<sub>2</sub>OC<sub>10</sub>H<sub>6</sub>O), несколько различающихся объемом ячейки и параметрами  $\rho_{выч}$  (соответственно 2641.8 и 2752.7 Å<sup>3</sup>, 1.806 и 1.733 г/см<sup>3</sup>). В обеих структурах реализуется *транс*-изомер. Геометрические параметры двух структур сходны, за исключением того, что связь Re–O(L<sup>25</sup>) в *транс*-позиции к O(оксо) в комплексе XXXIV на 0.076 Å длиннее, чем в XXXV (2.079 и 2.003 Å), а Re– Cl, наоборот, на 0.051 Å короче (2.385 и 2.436 Å). В обеих структурах имеет место неупорядоченность в двух позициях по оси O(L<sup>25</sup>)–Re–Cl (факторы заселенности в структуре XXXIV – 0.60 : 0.40).

#### II. СТРУКТУРА МОНОМЕРНЫХ ОКТАЭДРИЧЕСКИХ МОНООКСОКОМПЛЕКСОВ [ReO(L<sup>n</sup>)<sub>2</sub>(L<sub>моно</sub>)] С ПЯТИ- И ШЕСТИЧЛЕННЫМИ МЕТАЛЛОЦИКЛАМИ ReONC<sub>2</sub>O, ReNC<sub>3</sub>O И МОНОДЕНТАТНЫМИ ЛИГАНДАМИ (L<sub>моно</sub>) В *ТРАНС*-ПОЗИЦИЯХ К O(OKCO)

Известна структура шести соединений с однозарядными и нейтральными мономерными лигандами (Cl<sup>-</sup>, OMe<sup>-</sup>, H<sub>2</sub>O) в *транс*-позициях к оксолигандам — по три с пяти- и шестичленными металлоциклами (табл. 2).

#### II.1. Комплекс [ReO(L<sup>26</sup>)<sub>2</sub>Cl] с пятичленным металлоциклом ReNC<sub>2</sub>O и ллигандом Cl<sup>−</sup> в транс-позиции к O(оксо)

В структуре [ $ReO(L^n)_2Cl$ ] с пятичленными металлоциклами ReNC<sub>2</sub>O [1] хлоролиганды расположены преимущественно (в семи случаях) в иис-позициях к О(оксо) (в транс-положениях к оксолигандам — атомы  $O(L^n)$ ). Единственное исключение — структура  $(HNBu_4)^+ \{ReO(L^{26})_2 Cl\}(ReO_4)^-$ (**XXXVI**) [15] (L<sup>26</sup> – 9-(2-пиридил)флуорен-9-олат. NC<sub>5</sub>H<sub>4</sub>C{(C<sub>6</sub>H<sub>4</sub>)<sub>2</sub>}O), в которой лиганд Cl<sup>-</sup> занимает транс-положение к кратносвязанному оксолиганду. Атомы O(L<sup>26</sup>), как и N(L<sup>26</sup>), расположены попарно в цис-позициях друг к другу. Связь Re-Cl(*транс*) (2.491 Å) в структуре XXXVI удлинена по сравнению со связями Re-Cl(uuc) (табл. 1) и сопоставима по длине со связями Re-Cl(*транс*) в четырех комплексах [ReO(L)<sub>2</sub>Cl] с бидентатно-хелатными лигандами (O, O; P, P; N, S) (2.467-2.596 Å) [16-19]. Кроме расстояния Re-Cl(*транс*) в [15] приведена еще только длина связи Re=O 1.684 Å (в КБСД отсутствуют координаты атомов соединения XXXVI).

