СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 546.185

СЛОЖНЫЕ ФОСФАТЫ СО СТРУКТУРОЙ ТИПА NZP СОСТАВА

 $M_{0.5 + x}M'_{x}Zr_{2 - x}(PO_{4})_{3}$ (M = Cd, Sr, Pb; M' = Ni, Cu; $0 \le x \le 2$)

© 2019 г. П. А. Майоров¹, Е. А. Асабина^{1, *}, В. И. Петьков¹, Е. Ю. Боровикова², А. М. Ковальский³

¹Нижегородский государственный университет им. Н.И. Лобачевского, пр-т Гагарина, 23, Нижний Новгород, 603950 Россия

²Московский государственный университет им. М.В. Ломоносова, Ленинские горы, 1, Москва, 119991 Россия

³Национальный исследовательский технологический vниверситет "Московский институт стали и сплавов".

Ленинский пр-т, 4, Москва, 119991 Россия

**E-mail: elena.asabina@inbox.ru* Поступила в редакцию 14.09.2018 г. После доработки 19.11.2018 г. Принята к публикации 23.11.2018 г.

Золь-гель методом с последующей термообработкой синтезированы фосфаты $M_{0.5 + x}M'_x Zr_{2 - x}(PO_4)_3$ (M = Cd, Sr, Pb; M' = Ni, Cu; $0 \le x \le 2$). Образцы изучены методами рентгенографии, электронной микроскопии и микрозондового анализа, ИК-спектроскопии. Установлено, что в изученных рядах образуются ограниченные твердые растворы структуры NaZr₂(PO₄)₃. Выявлены закономерности изменения их кристаллографических характеристик от химического состава. По данным порошковой рентгенографии проведено уточнение кристаллических структур фосфатов Sr_{0.9} $M'_{0.4}Zr_{1.6}(PO_4)_3$ (M' = Ni, Cu; пр. гр. $R\overline{3}, Z = 6$) методом Ритвельда. Показано влияние размерного фактора на структурообразование фосфатов.

Ключевые слова: синтез, каркасное строение, фазообразование, металлы в степени окисления +2 **DOI:** 10.1134/S0044457X19060114

введение

Минералоподобные фосфаты каркасного строения, включающие металлы в степени окисления +2, представляют практический интерес в качестве материалов с высокой устойчивостью к действию высоких температур и тепловых ударов, радиации, воды и агрессивных сред [1-10]. Эти свойства обусловливают перспективу их практического применения в качестве матричных структур, обеспечивающих прочную иммобилизацию элементов, присутствующих в радиоактивных и других токсичных отходах (в частности, Sr, Cd, Pb). Обширные пределы изоморфных замещений в каркасных фосфатах обеспечивают возможность включения в их состав широкого спектра химических элементов, а также позволяют направленно регулировать физические характеристики полученных фаз.

Ранее нами изучена возможность вхождения катионов в степени окисления +2 в позиции каркаса и полостей структуры твердых растворов $M_{0.5+x}M'_{x}Zr_{2-x}(PO_{4})_{3}$ (M = Co, Mn, Cd, Ca, Sr,

Рb, Ba; M' = Mg, Co, Mn) [11–13]. В [14] продолжено изучение фосфатных рядов аналогичного состава с M = Co, Mn, M' = Ni, Cu. Фосфаты приведенных систем образуют структуры с октаэдротетраэдрическими каркасами типа $NaZr_2(PO_4)_3$ (NZP) [15] и $Sc_2(WO_4)_3$ (SW) [16]. Различие этих родственных структурных семейств состоит в укладке каркасообразующих полиэдров.

