ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2019, том 64, № 7, с. 690–699

СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 612.396.172

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА БРУШИТА И ГИДРОКСИЛАПАТИТА, СИНТЕЗИРОВАННЫХ В ПРИСУТСТВИИ ХИТИНА И ХИТОЗАНА

© 2019 г. Т. В. Фадеева^{1, *}, О. А. Голованова^{1, *}

 1 Омский государственный университет им. Φ .М. Достоевского, Россия, 644077 Омск, пр-т Мира, 55a

**E-mail: tanya_14.63@mail.ru* Поступила в редакцию 06.09.2018 г. После доработки 09.01.2019 г. Принята к публикации 15.02.2019 г.

Представлены результаты исследования свойств синтезированных композитов на основе дикальцийфосфата двухводного (брушита) и гидроксилапатита в полимерной матрице хитина и хитозана. Показано, что размер кристаллитов возрастает с увеличением содержания хитозана и хитина в составе композитов. Установлено, что при растворении образцов в изотоническом растворе скорость деградации композитов на основе брушита уменьшается с возрастанием содержания хитозана и хитина в составе образцов, а для композитов на основе гидроксилапатита характерна противоположная зависимость. Показано изменение массы образцов в результате термической обработки.

Ключевые слова: кристаллизация, дикальцийфосфат двухводный, композит, морфология, термические свойства, растворение

DOI: 10.1134/S0044457X19070067

введение

Современное материаловедение в области разработки биокомпозитов ставит перед собой задачу поиска новых полимеров, способных к разложению в природной среде, а также рассматривает возможность создания безопасных и экологичных процессов выделения полимеров из исходного сырья и их дальнейшую переработку, получение продукта, соответствующего нормам и требованиям при его использовании [1].

В связи с этим особое значение имеет создание новых биодеградируемых материалов медицинского назначения, предназначенных для контакта со средой живого организма и необходимых для разработки инновационных лекарственных форм, восстановления поврежденных тканей, повышения биосовместимости используемых материалов [1–3]. Такие материалы должны быть нетоксичными, а их структура характеризоваться высокой пористостью с размером пор до десятков микрометров и способностью иметь каналы для миграции необходимых веществ к матрице полимера [2, 4, 5].

С целью применения для создания новых материалов всестороннему исследованию подвергались такие биополимеры, как хитин и хитозан [6–12].

Данные соединения являются аморфно-кристаллическими полимерами, для которых характерно явление полиморфизма [6]. Хитин и хитозан — нерастворимые в воде полимеры. Отличительным химическим свойством хитозана является его способность растворяться в разбавленных растворах кислот, например уксусной или соляной, в то время как хитин не растворяется даже в концентрированных кислотах [7, 8].

Хитозан — простейшее производное хитина, образующееся при его деацетилировании, — обладает уникальными биологическими свойствами: может предотвращать развитие инфекций, снижать уровень холестерина в крови, проявляет иммуномодулирующее действие, а также бактерицидную и ранозаживляющую активность [7, 9].

Хитин, извлеченный в основном из моллюсков, представляет собой биополимер на основе мономера N-ацетилглюкозамина [10]. Это второй (после целлюлозы) по распространенности в природе полисахарид, строение которого создает предпосылки для успешного его применения в самых разнообразных областях. Хитин является основой скелетной системы в панцирях ракообразных, кутикуле насекомых, клеточной стенке грибов и бактерий [10–12].

Благодаря биосовместимости с тканями человека, способности усиливать регенеративные процессы при заживлении ран, наличию бактериостатических/бактерицидных свойств хитин и

Состав объекта		Масса нобаридамого		Macca
неорганический компонент	полимер	в раствор полимера, г	Ca/P	синтезированного образца, г
ДКФД	Хитозан	0.02	1.0	2.3658
ДКФД	Хитозан	0.08		2.8490
ДКФД	Хитозан	0.16		3.3224
ДКФД	Хитин	0.02	1.0	2.6013
ДКФД	Хитин	0.08		2.8043
ДКФД	Хитин	0.16		3.0144
ГА	Хитозан	0.02	1.7	2.6625
ГА	Хитозан	0.08		2.7676
ГА	Хитозан	0.16		2.8464
ГА	Хитин	0.02	1.7	4.6329
ГА	Хитин	0.08		4.5826
ГА	Хитин	0.16		4.8102

Таблица 1. Объекты исследования

хитозан представляют большой интерес для использования их в качестве матриц при создании биокомпозитов на основе неорганических веществ.

