ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ

УДК 546.18+539.134

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ПРОТЯЖЕННЫХ ЦЕПОЧЕК $P_n X_{3n + 2}$ (X = F, Cl)¹

© 2019 г. С. А. Зайцев^{1, *}, Д. В. Стегленко¹, Р. М. Миняев¹, В. И. Минкин¹

¹Южный федеральный университет, Научно-исследовательский институт физической и органической химии, пр-т Стачки, 194/2, Ростов-на-Дону, 344090 Россия

> **E-mail: stzaycev@sfedu.ru* Поступила в редакцию 08.10.2018 г. После доработки 08.10.2018 г. Принята к публикации 12.12.2018 г.

Проведены квантово-химические расчеты протяженных неметаллических цепочек с общей формулой $P_n X_{3n+2}$ (X = F, Cl) и соответствующих им бесконечных цепочек $-(PX_3-PX_3)_{\infty}$ -. Показано, что все высокосимметричные структуры $P_n X_{3n+2}$ (n = 2-9) отвечают минимумам на ППЭ. Вращение вокруг связи P–P для фторпроизводных является низкобарьерным процессом, в случае хлорпроизводных сопровождается диссоциацией молекулы. Расчеты фононного спектра для бесконечной цепочки показали, что динамической стабильностью обладают обе структуры $-(PX_3-PX_3)_{\infty}$ -. Согласно данным расчетов электронной зонной структуры, такие цепочки являются широкозонными полупроводниками.

Ключевые слова: протяженные неметаллические цепочки, DFT-расчеты, галогениды фосфора **DOI:** 10.1134/S0044457X19060175

введение

В настоящее время в связи с развитием микрои наноэлектроники необходимы микро- и наноэлектронные элементы таких молекулярных систем, как нанопровода, молекулярные переключатели, молекулярные транзисторы и т.п. Ведется поиск молекулярных проводников — линейных металлических и неметаллических проводов. Первые представители протяженных металлических структур – комплексы Ni(II), содержащие фрагмент Cl-Ni-Ni-Ni-Cl [1]. В работах [2-5] получены аналогичные цепочки с атомами Со, Ru, Rh и Cr. Сравнительно недавно получена цепочка-комплекс, состоящая из 10 атомов Ni [6]. Формирование таких протяженных структур подразумевает наличие довольно прочной связи М-М. Для трехъядерного комплекса платины энергия связи в цепочке Pt-Pt-Pt оценена в 40 ккал/моль [7]. Помимо исследований цепочек переходных металлов изучены линейные протяженные системы LiB_x (0.82 < x < 1.0) — изоэлектронные аналоги полиина и поликумулена [8] – и H–(Be)_{*n*}–H (n == 2-5) [9]. В своих работах авторы показали жизнеспособность некоторых алюминиевых кластеров [10] и галлийсодержащих частиц полианионов [11–13]. При исследовании фосфидов золота Au_2MP_2 (M = Pb, Tl, Hg) установлено, что атомы фосфора формируют зигзагообразные цепочки с прочной ковалентной связью P–P [14]. В то же время число изученных цепочечных структур, формируемых неметаллами, относительно невелико ($M_nF_{(4n + 2)}$, M = S, Se), хотя они вызывают большой интерес в связи с возможным проявлением сверхпроводящих свойств в таких системах [15, 16] в процессе фазовых переходов при высоком давлении. В настоящей работе в продолжение выполненных нами ранее расчетов халькогенфторидов [16] изучена электронная и пространственная структура линейных структур галогенидов фосфора с помощью метода функционала плотности.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Расчеты в супермолекулярном приближении проводили с помощью квантово-химического пакета Gaussian 16 [17] с функционалом B3LYP в базисе 6-311+G**. Поиск равновесной структуры осуществляли с использованием параметров орt = Tight и Int = UltraFine. Характер стационарной точки определяли с помощью расчета матрицы силовых констант (Гессиан). Минимум характеризовался тем, что в стационарной точке не содержалось ни одной отрицательной силовой

¹ К статье имеются дополнительные материалы, доступные для авторизированных пользователей по doi: 10.1134/S0044457X19060175

 D_{3d}

 D_{2d}

Рис. 1. Структурные изомеры молекулярной системы $P_n X_{3n+2}$, (n = 2, X = F, Cl) и вращение вокруг σ -связи P-P. D_{3d} – связь P-P в аксиальном положении, D_{2d} – связь P-P в экваториальном положении.