В рамках исследования фосфатов каркасного строения в настоящей работе синтезированы новые фосфаты $M_{0.5 + x}M'_{x}Zr_{2 - x}(PO_{4})_{3}$ (M = Cd, Sr, Pb; M' = Ni, Cu; $0 \le x \le 2$) и изучены закономерности структурообразования в этих системах.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез фосфатов $M_{0.5 + x}M'_{x}Zr_{2 - x}(PO_{4})_{3}$ (M = = Cd, Sr, Pb; M' = Ni, Cu; $0 \le x \le 2$) проведен зольгель методом с последующей термообработкой. В качестве исходных реагентов использовали следующие реактивы квалификации "х. ч.": CdO, CuO, Sr(NO_{3})_{2}, NiCl_{2} · 6H_{2}O, Pb(NO_{3})_{2}, ZrOCl_{2} · · 8H₂O, NH₄H₂PO₄. Оксиды кадмия и меди предварительно растворяли в азотной кислоте, остальные реактивы – в дистиллированной воде. К стехиометрической смеси водных растворов солей металлов при перемешивании добавляли раствор дигидрофосфата аммония, взятый также в соответствии со стехиометрией фосфата. Реакционную смесь сушили при 90°С, затем диспергировали и подвергали ступенчатому отжигу при температурах 600–800°С. Отжиг чередовали с диспергированием после каждой стадии. Фазовый состав образцов после каждой стадии отжига контролировали с помощью рентгенографического анализа.

Рентгенографические исследования проводили на дифрактометре Shimadzu XRD-6000 (фильтрованное Cu K_{α} -излучение, $\lambda = 1.54178$ Å) в диапазоне углов 20 10°-60° с шагом сканирования 0.02°.

Рентгенограммы образцов для структурных исследований записывали в интервале углов 20 10°-110° с шагом 0.02° и временем выдержки в точке 15 с. Обработку рентгенограмм и уточнение структур фосфатов проводили методом Ритвельда [17] с помощью программы Rietan-97 [18]. Аппроксимирование профилей пиков осуществляли согласно модифицированной функции псевдо-Войта (Mod-TCH pV [19]).

Для контроля химического состава и однородности образцов использовали электронный микрозондовый анализ. Исследования проводили на сканирующем электронном микроскопе JEOL JSM-7600F с термополевой электронной пушкой (катод Шоттки), оснащенном системой микроанализа — энергодисперсионным спектрометром OXFORD X-Max 80 (Premium) с полупроводниковым кремний-дрейфовым детектором. Точность определения элементного состава образцов составляла 2.5 мол. %.

ИК-спектры синтезированных соединений записывали на спектрофотометре FTIR-8400 с приставкой ATR при комнатной температуре в диапазоне волновых чисел 1400–400 см⁻¹. Образцы готовили методом осаждения тонкодисперсных пленок на подложке из KBr.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Согласно результатам рентгенографии, ИКспектроскопии и электронного микрозондового анализа, в системах $M_{0.5 + x}M'_xZr_{2 - x}(PO_4)_3$ (M = = Cd, Sr, Pb; M' = Ni, Cu) образуются фосфаты структурного типа NZP.

Достаточно широкие пределы твердых растворов получены в рядах фосфатов, включающих сравнительно крупные катионы стронция ($r_{KY=6} = 1.18$ Å) и свинца ($r_{KY=6} = 1.19$ Å). Фосфаты

Sr_{0.5 + x}Ni_xZr_{2 − x}(PO₄)₃ при 750°С образуют твердые растворы NZP-типа при $0 \le x \le 0.4$ (рис. 1а), а фосфаты Sr_{0.5 + x}Cu_xZr_{2 − x}(PO₄)₃ – при 650°С в интервале $0 \le x \le 0.5$. Плавное смещение дифракционных максимумов на рентгенограммах фосфатов при постепенном изменении состава подтверждает образование в изученных рядах твердых растворов. Образцы состава $0.5 \le x \le 2.0$ (M' = Ni) и $0.6 \le x \le 2.0$ (M' = Cu) содержали примеси фосфатов металлов в степени окисления +2. Температура синтеза свинецсодержащих фосфатов Pb_{0.5 + x}M'_xZr_{2 − x}(PO₄)₃ (M' = Ni, Cu) составила 600°С, а пределы образования NZP-твердых растворов (пр. гр. $R\overline{3}$) – $0 \le x \le 0.5$.

