_ КООРДИНАЦИОННЫЕ _ СОЕЛИНЕНИЯ

УДК 548.73+546.94

СТРОЕНИЕ МОНОМЕРНЫХ ОКТАЭДРИЧЕСКИХ МОНООКСОКОМПЛЕКСОВ d^2 -РЕНИЯ(V) [ReO($L_{три}$)($L_{би}$)], [ReO($L_{тетра}$)($L_{моно}$)] С АТОМАМИ КИСЛОРОДА ТРИДЕНТАТНО (О, О, О)-И ТЕТРАДЕНТАТНО (О, О, О, О)-ХЕЛАТНЫХ ЛИГАНДОВ

© 2019 г. В. С. Сергиенко^{1, 2, *}, С. Б. Страшнова³

¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, Россия, 119991 Москва, Ленинский пр-т, 31

²Всероссийский институт научной и технической информации РАН, Россия, 125190 Москва, ул. Усиевича, 20

 3 Российский университет дружбы народов, Россия, 117198 Москва, ул. Миклухо-Маклая, 6

*E-mail: sergienko@igic.ras.ru

Поступила в редакцию 20.04.2018 г. После доработки 04.02.2019 г. Принята к публикации 15.02.2019 г.

Рассмотрены особенности строения четырех (по два) моноядерных октаэдрических монооксоком-плексов d^2 -Re(V) с тридентатно (O, O, O)- и тетрадентатно (O, O, O)-хелатными лигандами [ReO($L_{\rm три}$)($L_{\rm би}$)] и [ReO($L_{\rm тетра}$)($L_{\rm моно}$)]. Показано, что связи Re-O($L_{\rm три}$) $_{\it mpanc}$ удлинены, а Re-O($L_{\rm тетра}$) $_{\it mpanc}$ укорочены по сравнению со связями Re-O($L_{\it muc}$).

Ключевые слова: кристаллическая структура, рентгеноструктурный анализ, шестикоординационные монооксосоединения d^2 -Re, n-дентатные (n = 3, 4) (O, O, O) и (O, O, O, O) лиганды

DOI: 10.1134/S0044457X19070146

ВВЕДЕНИЕ

Строение мономерных октаэдрических комплексов (**MOK**) d^0 -, d^2 -металлов V–VII групп (Nb, V, Mo, W, Re, Tc) с кратносвязанными лигандами O(оксо) подробно рассмотрено в работах [1-7]. Для d^2 -Re(V) методом рентгеноструктурного анализа определена кристаллическая структура более пятисот соединений (см. Кембриджский банк структурных данных, версия 5.38, ноябрь 2017 г. [8]). Большинство из них — МОК ReO_{оксо}O(Lig)_{транс} с атомами кислорода моно- и полидентатных лигандов в транс-позициях к оксолигандам. Ранее мы опубликовали ряд обобщающих статей по МОК d^2 -Re(V) с лигандами: атомами галогенидов, азота, серы и водорода, кислорода монодентатных ацидолигандов (гидроксо-, алкоксо- (метоксо-, этоксо-, пропоксо-), OR^{n-} (n = 1, 2; R = Ph, Cy, C_6H_4OH , C_6H_4OMe , $P(O)(OMe)_2$, $C(O)(CF_3)$, $OCMe(CF_3)_2$, BF_3), OER^{n-} (n = 1, 2; $E = Si, B, S; R = Me_3, F_3, O_2CF_3)$, бидентатно-хелатных (O, O) [9], (O, S) и (O, C), (O, P), (O, N) однозарядных лигандов, тридентатно-хелатных (О, N, O) одно- и двухзарядных лигандов [10], а также нейтральных кислородсодержащих лигандов (молекул воды, фосфин- и арсиноксидных ОЕR3 (E = P, As; R_3 = Ph₃, PhEt₂), молекул OR' (ДМФ), R"OH (R" = Me, Et, Pr), L (ON₄C₆ · C₆H₁₀, O⁻ (C₆H₃MeCH₂NH⁺Et₂), O⁻(NH⁺C₅H₄))) в *танс*нозициях к кратносвязанным лигандам О(оксо). Опубликованы обзорные статьи по особенностям строения MOK d^0 -Re(VII) [11] и d^0 -, d^2 -Tc(V, VII) [12].