Наиболее интересны в качестве неорганической компоненты в составе композиционных материалов фосфаты кальция – дикальцийфосфат двухводный (ДКФД, брушит) и гидроксилапатит (ГА) [13–20].

Считается, что образование брушита происходит на промежуточном этапе в процессе минерализации костной ткани и при разрушении эмали [13–17]. Гидроксилапатит — наименее растворимый из всех ортофосфатов кальция. Чистый ГА никогда не встречается в биологических системах, однако из-за схожести его химического состава с компонентами кости и зубного минерала композит широко применяется в ортопедии и травматологии [18–20].

Композиционные материалы, синтезированные на основе данных фосфатов кальция и природных полимеров хитозана и хитина, могут обладать высокой биосовместимостью и биоактивностью [21], остеоиндуктивностью [22], резорбируемостью [23].

Целью данной работы является синтез, исследование и сравнение физико-химических свойств композитов на основе фосфатов кальция (ГА, ДКФД) с полимерами хитин и хитозан.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез композитов ДКФД-хитозан (хитин) и ГА-хитозан (хитин)

Проведено четыре эксперимента (табл. 1).

Синтез композита ДКФД-хитозан проводили в присутствии хитозана высокомолекулярного (Крусхитозан С, ФГУП "ТИНРО-Центр", M = 38000), при 25°С готовили растворы гидрофосфата аммония и нитрата кальция объемом 500 мл каждый. Концентрация растворов нитрата кальция Са(NO₃)₂ (х. ч.) и гидрофосфата аммония при синтезе ДКФД составляла 0.050 моль/л. В колбу с раствором NH₄HPO₄ (х. ч.) добавляли навеску хитозана массой 0.02, 0.08 или 0.16 г.

Раствор, содержащий нитрат кальция, смешивали с раствором, содержащим гидрофосфат аммония и взвесь полимера (общий объем раствора 1000 мл), и с помощью магнитной мешалки перемешивали в течение 15 мин. Значение pH поддерживали равным 5.5 ± 0.5 , добавляя 15%-ный раствор HNO₃. Реакция осаждения ДКФД может быть представлена схемой:

$$Ca(NO_3)_2 + NH_4HPO_4 + 2H_2O =$$

= CaHPO_4 \cdot 2H_2O + 2NH_4NO_3. (1)

Образовавшийся в ходе реакции сопутствующий продукт — нитрат аммония — является растворимым в воде соединением, для его удаления осадок несколько раз промывали дистиллированной водой.

Синтез композита ДКФД-хитин проводили аналогично, вместо хитозана использовали полимер хитин (Biochem, M = 400000), который добавляли в колбу с раствором NH_4HPO_4 ($C_M = 0.050$ моль/л). Масса добавляемого полимера составляла 0.02, 0.08 или 0.16 г.

Синтез композита ГА-хитозан (Са/Р = 1.70) проводили аналогично синтезу композита ДКФД-хитозан, но pH системы поддерживали на уровне 12.0 \pm 0.5 добавлением концентрированного раствора аммиака. При синтезе ГА к раствору гидрофосфата аммония с концентрацией 0.040 моль/л добавляли раствор нитрата кальция с такой концентрацией, чтобы соотношение $n_{\text{исх}} = \text{Са}(\text{NO}_3)_2/(\text{NH}_4)_2\text{HPO}_4$ составляло 1.70. Взаимодействие реагентов происходило по реакции:

$$10Ca(NO_3)_2 + 6NH_4HPO_4 + 8NH_4OH = = Ca_{10} (PO_4)_6 (OH)_2 + 20NH_4NO_3 + 6H_2O.$$
(2)

При смешивании растворов, содержащих твердую взвесь полимера, происходило образование осадков белого цвета. После выдерживания каждого раствора в течение 72 ч осадок отфильтровывали, промывали от образовавшегося в ходе реакции нитрата аммония и сушили в камере при 80°C до полного удаления воды.

Синтез композита ГА-хитин проводили аналогично синтезу композита ГА-хитозан, вместо хитозана использовали полимер хитин. В колбу с гидрофосфатом аммония добавляли хитин массой 0.02, 0.08 или 0.16 г.

Полученные порошки исследовали физикохимическими методами.