Наименышие пределы твердых растворов среди исследованных рядов наблюдаются для кадмийсодержащих фосфатов ($r_{K^{H}=6} = 0.95$ Å). В системе Cd_{0.5+x}Ni_xZr_{2-x}(PO₄)₃ однофазные фосфаты структурного типа NZP получены в интервале $0 \le x \le 0.2$, температура их синтеза составляет 650°C. В ряду Cd_{0.5+x}Cu_xZr_{2-x}(PO₄)₃ крайний член системы с x = 0 кристаллизуется в структуре NZP, а образцы с x > 0 представляют собой смесь Cd_{0.5}Zr₂(PO₄)₃, фосфатов меди и кадмия.

Рентгенограммы всех однофазных образцов $M_{0.5+x}M'_{x}Zr_{2-x}(PO_{4})_{3}$ (M = Cd, Sr, Pb; M' = Ni, Cu) проиндицированы в пр. гр. $R\overline{3}$.

ИК-спектры полученных фосфатов подобны по форме и положению полос поглощения и свидетельствуют об отсутствии рентгеноаморфных примесей (рис. 1б). Правилами отбора в спектрах фосфатов NZP-строения с пр. гр. $R\overline{3}$ разрешено по шесть полос валентных и деформационных асимметричных колебаний, две полосы валентных симметричных и четыре деформационных симметричных колебания. В приведенной на рис. 16 системе $Sr_{0.5+x}Ni_{x}Zr_{2-x}(PO_{4})_{3}$ к валентным асимметричным колебаниям V3 отнесены полосы в области 1200-1000 см-1, к валентным симметричным V₁ колебаниям – полосы колебаний при 1000-950 см⁻¹. Деформационные асимметричные колебания v₄ представлены характерным для пр. гр. $R\overline{3}$ триплетом полос в интервале 650-530 см⁻¹. Симметричному деформационному колебанию V₂ соответствует полоса поглощения ниже 440 см^{−1}. Изменение спектральной картины при плавном изменении состава фосфатов носит постепенный характер.

Согласно данным электронной микроскопии, образцы всех полученных индивидуальных соединений и твердых растворов (рис. 2) однородны, а их химический состав, по результатам микрозондового анализа, соответствует теоретическим значениям (табл. 1).

Рис. 1. Рентгенограммы (а) и ИК-спектры (б) фосфатов $Sr_{0.5 + x}Ni_xZr_{2 - x}(PO_4)_3$. x = 0 (1), 0.1 (2), 0.2 (3), 0.3 (4), 0.4 (5).

По результатам индицирования рентгенограмм рассчитаны кристаллографические характеристики фосфатов. Характер изменения их концентрационных зависимостей определяется катионным составом образцов (рис. 3). Так, в ряду $Cd_{0.5+x}Ni_{x}Zr_{2-x}(PO_{4})_{3}$ с ростом x в каркасе происходит замена ионов Zr^{4+} (0.72 Å) на несколько меньшие по размеру ионы Ni²⁺ (0.69 Å). Радиус ионов Cd²⁺, занимающих октаэдрически координированные полости NZP-структуры, сравнительно невелик, поэтому увеличение заселенности ими полостей внутри колонок полиэдров не приводит к росту высоты ячейки (параметр с). К тому же высота вакантных полостей увеличена за счет электростатического отталкивания ионов О²⁻, образующих треугольные грани каркасообразующих октаэдров. Поэтому заполнение полостей небольшими положительными ионами приводит к их небольшому сжатию вдоль оси с с ростом х. Ширина ячейки а растет с увеличением заселенности полостей структуры.

Рис. 2. Результаты электронной микроскопии образца $Sr_{0.9}Ni_{0.4}Zr_{1.6}P_3O_{12}$.

Номер точки	0	Р	Ni	Zr	Sr
1	12	3.04	0.39	1.56	0.88
2	12	3.03	0.39	1.57	0.89
3	12	2.97	0.41	1.63	0.90
4	12	3.04	0.40	1.56	0.89
5	12	2.99	0.41	1.62	0.88
6	12	3.02	0.39	1.57	0.91
Средний состав	12	3.02(3)	0.40(1)	1.59(3)	0.89(1)

Таблица 1. Результаты микрозондового анализа (в мол. %) образца $Sr_{0.9}Ni_{0.4}Zr_{1.6}P_3O_{12}$

Иная картина наблюдается в системе $Pb_{0.5 + x}Ni_xZr_{2 - x}(PO_4)_3$. Введение в полости довольно крупных дополнительных ионов Pb^{2+} приводит к увеличению высоты ячейки *c* с ростом *x*. Соответствующее уменьшение параметра *a* объясняется деформациями и разворотами PO₄-тетраэдров, связывающих вертикальные колонки полиэдров вдоль оси *c*.