постоянной, а переходное состояние – тем, что в гессиане содержалась одна отрицательная силовая постоянная (одна мнимая (отрицательная) частота в гармоническом колебательном спектре). Расчеты бесконечных цепочек проводили в программе VASP (Vienna Ab initio Simulation Package) [18-22] с использованием РАШРВЕ потенциала. Энергия плоских волн для хлорпроизводных цепочек составляла 650 эВ, для фторпроизводных — 1270 эВ. Порог минимизации волновой функции EDIFF = $1.0E^{-8}$. Разбиение зоны Бриллюэна проводили по методу Монхорст-Пэка [23] с размером сетки 1 × 1 × 11. Фононный спектр рассчитывали с помощью программы Phonopy [24], использовали суперъячейку размером 1 × 1 × 5. При расчете электронной зонной структуры сетка k-точек зоны Бриллюэна была увеличена до 1 × 1 × 15. Для расчетов использовали примитивную ячейку с тетрагональной сингонией. Графические изображения молекулярных форм, представленные на рисунках, получены при помощи программы ChemCraft [25].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Галогениды фосфора. Результаты DFT-расчетов цепочечных неметаллических систем $P_n X_{3n+2}$ (X = F, Cl) показали, что шахматная D_{3d} -конформация P_2X_8 отвечает минимуму на ППЭ (рис. 1).

В случае P_2F_8 заслоненная D_{3h} -структура является стационарной точкой первого порядка и отвечает переходному состоянию (ПС) внутреннего вращения вокруг σ -связи P-P с энергетическим барьером 8.2 ккал/моль. Для молекулы P_2Cl_8 переход в заслоненную D_{3h} -структуру приводит к распаду на фрагменты PCl_3 и PCl_5 , что свидетельствует о ее низкой термодинамической стабильности. Согласно расчетам $B3LYP/6-311+G^{**}$, молекулы P_2X_8 являются термодинамически нестабильными и диссоциируют на PX_3 и PX_5 . Процесс распада $P_2X_8 \rightarrow PX_3 + PX_5$ сопровождается выделением энергии 30.9 и 31.0 ккал/моль для X = F и Cl соответственно.

Рассчитанная длина связи P–P в молекулах P_2F_8 и P_2Cl_8 равна 2.299 и 2.778 Å соответственно, что сопоставимо со средней длиной связи P–P в молекуле P_2H_4 : 2.219–2.161 Å [26, 27]. В табл. 1 представлены рассчитанные структурные параметры P_2F_8 и P_2Cl_8 . Из приведенных данных видно, что при переходе от димера к цепи большей размерности среднее значение связей P–X (X = F, Cl) монотонно увеличивается, в то время как длины связей P–P монотонно уменьшаются, что сви-

Рис. 2. Энергетический профиль реакции изомеризации и последующего диспропорционирования $P_2X_8 \rightarrow PX_3 + PX_5$.

детельствует об упрочнении связи P–P с ростом длины цепочки.

Анализ электронного строения химических связей методом NBO [28] для конформера (D_{3d}) показал, что связи P–X_{акс} и P–X_{экв} имеют заселенности 1.934, 1.955 |*e*| для X = F и 1.883, 1.897 |*e*| для X = C1. Таким образом, все связи P–X можно отнести к классическим двухцентровым двухэлектронным (2c-2e) σ -связям. В то же время низкая заселенность связи P–P (1.476 и 1.276 |*e*|) свидетельствует о ее малой прочности и указывает на то, что она не может рассматриваться как классическая двухэлектронная двухцентровая σ -связь. По данным NBO-анализа, для фторпроизводных связи P–F и P–P имеют соответствующие вклады натуральных атомных орбиталей (AO): P – $sp^{2.9}d^{1.46}$, $F_{akc} - sp^{3.25}$; P – $sp^{3.13}d^{0.65}$, $F_{экв} - sp^{3.29}$; P – $sp^{2.27}d^{1.6}$, P – $sp^{2.27}d^{1.6}$. Для хлорпроизводных вклады натуральных AO составляют: P – $sp^{3.18}d^{1.2}$, Cl_{акс} – $sp^{7.91}$; P – $sp^{3.23}d^{0.67}$, Cl_{экв} – $sp^{7.8}$; P – $sp^{1.97}d^{1.77}$, P – $sp^{2.27}d^{1.77}$.