| [ReO(L <sup>*</sup> ) <sub>2</sub> (L <sub>моно</sub> )] с бидентатно-хелатными (O, N) лигандами (L <sup>*</sup> ) ( $n = 26-30$ ), содержащими шестичленные ме-<br>таллоциклы ReNC <sub>3</sub> O, и с лигандами (L <sub>моно</sub> ) в <i>транс</i> -позициях к O(оксо); L <sub>моно</sub> – монодентатный лиганд |                                                 |          |                                                                                                                                            |                       |                         |                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|-----------------|
| №<br>комплекса                                                                                                                                                                                                                                                                                                      | Соединение                                      | Re=O     | Re-L <sub>uuc</sub>                                                                                                                        | Re–O <sub>mpahc</sub> | $(\Delta), (\Delta')^*$ | Лите-<br>ратура |
| XXXVI                                                                                                                                                                                                                                                                                                               | $(NHBu_4)[ReO(L^{26})_2Cl](ReO_4)$              | 1.685(1) | $O(L^{26}), N(L^{26}) \times 2$<br>2.4911(2) Cl                                                                                            | O(L <sup>28</sup> )   | -                       | [15]            |
| XXXVII                                                                                                                                                                                                                                                                                                              | $[\text{ReO} (L^{27})_2(\text{OMe})]$ (A)       | 1.650(2) | $2.044(8) \pm 0.002 \text{ O}(\text{L}^{27})$                                                                                              | 1.875(19) O(OMe)      | (-0.165), (-0.169)      | [20]            |
| XXXVIII                                                                                                                                                                                                                                                                                                             | [ReO (L <sup>27</sup> ) <sub>2</sub> (OMe)] (Б) | 1.691(4) | $2.146(17) \pm 0.011 \text{ N}(\text{L}^{27})$ $2.053(4) \pm 0.002 \text{ O}(\text{L}^{27})$ $2.133(5) \pm 0.011 \text{ N}(\text{L}^{27})$ | 1.896(4) O(OMe)       | (-0.154), (-0.157)      | [20]            |

1.735(7)

1.715(6)

1.672

1.679(7)

 $2.028(5) \pm 0.010 \text{ O}(\text{L}^{28})$ 

 $2.127(7) \pm 0.006 \text{ N}(\text{L}^{28})$ 

 $2.039(2) \pm 0.066 \text{ O}(\text{L}^{29})$ 

 $2.114(2) \pm 0.041 \text{ N}(\text{L}^{29})$  $1.982 \pm 0.001 \text{ O}(\text{L}^{30})$ 

 $2.046 \pm 0.008 \text{ N}(\text{L}^{30})$  $1.985(7) \pm 0.002 \text{ O}(\text{L}^{30})$ 

 $2.050(8) \pm 0.015 \text{ N}(\text{L}^{30})$ 

Таблица 2. Основные геометрические параметры (Å) мономерных октаэдрических монооксокомплексов

Условные обозначения лигандов:  $L^{26} = NC_5H_4C\{(C_6 H_4)_2\}$  O;  $L^{27} = NC_9H_5(OMe)C(O)O$ ;  $L^{28} = NC_9H_5C(O)O$ ;  $L^{29} = NC(Me_2)CH_2OCC_6H_4O$ ;  $L^{30} = N(CH_2)_2OCC_6H_4O$ . \* ( $\Delta$ ) = [Re-O(MeO)<sub>mpahc</sub>] - [Re-O(CT); ( $\Delta$ ') = [Re-O(MeO)<sub>mpahc</sub>] - [Re-O(L<sup>n</sup>)<sub>uuc</sub>].

#### *II.2. Комплексы с пятичленными металлоциклами ReNC*<sub>2</sub>*O* и лигандами *OMe*<sup>-</sup> в транс-позициях к оксолигандам

XXXIX  $[\text{ReO}(L^{28})_2(\text{OMe})]$ 

XLI

XL  $[\text{ReO}(L^{29})_2(\text{OMe})]$ 

 $[\operatorname{ReO}(\mathrm{L}^{30})_2(\mathrm{H}_2\mathrm{O})] \cdot \mathrm{SO}_3\mathrm{CF}_3$ 