В аналогичном ряду фосфатов стронция, ионный радиус которого немного меньше радиуса свинца, наблюдается промежуточная картина зависимости параметров ячейки от химического состава: оба параметра *а* и *с* фосфатов $Sr_{0.5+x}Ni_xZr_{2-x}(PO_4)_3$ растут с увеличением *x*.

Проведено уточнение кристаллических структур тройных NZP-фосфатов $Sr_{0.9}M'_{0.4}Zr_{1.6}(PO_4)_3$ (M' = Ni, Cu; x = 0.4) методом Ритвельда по дан-

(M = N1, Cu; x = 0.4) методом Ритвельда по данным порошковой рентгенографии. В качестве исходной модели использованы структурные данные для фосфата Sr_{0.5}Zr₂(PO₄)₃ [20]. Из рис. 4 видно, что наблюдается хорошее совпадение экспериментальных и вычисленных рентгенограмм фосфатов. Условия съемки и основные полученные результаты по уточнению структур приведены в табл. 2, координаты и изотропные тепловые параметры (**B**) атомов в структурах изученных фосфатов – в табл. 3, 4.

Оба изученных фосфата $Sr_{0.9}M'_{0.4}Zr_{1.6}(PO_4)_3$ (M' = Ni, Cu) кристаллизуются в NZP-типе с пр. гр. $R\overline{3}$. В такой структуре имеется лва типа каркасообразующих октаэдрически координированных позиций. Согласно результатам уточнения заселенностей, один из них занимают катионы Zr⁴⁺, а в другом статистически распределены ионы Zr^{4+} и Ni^{2+} или Cu^{2+} . Фрагменты из двух типов октаэдров и трех тетраэдров РО4 образуют колонки вдоль оси $\overline{3}$ (оси *с* элементарной ячейки), формирующие каркас структуры (рис. 5). Катионы Sr²⁺ в обоих случаях занимают полости этого каркаса. При этом можно выделить два структурно близких вида октаэдрически координированных позиций полостей внутри колонок полиэдров $(3a \, \text{u} \, 3b)$, образованных треугольными гранями полиэдров ZrO₆ или (M'/Zr)O₆, а также третий вид позиций полостей (18f) между колонками с КЧ = 8. Уточнение заселенностей показало, что в структуре $Sr_{0.9}Ni_{0.4}Zr_{1.6}(PO_4)_3$ частично заселены все три вида позиций, а в структуре $Sr_{0.9}Cu_{0.4}Zr_{1.6}(PO_4)_3$ только две — 3b и 18f. Хотя это отличие в заселенностях полостей не является принципиальным, оно может быть связано с различием ионных радиусов Ni²⁺ (0.69 Å) и Cu²⁺ (0.73 Å).

Эта же разница ионных радиусов обусловливает разные длины связей в каркасообразующих полиэдрах (табл. 5). Например, в октаэдрах смешанного типа среднее межатомное расстояние (Ni/Zr)–O (2.06 Å) меньше среднего расстояния (Cu/Zr)–O (2.22 Å). При этом происходит увели-

Рис. 3. Зависимость параметров ячеек фосфатов $Cd_{0.5 + x}Ni_xZr_{2 - x}(PO_4)_3$ (a), $Sr_{0.5 + x}Ni_xZr_{2 - x}(PO_4)_3$ (б) и $Pb_{0.5 + x}Ni_xZr_{2 - x}(PO_4)_3$ (в) от химического состава (x).

Рис. 4. Фрагменты экспериментальной (1), вычисленной (2) и разностной (3) рентгенограмм фосфатов $Sr_{0.9}Ni_{0.4}Zr_{1.6}(PO_4)_3$ (а) и $Sr_{0.9}Cu_{0.4}Zr_{1.6}(PO_4)_3$ (б). Штрихами (4) показаны положения брегговских рефлексов.