Данные расчетов показали, что системы P_2X_8 с симметрией D_{3d} являются локальными минимумами на ППЭ, в то время как глобальному минимуму отвечают структуры с симметрией D_{2d} . Конфигурационный переход $D_{3d} \rightarrow D_{2d}$ требует преодоления очень низких энергетических барьеров. Для фторпроизводного энергия активации составляет 1.1 ккал/моль, а для хлорзамещенной системы – 1.9 ккал/моль (рис. 2). Процесс изомеризации $D_{3d} \rightarrow D_{2d}$ энергетически выгоден и приводит к стабилизации молекулы P_2F_8 на 9.9 ккал/моль, для молекулы P_2Cl_8 энергия стабилизации несколько меньше и равна 5.4 ккал/моль. Фактически процесс изомеризации $D_{3d} \rightarrow D_{2d}$ отвечает переходу связи P–P из аксиального положения в экваториальное. Исследование канала реакции, отвечающей распаду P_2X_8 на PX₃ и PX₅, позволило оценить энергетические барьеры данного процесса. Так, рассчитанное значение энергетического барьера реакции распада $P_2X_8 \rightarrow PX_3 + PX_5$ составило 9.4 и 4.5 ккал/моль для X = F и Cl соответственно. На рис. 2 представлен энергетический про-

Таблица 1. Длины связей (*d*) Р–Р и Р–Х, где X = F, Cl (среднее значение), в системах $P_n X_{3n+2}$

			n 3n + 2	
п	$d_{\rm P-P}$, Å	$d_{\mathrm{P-F}}$, Å	$d_{\mathrm{P-P}}$, Å	$d_{\rm P-Cl}$, Å
2	2.299	1.600	2.778	2.123
3	2.295	1.607	2.671	2.124
4	2.293	1.611	2.657	2.126
5	2.293	1.614	2.646	2.127
6	2.292	1.616	2.641	2.127
7	2.292	1.617	2.637	2.127
8	2.291	1.619	2.635	2.127
9	2.291	1.619	2.633	2.128

Рис. 3. Молекулярная система P₁₂F₃₈ в спиральной конформации, где связь P–P находится в экваториальном положении: а – схематический вид сбоку спирали, б – вид с торца спирали.

филь, а в табл. 2 приведены энергетические характеристики данного процесса. ПС1 и ПС2 обозначают соответствующие переходные состояния в процессах.

Таким образом, помимо низкой термодинамической стабильности молекулы P_2X_8 демонстрируют низкую кинетическую стабильность и могут быть охарактеризованы как метастабильные. Расчеты показали, что все системы P_nX_{3n+2} (X = F, Cl; n = 2-9) являются минимумами на ППЭ и процесс диссоциации $P_nX_{3n+2} \rightarrow P_{n-1}X_{3(n-1)+2} + PX_3$ энергетически выгоден и сопровождается выделением энергии от 30.5 до 33.0 ккал/моль и практически не зависит от атома галогена (табл. 3). Ес-

Таблица 2. Относительные энергии ΔE^{ZPE} с учетом энергии нулевых колебаний для реакции изомеризации и распада молекулы P_2X_8

ли связи P–P находятся в экваториальном положении, процесс диссоциации также выгоден, но сопровождается меньшим выделением энергии (от 22.0 до 37.4 ккал/моль) в силу их большей стабильности. Оптимизация геометрии линейной структуры с атомами фосфора в экваториальном положении P_nF_{3n+2} (n = 3-17) ведет к трансформации линейной структуры в спиральную форму, которая также является минимумом на ППЭ (рис. 3). Аналогичный процесс для хлорпроизводных структур ведет к их распаду на более короткие цепочки.

Были рассчитаны барьеры вращения вокруг связи P-P в цепочках $P_n X_{3n+2}$ вплоть до n = 6. Из

Таблица 3. Энергии диссоциации $E_{дис}$ в цепочечных системах $P_n X_{3n+2}$, распадающихся по схеме: $P_n X_{3n+2} \rightarrow P_{n-1} X_{3(n-1)+2} + P X_3$. Связь P–P находится как в аксиальном, так и в экваториальном положении

			сиальном, так и в экваториальном положении				
Система	ΔE^{ZPE} , ккал/моль			<i>Е</i> _{дис} , ккал/моль			
	X = F	X = Cl	п	Р-Р (аксиальная)		Р-Р (экваториальная)	
				X = F	X = Cl	X = F	X = Cl
$\mathbf{P}_{2}\mathbf{F}_{8}\left(D_{3d}\right)$	0.0	0.0	2	-31.9	-31.3	-22.0	-25.9
ПС1	11	1.9	3	-30.6	-33.0	-24.6	-37.2
lici	1.1		4	-30.6	-32.4	-23.5	-26.7
$P_2F_8(D_{2d})$	-9.9	-5.4	5	-30.6	-32.5	-24.7	-37.4
2 0 20			6	-30.6	-32.7	-22.9	-26.6
ПС2	-0.5	-0.9	7	-30.6	-32.5	-24.1	-35.1
$PF_5 + PF_3$	21.0	-31.3	8	-30.6	-32.7	-23.2	-28.7
	-31.9		9	-30.5	-32.5	-23.5	-37.4