Рентгенофазовый анализ (РФА) порошков проводили на рентгеновском дифрактометре ДРОН-3М методом Дебая—Шеррера, съемку дифрактограмм вели в интервале углов 20 10°-60°. Качественный анализ фазового состава образца проводили по данным порошковой дифрактометрии PDF-2. Предел обнаружения методики составляет 5%.

ИК-Фурье-спектроскопия. ИК-спектры снимали на спектрофотометре ФСМ 2202 (Инфраспек, Россия). В ходе исследования образец в виде порошка смешивали с КВг, наносили на германиевую кювету и прессовали. Регистрацию спектров проводили с разрешением 4 см⁻¹, общее число сканирований 50. Спектры исследуемых образцов записывали в области от 400 до 4000 см⁻¹.

Обработку данных осуществляли с использованием программы OriginPro8.0. Предел обнаружения составляет 5%.

Оптическая микроскопия. Изучение морфологии, определение формы частиц твердых фаз проводили методом оптической микроскопии с помощью микроскопа серии XSP-140. В качестве материала для исследования использовали осадок фосфатов кальция с добавкой хитозана и хитина. Пробы тонким слоем наносили на часовое стекло и изучали материал под микроскопом. Расчет размеров кристаллов проводили с помощью программы "Toup View".

Термогравиметрический анализ. В эксперименте образцы композитов (в виде порошков) массой 0.2000 ± 0.0002 г прокаливали в муфельной печи (LF-7/13-G1, LOIPLF) при температурах 200, 400, 600 и 800°С (± 2 °С) в течение 2 ч после выхода печи на рабочий режим. Прокаленные образцы охлаждали на воздухе до комнатной температуры, затем взвешивали на аналитических весах и переносили в маркированные емкости. По разнице масс до и после прокаливания рассчитывали убыль массы вещества в результате термообработки.

Изучение растворения композитов в 0.9%-ном растворе NaCl. Для изучения кинетических параметров пассивной фазы резорбции 0.2 г композита помещали в 100 мл 0.9%-ного раствора NaCl при 25°C и перемешивали с постоянной скоростью. Значения pCa (единица I-160-MI, ООО "Измерительная техника", Россия) и pH (единица измерения pH 150 MI, ООО "Измерительная техника", Россия) фиксировали через регулярные промежутки времени до выхода значения аналитического сигнала на плато. Кинетические кривые обрабатывали в соответствии с алгоритмами, представленными в работах [24, 25].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Методом РФА установлено, что полученные композиты ДКФД-хитозан и ДКФД-хитин представлены фазой ДКФД (рис. 1, кривые *I*, *2*). В изучаемых условиях происходит осаждение кристаллов ДКФД, принадлежащих моноклинной сингонии [26]. Исследование образцов ГА-хитозан и ГА-хитин методом РФА показало, что состав синтезированных образцов, полученных после высушивания, представлен ГА (20: 32.0° , 35.0° , 47.0° , 49.0°) с небольшими включениями аморфной фазы (рис. 1, кривые *3*, *4*).

Результаты исследования образцов методом ИК-Фурье-спектроскопии представлены на рис. 2. Для всех синтезированных композитов отмечены характерные полосы поглощения, обусловленные валентными асимметричными колебаниями (1024 и 1154 см⁻¹) связей О–Р–О. Полосы при 530, 574 см⁻¹ соответствуют колебаниям в тетра-эдрах PO_4^{3-} . Широкая полоса в области 3489–3583 см⁻¹ и пик при 3142 см⁻¹ могут быть отнесены к модам валентных колебаний Н–О–Н и ОН– соответственно.

Рис. 1. Дифрактограммы образцов, полученных в присутствии 0.08 г/л хитозана и хитина: ДКФД-хитозан (1), ДКФД-хитин (2), ГА-хитозан (3), ГА-хитин (4).

Для хитозана и хитина широкую полосу поглощения при 3290 см⁻¹ можно отнести к валентным и деформационным колебаниям –OH- и –NH₂групп, участвующих в образовании внутри- и межмолекулярных связей. Валентные асимметричные колебания связи С–Н в метиленовых компонентах хитозана выявляются при 2876 см⁻¹. Деформационные колебания ассоциированной аминогруппы NH³⁺ в молекулах хитозана соответствуют частоте 1663 см⁻¹. Для образца ДКФДхитозан с массой хитозана 0.16 г в исходном растворе при 1239 см⁻¹ наблюдаются валентные колебания связи >C=O. Для образцов ГА-хитозан и ГА-хитин колебания связи O–C–O проявляются при 877 см⁻¹ (рис. 2).