чение средних длин связей в октаэдрах ZrO_6 (2.11 Å) и тетраэдрах PO_4 (1.55 Å) в структуре никельсодержащего фосфата $Sr_{0.9}Ni_{0.4}Zr_{1.6}(PO_4)_3$ по сравнению с $Sr_{0.9}Cu_{0.4}Zr_{1.6}(PO_4)_3$, в котором эти длины связей составляют соответственно 2.07 и 1.52 Å.

Рис. 5. Фрагмент кристаллической структуры фосфата $Sr_{0.9}Ni_{0.4}Zr_{1.6}(PO_4)_3$.

Радиус катиона, заселяющего полости структуры, как было отмечено выше, в заметной мере влияет на пределы образования твердых растворов в системах $M_{0.5+x}M'_xZr_{2-x}(PO_4)_3$. Увеличение размера иона (от Cd^{2+} к Sr^{2+} и затем Pb^{2+}) приводит к росту поля стабильности NZP-структуры. Наблюдается достаточно общая для NZP-соединений тенденция, когда оптимальным условием структурообразования является включение в полости сравнительно крупных элементов, склонных образовывать ионный тип связи, а в каркас — элементов небольших размеров со значительной долей ковалентности связи металл—кислород.

Таблица 2. Условия съемки, параметры кристаллической решетки и результаты уточнения кристаллических структур изученных фосфатов

Состав	Sr _{0.9} Ni _{0.4} Zr _{1.6} (PO ₄) ₃	Sr _{0.9} Cu _{0.4} Zr _{1.6} (PO ₄) ₃		
Пр. гр.	<i>R</i> 3 (№ 148)			
Ζ	6	6		
Интервал углов 20, град	10.00-110.00			
Параметры ячейки:				
<i>a</i> , Å	8.6902(5)	8.6926(4)		
<i>c</i> , Å	23.3392(10)	23.3547(9)		
$V, Å^3$	1526.42(13)	1528.27(12)		
Число отражений	435	434		
Число уточняемых параметров*	25 + 31	23 + 28		
Факторы достоверности, %:				
$R_{wp}; R_p$	7.19; 5.22	7.26; 5.24		

* Первая цифра – фоновые и профильные параметры, шкальный фактор, параметры элементарной ячейки; вторая цифра – позиционные, тепловые параметры атомов и их заселенности.

МАЙОРОВ и др.

Атом	Позиция	x	У	z	$B, Å^2$
Sr(1)*	3 <i>a</i>	0	0	0	1.57(6)
Sr(2)*	3 <i>b</i>	0	0	1/2	1.57(6)
Sr(3)*	18 <i>f</i>	0.319(3)	0.152(4)	0.366(3)	1.57(6)
Ni/Zr(1)**	6 <i>c</i>	0	0	0.1442(2)	0.52(5)
Zr(2)	6 <i>c</i>	0	0	0.6513(2)	0.59(5)
P(1)	18 <i>f</i>	0.2840(10)	0.9955(16)	0.2465(5)	1.37(17)
O (1)	18 <i>f</i>	0.1397(3)	0.9239(3)	0.1986(9)	2.93(8)
O(2)	18 <i>f</i>	0.0234(3)	0.8173(3)	0.6962(5)	1.42(5)
O(3)	18 <i>f</i>	0.2087(3)	0.1381(3)	0.0905(8)	2.60(7)
O(4)	18 <i>f</i>	0.8120(3)	0.8022(3)	0.5887(5)	1.79(8)

Таблица 3. Координаты и изотропные тепловые параметры атомов в структуре Sr_{0.9}Ni_{0.4}Zr_{1.6}(PO₄)₃

* Заселенность позиции g(Sr(1)) = 0.35; g(Sr(2)) = 0.77; g(Sr(3)) = 0.11.