Рис. 4. Электронная зонная структура и плотность электронных состояний для бесконечных цепочек $-(PF_3-PF_3)_{\infty}-$ (а) и $-(PCl_3-PCl_3)_{\infty}-$ (б).

Рис. 5. Дисперсионные кривые и плотность состояний фононного спектра для бесконечных цепочек $-(PF_3-PF_3)_{\infty}-$ (а) и $-(PCl_3-PCl_3)_{\infty}-$ (б).

полученных данных следует, что активационный барьер слабо меняется с ростом длины цепочки и находится в пределах 8.2—9.2 ккал/моль (табл. 4). Такие значения энергии активации указывают на существование свободного вращения вокруг связи Р–Р.

DFT-расчеты с наложением периодических граничных условий. При помощи программных пакетов VASP и Phonopy был рассчитан фононный спектр для систем $-(PF_3-PF_3)_{\infty}-$ и $-(PCl_3-PCl_3)_{\infty}$ в линейной и спиральной конформациях. Расчеты с наложением периодических граничных условий для бесконечной линейной цепочки $-(PX_3-PX_3)_{\infty}$ показали, что хлорпроизводные имеют более длинную связь P–P (2.55 Å), чем фторпроизводные, для которых связь P–P равна 2.29 Å. Связи P–X равны 1.63 и 2.11 Å для X = F и Cl соответственно. Сопоставление этих величин с полученными в супермолекулярном подходе показывает очень хорошее согласие для фторпроизводных – разница в длинах связей не превышает 0.01 Å. Для хлорпроизводных соответствие хуже – разница в длинах связей составляет 0.08 Å. В табл. 5 представлены

Таблица 4. Энергии активации E_a для процесса вращения вокруг связи P-P в линейных цепочках P_nF_{3n+2}

Свойство	P_2F_8	P ₃ F ₁₁	P_4F_{14}	P ₅ F ₁₇
<i>Е</i> _{<i>a</i>} , ккал/моль	8.2	8.6	8.6	8.7

Свойство	$-(PF_3-PF_3)_{\infty}-$	$-(PCl_3-PCl_3)_{\infty}-$			
1 <i>D</i> -структура					
Пр. гр. <i>а</i> <i>b</i> <i>c</i>	<i>Pcmm</i> (051) 15.00000 15.00000 4.58255	<i>Pcmm</i> (051) 15.00000 15.00000 5.09537			
Координаты атомов					
P X1 X2	(1/2, 1/2, 1/4) (2f) (0.55431, 0.40594, 1/4) (4k) (0.39139, 1/2, 1/4) (2f)	(1/2, 1/2, 1/4) (2 <i>f</i>) (0.57020, 0.37841, 1/4) (4 <i>k</i>) (0.35960, 1/2, 1/4) (2 <i>f</i>)			

Таблица 5. Параметры решетки Бравэ (в Å) и позиции Вайкоффа для рассматриваемых цепочек (X = F, Cl)

структурные данные для бесконечных цепочек $-(PX_3-PX_3)_{\infty}$, рассчитанных в программе VASP.

Моделирование электронной зонной структуры показало, что бесконечная цепочка $-(PCl_3-PCl_3)_{\infty}$ имеет ширину запрещенной зоны 1.74 эВ, для $-(PF_3-PF_3)_{\infty}$ эта величина равна 4.65 эВ (рис. 4). Минимальная энергия, необходимая для перехода из валентной зоны в зону проводимости, достигается при одинаковом значении волнового вектора. Таким образом, обе эти системы можно отнести к прямозонным полупроводникам.

Расчеты фононного спектра показали, что бесконечные неметаллические цепочки $-(PX_3 - PX_3)_{\infty}$ – не имеют дисперсионных кривых, лежащих в отрицательной области по всей зоне Бриллюэна (рис. 5), что характеризует их как динамически стабильные.