Таким образом, структуры синтезированных образцов аналогичны друг другу, отличие в спектрах хитозана и хитина проявляется только в разной интенсивности пиков характерных групп. Анализ ИК-спектров образцов на основе хитозана позволяет предположить, что наиболее вероятным процессом взаимодействия между ДКФД и хитозаном в растворе является фосфорилирование хитозана фосфат-ионами раствора. Взаимодействие ГА и хитозана также протекает через ассоциированную аминогруппу [7].

Для образцов на основе хитина взаимодействие с ДКФД и ГА, вероятно, осуществляется через гидроксильную группу.

Исследование образцов методом оптической микроскопии показало, что образцы ДКФД-хитозан имеют одинаковую пластинчатую форму, характерную для этих кристаллов, в то время как образцы ДКФД-хитин представлены более мелкими кристаллитами неопределенной формы (рис. 3а, 3б). С увеличением содержания хитозана в составе композитов на основе ДКФД размеры кристаллитов увеличиваются (рис. 4а). Для композитов ГА-хитозан отмечена аналогичная закономерность (рис. 3в, 3г, рис. 4а). Такие зависимости объясняются тем, что с увеличением содержания хитозана в растворе увеличивается вязкость растворов, способствуя росту кристаллов за счет процессов диффузии.

Для композитов ГА-хитин наблюдается уменьшение размеров кристаллов с увеличением содержания хитина в исходном растворе (рис. 46).

Из полученных фотографий (рис. 3а, 3б) видно, что образцы на основе хитозана представлены только кристаллической фазой с ярко выраженной пластинчатой формой и большими размерами по сравнению с образцами на основе хитина.

С целью изучения термических свойств и фазовых превращений продуктов кристаллизации проведен термогравиметрический анализ композитов. Для всех синтезированных образцов наблюдается убыль массы. В случае ДКФД-хитозан и ДКФД-хитин наибольшее уменьшение массы образцов соответствует диапазону температур 200–400°С, что вызвано удалением адсорбционной и кристаллизационной воды, а также деструкцией хитозана и хитина. Характерное преобразование ДКФД в монетит (400°С), а затем в γ -пирофосфат (600°С) подтверждено результатами РФА (рис. 5). При этом образцы на основе хитозана в составе ДКФД менее устойчивы, чем композиты на основе хитина.

Для образцов ГА-хитозан максимальное уменьшение массы зафиксировано для образца с

Рис. 2. ИК-спектры образцов, полученных в присутствии 0.08 г/л хитозана и хитина: ДКФД-хитин, ДКФД-хитозан, ГА-хитин, ГА-хитозан.

содержанием хитозана 0.16 г (88.8%). Уменьшение массы композитов ГА-хитозан после прокаливания в соответствии с увеличением содержания хитозана наблюдается при 400°С, а для композита ГА-хитин уменьшение массы композита с увеличением содержания хитина наблюдается на температурном участке 300–800°С (рис. 6). Таким образом, образцы на основе хитозана в составе ГА более устойчивы, чем образцы на основе хитина и композитов на основе ДКФД.

Изменения функционально-группового состава композитов при прокаливании фиксировали методом ИК-Фурье-спектроскопии (рис. 7). В спектрах композита ДКФД-хитозан исчезают полосы, соответствующие колебаниям кристаллизационной воды. В спектрах образцов после прокаливания при 600°С исчезает максимум, отвечающий колебаниям связей С–Н в метиленовых группировках хитозана. Для композитов ДКФД-хитин с увеличением температуры прокаливания наблюдается уменьшение интенсивности пиков, соответствующих колебаниям связей N–H и O–H. Кроме того, увеличивается интенсивность пика, отвечающего колебаниям связи C–H.

Для образцов ГА-хитозан и ГА-хитин при 200°С значительных изменений в функционально-групповом составе не происходит. При 600°С исчезают пики, отвечающие валентным и деформационным колебаниям – OH- и – NH₂-групп в структуре хитозана, а для композитов на основе хитина их интенсивность уменьшается с увеличением температуры. Также при 600°С исчезает пик, соответствующий колебаниям ассоциированной аминогруппы, в композитах на основе хи-

Рис. 3. Микрофотографии образцов на основе брушита (а, б) и ГА (в, г).