** Заселенность позиции g(Ni(1)) = 0.4; g(Zr(1)) = 0.6.

Таблица 4. Координаты и изотропные тепловые параметры атомов в структуре $Sr_{0.9}Cu_{0.4}Zr_{1.6}(PO_4)_3$

Атом	Позиция	X	у	Z,	<i>B</i> , Å ²
Sr(1)*	3b	0	0	1/2	2.76(7)
Sr(2)*	18 <i>f</i>	0.7241(23)	0.0214(19)	0.2437(8)	2.76(7)
Cu/Zr(1)**	6 <i>c</i>	0	0	0.1466(2)	0.90(9)
Zr(2)	6 <i>c</i>	0	0	0.6485(2)	0.73(9)
P(1)	18 <i>f</i>	0.2907(12)	0.0042(17)	0.2483(6)	2.21(12)
O (1)	18 <i>f</i>	0.4898(18)	0.1397(18)	0.2537(7)	2.48(8)
O(2)	18 <i>f</i>	-0.0163(18)	0.7960(14)	0.6991(6)	1.89(9)
O(3)	18 <i>f</i>	0.0227(18)	0.2353(15)	0.1888(5)	2.56(8)
O(4)	18 <i>f</i>	0.2010(21)	0.0363(18)	0.5931(6)	1.97(8)

* Заселенность позиции g(Sr(1)) = 1.0; g(Sr(2)) = 0.13.

** Заселенность позиции g(Cu(1)) = 0.4; g(Zr(1)) = 0.6.

Таблица 5. Основные межатомные расстояния в каркасообразующих полиэдрах $Sr_{0.9}M_{0.4}Zr_{1.6}(PO_4)_3$ (M = Ni, Cu)

Chaol	<i>d</i> , Å			
Связь	M–Ni	M–Cu		
M/Zr(1)–O(1) (×3)	2.080(13)	2.248(18)		
M/Zr(1)–O(3) (×3)	2.030(12)	2.189(14)		
Zr(2)–O(2) (×3)	1.995(7)	2.076(12)		
$Zr(2) - O(4) (\times 3)$	2.225(8)	2.068(18)		
P(1)-O(1)	1.559(18)	1.536(15)		
P(1)–O(2)	1.572(16)	1.478(20)		
P(1)–O(3)	1.638(9)	1.513(18)		
P(1)-O(4)	1.442(15)	1.554(24)		

В табл. 6 приведены результаты фазообразования в изученных рядах с исследованными ранее изоформульными фосфатными системами, включающими M = Co, Mn [4-6]. Фосфаты $M_{0.5 + x}M'_{x}Zr_{2 - x}(PO_{4})_{3}$, включающие в полости структуры катионы небольших ионных радиусов $(Co^{2+} u Mn^{2+})$, кристаллизуются в структурном типе вольфрамата скандия (SW), который характеризуется паркетной укладкой колонок каркасообразующих полиэдров и небольшими тетраэдрически координированными полостями. Фосфаты со сравнительно крупными ионами в полостях каркаса (Cd^{2+} , Sr^{2+} , Pb^{2+}) формируют структуру NZP-типа со штабельной (вдоль одного направления) укладкой колонок полиэдров и более крупными полостями с KY = 6 и 8.

М	r _M , Å	Μ'	Пределы х	Структур- ный тип*
Со	0.58 (KH = 4)	Ni	$0 \le x \le 0.1$	SW
		Cu	$0 \le x \le 0.1$	
Mn	0.66 (KH = 4)	Ni	$0 \le x \le 0.7$	SW
		Cu	$0 \le x \le 0.2$	
Cd	0.95 (KH = 6)	Ni	$0 \le x \le 0.2$	NZP
		Cu	x = 0	
Sr	1.18 (KY = 6)	Ni	$0 \le x \le 0.4$	NZP
		Cu	$0 \le x \le 0.5$	
Pb	1.19 (KH = 6)	Ni	$0 \le x \le 0.5$	NZP
		Cu	$0 \le x \le 0.5$	

Таблица 6. Концентрационные пределы существования твердых растворов в системах $M_{0.5+x}M'_x Zr_{2-x}(PO_4)_3$

* SW – тип Sc₂(WO₄)₃, NZP – тип NaZr₂(PO₄)₃.