XLIa  $[\text{ReO}(L^{30})_2(\text{H}_2\text{O})] \cdot \text{SO}_3\text{CF}_3$ 

Известна кристаллическая структура двух сходных по составу и геометрической изомерии (mpahc(N,N),mpahc(O,O))комплексов [ReO(L<sup>27</sup>)<sub>2</sub>(OMe)] [20] (L<sup>27</sup> – 4-метоксихинолин-2карбоксилат, NC<sub>0</sub>H<sub>5</sub>(OMe)C(O)O). Моноклинные кристаллы различаются пр. гр.: P2<sub>1</sub>/c (XXXVII) (рис. 4а) и Сс (XXXVIII). Отметим, что *транс*-расположение оксо- и метоксолигандов типично для рассматриваемых комплексов (см. также следующую главу). Единственное исключение – соединение [ReO(L<sup>9</sup>)<sub>2</sub>(OMe)] с пятичленным хелатным циклом ReNC<sub>2</sub>O [21], в котором лиганд ОМерасположен в иис-положении к оксолиганду.

#### *II.3. Комплексы с шестичленными* металлоциклами ReNC<sub>3</sub>O и лигандами OMe<sup>-</sup> в транс-позициях к оксолигандам

Комплекс [ReO(L<sup>28</sup>)<sub>2</sub>(OMe)] (XXXIX) [20] (рис. 4б) сходен с XXXVII и XXXVIII, отличаясь от них шести-, а не пятичленным металлоциклом ReNC<sub>3</sub>O, образованным лигандом L<sup>28</sup> – изохинолин-1карбоксилатом,  $NC_9H_5C(O)O$ . Соединение XXX-IX, как XXXVII и XXXVIII, имеет геометрию транс-(N,N), транс-О,О. Отметим нестандартную соизмеримость по длине *транс*-связей: необычно короткой Re-O(OMe) (1.731(11) Å) и сильно удлиненной Re–O(оксо) (1.735(7) Å).

В комплексе [ReO(L<sup>29</sup>)(OMe)] (XL) [6] (L<sup>29</sup> – 4,4-диметил-4,5-дигидро-1,3-оксазол-2-ил)фенолят,  $NC(Me_2)CH_2OCC_6H_4O)$ , как и в предыдущих трех комплексах, реализуется изомер *транс*(N,N), *транс*(O,O). Имеет место неупорядоченность в двух позициях по оси О(оксо)-Re-О(ОМе) с факторами заселенности, равными 0.688(2): 0.312(2). Следует отметить значительное расхождение в одноименных лигандах длин связей Re-N(L<sup>29</sup>) и особенно Re-O(L<sup>29</sup>): соответственно 2.073, 2.155 и 1.972, 2.105 Å.

1.731(11) O(OMe) (-0.309), (-0.297)

(-0.150), (-0.149)

(0.209), (0.267)

(0.232), (0.287)

1.890(4) O(OMe)

2.249 O(H<sub>2</sub>O)

2.272(7) O(H<sub>2</sub>O)

Отметим, что во всех четырех комплексах XXXVII-XL с лигандами OMe<sup>-</sup> в *транс*-позициях к оксолигандам связи Re-O(L<sup>n</sup>)<sub>иис</sub> существенно (на 0.149-0.297 Å) длиннее (а не короче в соответствии с СПТВ) связей ReO(OMe)<sub>транс</sub>. Подробнее эта "аномалия" будет рассмотрена в гл. III.