Рис. 4. Зависимость среднего размера агрегатов частиц (мкм) от массы хитозана (а) и хитина (б), г: *1* – ДКФД-хитозан; *2* – ГА-хитозан.

тозана, а для композитов ГА-хитин интенсивность этого пика уменьшается.

Для определения биорезорбируемости синтезируемых композитов фиксировали изменение pH и концентрации ионов кальция в изотоническом растворе потенциометрическим методом.

Установлено, что в случае композитов ДКФДхитозан с увеличением содержания хитозана в исходном растворе pH снижается, а концентрация ионов кальция увеличивается (рис. 8); для композитов ГА-хитозан получена противоположная зависимость. Аналогичная картина наблюдается и для композитов изучаемых фосфатов кальция с хитином.

Поглощение протонов на начальном этапе растворения приводит к значительному росту pH, который фиксируется в виде максимума на кинетических кривых pH = $f(\tau)$. Это указывает на высокую интенсивность резорбции композитов за счет растворения неорганического компонента композита (фосфата кальция) уже на начальных этапах взаимодействия с растворителем. На основании полученных экспериментальных зависимостей pCa = $f(\tau)$ рассчитаны начальные значения скоростей выделения ионов кальция в раствор. По

Рис. 5. Дифрактограммы образцов ДКФД-хитозан после прокаливания при 400 (а) и 600°С (б).

Рис. 6. Изменение массы образцов с содержанием хитозана/хитина (*1* – 0.02, *2* – 0.08, *3* – 0.16 г/л) после термообработки при различных тепловых режимах для композитов ДКФД-хитозан, ГА-хитозан, ДКФД-хитин, ГА-хитин.

значениям начальных скоростей растворения композитов видно, что присутствие хитозана и хитина в составе твердой фазы уменьшает пассивную резорбцию для ДКФД и увеличивает для ГА (табл. 2, 3).

Таким образом, образцы на основе ГА и ДКФД, синтезированные в присутствии хитина и хитозана, проявляют аналогичные свойства при растворении в изотоническом растворе. Сравнение скоростей растворения композитов фосфатов кальция, полученных на основе хитозана и хитина, показало, что большую скорость растворения в физиологическом растворе, имеют биокомпозиты, синтезированные в присутствии хитозана.

Рис. 7. ИК-спектры образцов с содержанием хитозана и хитина 0.08 г/л после термической обработки при различных режимах: 1 - 200, 2 - 400, $3 - 600^{\circ}$ C.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 7 2019

Рис. 8. Зависимости pH от времени растворения композитов ДКФД-хитозан, ГА-хитозан, ДКФД-хитин, ГА-хитин в 0.9%-ном растворе NaCl с содержанием хитозана и хитина: 1 - 0.02, 2 - 0.08, 3 - 0.16, 4 - 0 г/л.

ЗАКЛЮЧЕНИЕ

Состав синтезированных образцов на основе ДКФД, ГА, хитина и хитозана постоянен, наличие функциональных групп ДКФД, ГА и исследуемых полимеров подтверждено методом ИК-спектроскопии, присутствие фаз ДКФД и ГА – методом РФА. Все композиты, кроме ДКФД-хитина, осаждаются в виде кристаллитов определенной формы, их размер увеличивается с ростом содержания биополимера в исходном растворе. С увеличением температуры прокаливания масса всех композитов

Таблица 2. Значение начальных скоростей растворения композитов ДКФД-хитозан и ГА-хитозан

Масса хитозана при синтезе, г	Кинетическое уравнение		Скорость, мин ⁻¹	
	ДКФД-хитозан	ГА-хитозан	ДКФД-хитозан	ГА-хитозан
0	y = -0.1178x + 3.952	y = -0.0199x + 4.0769	0.1178	0.0199
0.02	y = -0.0524x + 5.0430	y = 0.0114x + 4.6044	0.0524	0.0114
0.08	y = -0.0382x + 4.8342	y = 0.0863x + 4.1164	0.0382	0.0863
0.16	y = -0.009x + 4.4467	y = 0.1187x + 3.9142	0.009	0.1187

Таблица 3. Значение начальных скоростей растворения композитов ДКФД-хитин и ГА-хитин

Масса хитина при синтезе, г	Кинетическое уравнение		Скорость, мин $^{-1}$	
	ДКФД-хитин	ГА-хитин	ДКФД-хитин	ГА-хитин
0.02	y = -0.0238x + 2.5335	y = -0.0051x + 4.8383	0.0238	0.0051
0.08	y = -0.0077x + 2.634	y = -0.0098x + 4.8182	0.0077	0.0098
0.16	y = 0.0038x + 2.3632	y = -0.0100x + 5.0126	0.0038	0.0100