БЛАГОДАРНОСТЬ

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 18-29-12063, 18-33-00248мол_а).

СПИСОК ЛИТЕРАТУРЫ

- 1. Alamo J. // Solid State Ionics. 1993. V. 63-65. P. 547.
- Kimpa M.I., Mayzan M.Z.H., Yabagi J.A. et al. // IOP Conf. Series: Earth and Environmental Science. 2018.
 V. 140. P. 012156. https://doi.org/10.1088/1755-1315/140/1/01215610.1088/1755-1315/140/1/012156
- Zhang P., Wang H., Lee Y.-G. et al. // J. Electrochem. Soc. 2015. V. 162. P. A1265. doi 10.1149/2.0711507jes
- Schmid H., De Jonghe L.C., Cameron C. // Solid State Ionics. 1982. V. 6. P. 57. https://doi.org/10.1016/0167-2738(82)90096-0
- Naqash S., Gerhards M.-Th., Tietz F., Guillon O. // Batteries. 2018. V. 4. P. 33. doi 10.3390/batteries4030033
- Guin M., Indris S., Kaus M. et al. // Solid State Ionics. 2017. V. 302. P. 102. https://doi.org/10.1016/ j.ssi.2016.11.006

- HeK., Zu Ch., Wang Y. et al. // Solid State Ionics. 2014.
 V. 254. P. 78. https://doi.org/10.1016/j.ssi.2013.11.011
- Small L., Wheeler J., Ihlefeld J. et al. // J. Mater. Chem. A. 2018. V. 6. P. 9691. doi 10.1039/C7TA09924J
- Huang C.-Y., Agrawal D.K., McKinstry H.A. // J. Mater. Sci. 1995. V. 30. P. 3509.
- Barth S., Olazcuaga R., Gravereau P. et al. // Mater. Lett. 1993. V. 16. P. 96. https://doi.org/10.1016/0167-577X(93)90031-R
- Asabina E.A., Glukhova I.O., Pet'kov V.I. et al. // Russ. J. General. Chem. 2017. V. 87. P. 684. https://doi.org/ 10.1134/S1070363217040041 [Асабина Е.А., Глухова И.О., Петьков В.И. и др. // Журн. общ. химии. 2017. Т. 87. С. 550.]
- Sukhanov M.V., Schelokov I.A., Pet'kov V.I. et al. // Eurasian Chem.-Tech. J. 2010. V. 12. P. 241. https://doi.org/10.18321/ectj51
- Pet'kov V.I., Zhilkin E.V., Asabina E.A., Borovikova E.Yu. // Russ. J. Inorg. Chem. 2014. V. 59. P. 1087. doi 10.1134/s003602361410012x [Петьков В.И., Жилкин Е.В., Асабина Е.А., Боровикова Е.Ю. // Журн. неорган. химии. 2014. Т. 59. № 10. С. 1322.]
- Asabina E., Pet'kov V., Mayorov P. et al. // Pure Appl. Chem. 2017. V. 89. P. 523. https://doi.org/10.1515/pac-2016-1005
- Hagman L.O., Kierkegaard P. // Acta Chem. Scand. 1968. V. 22. № 6. P. 1822. doi 10.3891/acta.chem.scand.22-1822
- Jouanneaux A., Verbaere A., Piffard Y. // Eur. J. Solid State Inorg. Chem. 1991. V. 28. P. 683.
- Asabina E.A., Shatuniv V.E., Pet'kov V.I. et al. // Russ. J. Inorg. Chem. 2016. V. 61. P. 811. https://doi.org/ 10.1134/S0036023616070020 [Асабина Е.А., Шатунов В.Е., Петьков В.И. и др. // Журн. неорган. химии. 2016. Т. 61. С. 850.]
- Rietveld H.M. // Acta Crystallogr. Pt. 1. 1967. V. 22. P. 151.
- Kim Y.I., Izumi F. // J. Ceram. Soc. Jpn. 1994. V. 102. P. 401.
- 20. Fisher W., Singheiser L., Basu D., Dasgupta A. // Powder Diffr. 2004. V. 19. P. 153.