ЗАКЛЮЧЕНИЕ

Проведенные расчеты показали, что молекулярные системы P_nX_{3n + 2} являются метастабильными вне зависимости от атома галогена и при нормальных условиях способны легко распадаться на $P_{n-1}X_{3(n-1)+2} + PX_3$. При этом большей стабильностью обладают структуры, в которых связь Р-Х находится в экваториальном положении. В этом случае возможно образование спиральных структур. Расчеты с наложением периодических граничных условий, моделирующие бесконечную линейную цепочку –(PX₃–PX₃)_∞–, показали, что обе исследованные системы, за исключением спирали, динамически стабильны и являются широкозонными полупроводниками с прямым переходом.

БЛАГОДАРНОСТЬ

Работа выполнена при финансовой поддержке гранта Правительства РФ по постановлению № 220 (договор № 14. Y26.31.0016).

СПИСОК ЛИТЕРАТУРЫ

- Hurley T.J., Robinson M.A. // Inorg. Chem. 1968. V. 7. P. 33.
- Yang E.C., Cheng M.C., Tsaiet M.S. et al. // J. Chem. Soc. 1994. V. 20. P. 2377.
- 3. *Sheu J.-T., Lin C.-C., Chao I. et al.* // Chem. Commun. 1996. V. 3. P. 315.
- 4. Cotton F.A., Daniels L.M., Murillo C.A. et al. // J. Am. Chem. Soc. 1997. V. 119. P. 10223.
- 5. Clérac R., Cotton F.A., Daniels L.M. et al. // Inorg. Chem. 2000. V. 39. P. 752.
- Kuo J.H., Tsao T.B., Lee G.H. et al. // Eur. J. Inorg. Chem. 2011. V. 2011. P. 2025.
- Poater A., Moradell S., Pinilla E. et al. // Dalton Trans. 2006. P. 1188.
- Wörle M., Nesper R. // Angew. Chem. 2000. V. 112. P. 2439.
- Lundell K.A., Boldyrev A.I. // Chem. Phys. Lett. 2018. V. 699. P. 85.
- Charkin O.P., Klimenko N.M. // Russ. J. Inorg. Chem. 2018. V. 63. № 4. Р. 479. doi 10.1134/S0036023618040058 [Чаркин О.П., Клименко Н.М. // Журн. неорган. химии. 2018. Т. 63. № 4. С. 448. doi 10.7868/S0044457X1804010]
- Fahlquist H., Noréus D. // Inorg. Chem. 2013. V. 52. P. 7125.
- 12. Fahlquist H., Noréus D., Sørby M.H. // Inorg. Chem. 2013. V. 52. P. 4771.
- Fahlquist H., Noréus D., Caller S. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 14574.
- Eschen M., Jeitschko W. // J. Solid State Chem. 2002. V. 165. P. 238.

- 15. Degtyareva O., Gregoryanz E., Somayazulu M. et al. // Nat. Mater. 2005. V. 4. P. 152.
- 16. *Popov I.A., Averkiev B.B., Starikova A.A. et al.* // Angew. Chem. Int. Ed. 2015. V. 54. P. 1476.
- 17. Frisch M.J., Trucks G.W., Schlegel H.B. et al. // Gaussian 16, rev. A.03. Gaussian Inc. Wallingford CT, 2016.
- 18. Kresse G., Hafner J. // Phys. Rev. B. 1993. V. 47. P. 558.
- 19. Kresse G., Hafner J. // Phys. Rev. B. 1994. V. 49. P. 14251.
- Kresse G., Furthmuller J. // Comput. Mater. Sci. 1996.
 V. 6. P. 15.
- 21. Kresse G., Furthmuller J. // Phys. Rev. B. 1996. V. 54. P. 11169.

- 22. Kresse G., Joubert D. // Phys. Rev. 1999. V. 59. P. 1758.
- Monkhorst H.J., Pack J.D. // Phys. Rev. B. 1976. V. 13. P. 5188.
- 24. Togo A., Tanaka I. // Scripta Mater. 2015. V. 108. P. 1.
- 25. *Zhurko G.A., Zhurko D.A.* ChemCraft, ver. 1.8. http://www.chemcraftprog.com (accessed January 23, 2018).
- 26. Baudler M., Glinka K. // Chem. Rev. 1993. V. 93. P. 1623.
- 27. Barbaro P., Di Vaira M., Peruzzini M. et al. // Chem. Eur. J. 2007. V. 13. P. 6682.
- 28. *Glendening E.D., Landis C.R., Weinhold F. //* WIREs Comp. Mol. Sci. 2012. V. 2. P. 1.