J. Mol. Sci. 2011. № 12. Р. 1876.
Волова Т.Г. Материалы для медицины, клеточной

уменьшается. Скорость растворения образцов на

основе хитина в изотоническом растворе меньше,

СПИСОК ЛИТЕРАТУРЫ

1. Кандырин К.Л. Введение в материаловедение поли-

2. Хоменко А.Ю., Попрядухин П.В., Богомолова Т.Б. //

3. Нудьга Л.А. Структурно-химическая модификация

Российские нанотехнологии. 2013. Т. 8. № 9-10.

хитина, хитозана и хитин-глюкановых комплек-

чем композитов на основе хитозана.

меров. М.: ИПЦ МИТХТ, 2002.

C. 41.

- и тканевой инженерии. Красноярск: ИПК СФУ, 2009.
- 6. Данильченко С.Н., Калинкевич О.В., Погорелов М.В. // Ортопедия, травматология и протезирование. 2009. № 1. С. 66.
- 7. *Камская В.Е.* Хитозан: структура, свойства и использование // Биологические науки. 2016. № 6. С. 36.
- 8. *Elson Santiago de Alvarenga //* Universidade Federal de Viçosa. 2011. P. 91.
- 9. Курченко В.П., Буга С.В., Петрашкевич Н.В. и др. // Тр. БГУ. 2016. Т. 11. Ч. 1. С. 110.
- Муравьев А.А. Растворы смесей целлюлозы и хитина в ионных жидкостях и композиционные материалы на их основе. Дис. ... канд. хим. наук. М., 2017. 111 с.
- Wahl D.A. // European Cells and Materials. 2006. № 11. P. 43.
- 12. Bolarinwa A.O. // School Chem. Eng. 2010. 220 p.
- 13. Tas Cuneyt A. // J. Am. Ceram. Soc. 2016. P. 1200.

- Parekh B.B., Joshi M.J. // J. Pure Appl. Phys. 2005. V. 43. P. 675.
- 15. *Dorozhkin S.V.* // Materials. 2009. № 2. P. 399.
- 16. Suryawanshi V.B., Chaudhari R.T. // J. Mater. Sci. V. 2014. P. 6.
- 17. *Agrawal K., Gurbhinder S.* // J. Minerals Materials Characterization Engineering. 2011. V. 10. № 8. P. 727.
- 18. Петракова Н.В. Влияние условий синтеза и спекания нанопорошков гидроксилапатита на формирование микроструктуры и свойств керамики. Дис. ... канд. техн. наук. М., 2014. 143 с.
- 19. *Князев А.В., Буланов Е.Н.* // Вестник Нижегородского ун-та им. Н.И. Лобачевского. 2012. Т. 5. № 1. С. 88.
- 20. Бакунова Н.В., Баринов С.М., Комлев В.С. и др. // Научные ведомости. Сер. математика, физика. 2011. № 11 (106). С. 173.
- Гурин А.Н. Сравнительная оценка влияния различных остеопластических материалов на основе фосфатов кальция на заживление костных дефектов. Дис. ... канд. мед. наук. М., 2009. 161 с.
- Сафронова Т.В., Сейченко П.А., Путляев В.И. // Стекло и керамика. 2012. № 8. С. 34.
- Izmailov R.R., Golovanova O.A., Tserikh Y.V. et al. // Russ. J. Inorg. Chem. 2016. T. 61. № 7. С. 817. [Измайлов Р.Р., Голованова О.А., Церих Ю.В. и др. // Журн. неорган. химии. 2016. Т. 61. № 7. С. 856.] https://doi.org/10.1134/S0036023616070081
- 24. Chandrasekar A., Sagadevan S. // J. Phys. Sci. 2013. V. 8. № 32. P. 1639.
- 25. Solonenko A.P., Golovanova O.A. // Russ. J. Inorg. Chem. 2013. V. 58. Р. 1420. [Солоненко А.П., Голованова О.А. // Журн. неорган. химии. 2014. Т. 59. № 1. С. 12.]

https://doi.org/10.1134/S0036023614010173

26. *Jiang L.* // Carbohydrate Polymers. 2008. V. 74. № 3. P. 680.