#### *II.4. Комплекс* $[ReO(L^{30})_2(H_2O)]^+$ с шестичленным металлоциком ReNC<sub>3</sub>O и лигандом H<sub>2</sub>O в транс-позиции к оксолиганду

Структура соединения  $[ReO(L^{30})_{2}(H_{2}O)]^{+}$  ·

· CF<sub>3</sub>SO<sub>3</sub>, содержащего однозарядный комплексный катион (L<sup>30</sup> – 2-(2'-оксофенил)-2-оксазолинат,  $N(CH_2)_2OCC_6H_4O$ , определена дважды: XLI [7] (рис. 4в) и XLIa [21]. Комплексный катион имеет mpahc(N,N), mpahc(O,O) геометрию. Связь Re-O(H<sub>2</sub>O), *транс* к O(оксо) (2.249 и 2.272 Å), как обычно, существенно удлинена (на 0.267 и 0.287 Å

[20]

[6]

[7]

[21]



Рис. 4. Строение комплексов:  $a - [ReO(L^{27})_2(OMe)]$  (XXXVI),  $6 - [ReO(L^{28})_2(OMe)]$  (XXXIX),  $B - [ReO(L^{30})_2(H_2O)]$  (XLI).

в двух исследованиях) по сравнению с Re–O(L<sup>30</sup>) (1.982 и 1.985 Å в соответствии с СПТВ).

# III. Особенности строения мономерных октаэдрических монооксокомплексов рения(V), $[ReO(L^n)_2(L_{mono})]$

В табл. 3 приведены средние значения основных геометрических параметров в структуре I—XLI. Рассмотрим кристаллическую структуру проанализированных в двух обзорных статьях (часть 1, 2) соединений на основе двух особенностей стереохимии октаэдрических монооксокомплексов металлов V—VII групп (и, в частности, рения).

1. Выбор *транс*-партнера (при наличии конкурирующих лигандов) можно определить правилом "самосогласованности" [22]: в *транс*-положении к кратносвязанному оксолиганду, как правило, расположен наименее поляризуемый нейтральный σ-донорный лиганд (атом), связь с которым легче ослабить, а не отрицательно заряженный (ацидо) лиганд (атом).

2. Связи Re–L, *транс* к O(оксо), удлиняются из-за СПТВ кратносвязанного лиганда O(оксо).

Эти правила реализуются всего в одном (!) из 41 комплекса [ReO( $L^n$ )<sub>2</sub>( $L_{\text{моно}}$ )], проанализированного в данной статье и в [1]. Действительно, в соединениях XLI, XLIa, [ReO( $L^{30}$ )( $H_2$ O)], [7, 21] *транс*-позицию к оксолиганду занимает нейтральный аквалиганд, связь Re–O( $H_2$ O)<sub>*транс*</sub> с которым (2.261 ± 0.012 Å) заметно длиннее (на 0.182–0.318 Å), чем Re–O(L<sup>*n*</sup>)<sub>*транс*</sub> в 34 комплексах [ReO(L<sup>*n*</sup>)<sub>2</sub>(L<sub>моно</sub>)], на 0.365–0.530 Å длиннее, чем Re–O(OMe<sup>–</sup>)<sub>*транс*</sub> в 4 подобных соединениях, и на 0.221 Å больше стандартного расстояния Re–O(CT) (2.04 Å) [23].

**Таблица 3.** Основные геометрические параметры (Å) мономерных октаэдрических монооксокомплексов  $d^2$ -Re(V) [ReO( $L^n$ )<sub>2</sub>( $L_{MOHO}$ )] с бидентатно-хелатными (O, N) лигандами  $L^n$  и монодентатными  $L_{MOHO}$ 

| Параметр                                 | Значение (Å)                               |
|------------------------------------------|--------------------------------------------|
| Re-O(оксо)                               | $1.650 - 1.735$ {43} ( $1.683 \pm 0.052$ ) |
| $\text{Re-O}_{mpahc}(L^n)$               | $1.943 - 2.079$ {34} (2.008 ± 0.071)       |
| $\operatorname{Re-O}_{uuc}(L^n)$         | $1.933 - 2.093$ {43} $1.972 \pm 0.122$     |
| $\Delta$                                 | $-0.053+0.110$ {34} (+0.015 ± 0.095)       |
| Re-O <sub>mpahc</sub> (OMe)              | $1.731 - 1.896$ {4} ( $1.846 \pm 0.115$ )  |
| Re-O <sub>mpahc</sub> (H <sub>2</sub> O) | 2.249, 2.272 {2} (2.261 ± 0.012)           |
| $\operatorname{Re-N}(L^n)_{uuc}$         | 2.046–2.172 {44} (2.113 ± 0.067)           |
| Re–Cl <sub>mpahc</sub>                   | 2.4911 {1}                                 |
| Re-Cl <sub>uuc</sub>                     | $2.335 - 2.460$ {26} ( $2.386 \pm 0.074$ ) |
| Re–Br <sub>uuc</sub>                     | $2.477 - 2.580$ {4} ( $2.537 \pm 0.060$ )  |
| Re-P <sub>uuc</sub>                      | 2.462{1}                                   |
| Re–N(Py)                                 | 2.153 {1}                                  |

Примечание. Приведены интервалы значений, число примеров (в фигурных скобках) и средние значения с их разбросом (в круглых скобках).

В остальных 40 комплексах [ $\text{ReO}(L^n)_2(L_{\text{моно}})$ ] в *транс*-положениях к O(оксо) расположены однозарядные (ацидо) лиганды O(L<sup>n</sup>), O(OMe), Cl.

При этом единственная связь Re–Cl<sub>*транс*</sub> (2.491 Å) в комплексе [ReO(L<sup>26</sup>)<sub>2</sub>Cl] [15] заметно (в среднем на 0.105 Å) длиннее, чем ReCl<sub>*цис*</sub> (2.335–2.460 Å, средн. 2.386 Å) в 26 соединениях подобного типа (табл. 1, 2).

Принципиально другой вариант, чем в аквакомплексе XLI, реализуется в четырех комплексах  $[\text{ReO}(L^n)_2(\text{OMe})]$  [17] с отрицательно заряженными атомами кислорода монодентатных метоксолигандов в *транс*-позициях к О(оксо). В этих соединениях связи Re-O(OMe)<sub>транс</sub> (1.731-1.896 Å, средн. 1.846 Å) сильно (в среднем на 0.194 Å) укорочены по сравнению с Re–O(CT) (2.04 Å) [23]. Этот факт, казалось бы, противоречит "правилу самосогласованности" [22]. Однако на самом деле кислородсодержащие монодентатные отрицательно заряженные лиганды можно рассматривать как имеющие повышенную кратность, о чем свидетельствуют их расстояния Re–O<sub>*транс*</sub>, укороченные (а не удлиненные) по сравнению с Re-O(CT), — интервал средних значений ( $\Delta$ ') составляет -0.119...-0.177 Å [3]. Другими словами, мы имеем дело с псевдодиоксокомплексами, содержащими (в данном случае) два лиганда (О(оксо) и O(OMe)<sub>транс</sub>) повышенной кратности. Напомним, что в d<sup>2</sup>-комплексах металлов V–VII групп два кратносвязанных лиганда всегда располагаются в *транс*-позициях друг к другу.

Сложнее, чем в комплексах оксорения(V) с монодентатными нейтральными и ацидолигандами в *mpaнc*-позициях к O(оксо), обстоит дело в соединениях с бидентатно-хелатными кислородсодержащими однозарядными отрицательными лигандами с атомами O( $L^n$ ) в *mpaнc*-позициях к оксолигандам, в частности, с рассматриваемыми в данной статье и в [1] лигандами с N, O-донорами.

В 34 случаях длина связей Re-O(L<sup>n</sup>)<sub>иис</sub> лежит в интервале 1.933-2.079 Å, а среднее значение (1.972 Å) на -0.107...+ 0.039 Å отличается от величины Re–O(CT) (2.04 Å). При этом среднее значение длины данных связей на 0.068 Å меньше, чем значение Re–O(CT) (2.04 Å). Можно сказать, что в этом случае отрицательно заряженные атомы кислорода бидентатно-хелатных (O, N) лигандов L<sup>n</sup> в *транс*-позициях к O(оксо) также формируют псевдо-диоксогруппу ReO<sub>2</sub> с повышенной кратностью обеих связей металл-кислород. в комплексах со связями Отметим, ЧТО  $Re-O(L^n)_{mpahc}^{-}$  последние ослаблены (укорочены) в меньшей степени, чем аналогичные расстояния с монодентатными заряженными метоксолигандами (см. выше).

#### БЛАГОДАРНОСТЬ

Автор признателен А.В. Чуракову за предоставление результатов выборки из КБСД.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. Sergienko V.S., Churakov A.V. // Russ. J. Inorg. Chem. 2019. V. 64. № 3. Р. 317. [Сергиенко В.С. // Журн. неорган. химии. 2019. Т. 64. № 3. С. 260.]
- Sergienko V.S., Churakov A.V. // Russ. J. Inorg. Chem. 2018. V. 64. № 3. Р. 631. doi 10.1134/S0036023618050121 [Сергиенко В.С., Чураков А.В. // Журн. неорган. химии. 2018. Т. 63. № 5. С. 601.]
- Sergienko V.S., Churakov A.V. // Russ. J. Inorg. Chem. 2018. V. 64. № 6. Р. 753. doi 10.1134/S0036023618060219 [Сергиенко В.С., Чураков А.В. // Журн. неорган. химии. 2018. Т. 63. № 6. С. 718.]
- 4. *Kuhn F.E., Rauch M.U., Lubmaier G.M. et al.* // Chem. Ber. 1997. B. 130. S. 1427.
- Schachner J.A., Terfassa B., Peschel L.N. et al. // Inorg. Chem. 2014. V. 53. 12918.
- Liu J., Wu D., Su X. et al. // Inorg. Chem. 2016. V. 55. P. 2597.
- 7. Shuter E., Hoveyda H.R., Karunaratne V. et al. // Inorg. Chem. 1996. V. 35. P. 368.
- Lin A., Peng H., Abdukeder A., Zhu C. // Eur. J. Org. Chem. 2013. P. 7286.
- Zwettler N., Schachner J.A., Belaj F., Mösch-Zanetti C. // Inorg. Chem. 2014. V. 53. P. 12832.
- Pherson L.D., Drees M., Khan S.I. et al. // Inorg. Chem. 2004. V. 43. P. 4036.
- 11. Panneerselvam K., Lu T.-H., Tung S.F. et al. // Acta Crystallogr. 1999. V. 55C. P. 1802.
- Machura B., Wolff M., Pencala M. // Polyhedron. 2012. V. 44. P. 156.
- 13. Terfassa B., Schachner J.A., Traar P. et al. // Polyhedron. 2014. V. 75. P. 141.
- Mazzi U., Refosco F., Bandoli G., Nicolini M. // Trans. Met. Chem. 1985. V. 10. P. 121.
- 15. Lobmaier G.M., Frey G.D., Dewhurst R.D. et al. // Organomet. 2007. V. 26. P. 6290.
- Sigouin O., Reber C., Beachamp A.L. // Inorg. Chim. Acta. 2006. V. 359. P. 2059.
- Konno T., Shimazaki Y., Kavai M., Hirotsi M. // Inorg. Chem. 2001. V. 40. P. 4250.
- Gerber T.I.A., Hosten E., Luzipo D., Mayer P. // J. Coord. Chem. 2006. V. 59. P. 1063.
- Arias J., Newlands C.R., Abu-Omar M.M. // Inorg. Chem. 2001. V. 40. P. 2185.
- MachuraB., Kruszzynski R. // Polyhedron. 2007. V. 26 P. 3686.
- 21. MachuraB., Kruszzynski R. // Polyhedron. 2007. V. 26 P. 3686.
- 22. *Порай-Кошиц М.А., Атовмян Л.О. //* Коорд. химия. 1975. Т. 1. С. 1271.
- 23. Порай-Кошиц М.А. // Изв. Югосл. кристаллогр. центра. 1974. Т. 9. С. 19.