Структурное проявление трансвлияния (СПТВ) кратносвязанного лиганда О(оксо) — удлинение противолежащей связи $Re-L_{mpanc}-x$ арактеризуется параметром Δ — разностью длин одноименных связей [$Re-L_{mpanc}$] — [$Re-L_{uuc}$]. Если в структуре нет лигандов одного сорта и в *транс*, и в *цис*-позициях к О(оксо), мы используем параметр Δ , равный [$Re-L_{mpanc}$] — [Re-L(CT)], где CT — среднестатистическая стандартная длина связи Re(V) с атомом лиганда того же сорта, что и L_{mpanc} . В качестве параметра Re-O(CT) приняли, как в [4], величину 2.04 Å.

В настоящей статье обсуждается строение мономерных октаэдрических монооксокомплексов $[ReO(L_{три})(L_{би})]$ и $[ReO(L_{тетра})(L_{моно})]$, содержащих тридентатно (O, O, O)- и тетрадентатно (O, O, O, O)-хелатные, а также бидентатно-хелатные $(L_{би})$ или монодентатные $(L_{моно})$ лиганды. *Транс*-

Литера-Re-L_{uuc} Re-O(L)_{mpane} Re=O No Комплекс Δ тура I $[ReO(L_{TDM})(Tmen)] \cdot 2H_2O$ 1.678(3) $1.948(3) \pm 0.007 \,O(L_{TDM})$ 2.067(3) 0.119 [13] $2.227(4) \pm 0.003 \text{ N(Tmen)}$ Π $[ReO(L_{TDM})(Phen)] \cdot MeOH$ 1.690(6) $1.937(6) \pm 0.020 \,\mathrm{O(L_{TDM})}$ 2.102(6) 0.165 [13] $2.144(7) \pm 0.015 \text{ N(Phen)}$ Ш $Na(NCMe_2)[ReO(L_{rema})(PPh_3)] \cdot 4MeCN \mid 1.698(2) \mid 2.059(2) \pm 0.010O(L_{rema})$ 1.938(2) -0.121[15] 2.4390(9) P(PPh₃) IV $K(NCMe_2)[ReO(L_{rema}) \cdot (PPh_3)] \cdot 4MeCN | 1.699(2) | 2.062(2) \pm 0.008 O(L_{rema})$ -0.137[15] 1.925(2)

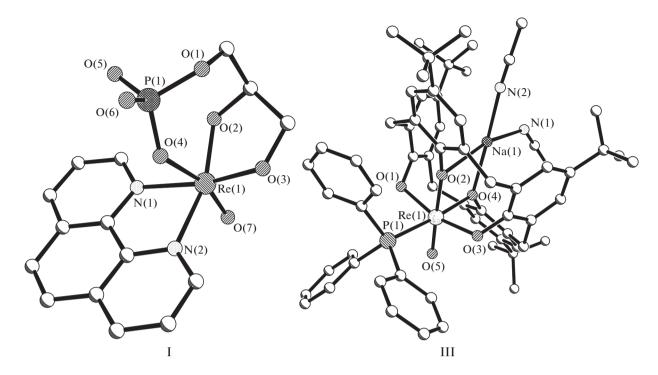
2.4432(10) P(PPh₃)

Таблица 1. Основные геометрические параметры (в Å) в мономерных октаэдрических комплексах [ReO($L_{\text{три}}$)($L_{\text{моно}}$)2] и [ReO($L_{\text{тетра}}$)($L_{\text{моно}}$)] с тридентатно (O, O, O)- и тетрадентатно (O, O, O)-хелатными лигандами

Примечание. Лиганды $(L_{\text{три}})^{3-} = \text{OCH}_2\text{C}(\text{O})\text{CH}_2\text{OP}(\text{O})(\text{OH})\text{O}; (L_{\text{тетра}})^{4-} = (\text{OC}_6\text{H}_2\text{ (трет-Bu})\text{CH}_2)_4.$

позиции к кратносвязанным оксолигандам занимают атомы кислорода $O(L_{\text{три}}), O(L_{\text{тетра}})$.

Основные длины связей в структурно исследованных комплексах приведены в табл. 1.


КОМПЛЕКСЫ [ReO(L_{TDH})(L_{GH})]

Известна структура двух близких по составу комплексов [13], различающихся лишь типом бидентатно-хелатного (N, N) лиганда и сольватной молекулой: [ReO($L_{\text{три}}$)($L_{\text{би}}$)] · Solv, где $L_{\text{би}}$ — тетраметилэтан-1,2-диамин $((NMe_2)CH_2)_2$ (Tmen), Solv = H_2O (I, рис. 1a); L_{6H} – 1,10-фенантролин $NC_5H_3(CH)_2NC_5H_3$ (Phen) (II). Трехзарядные сахарофосфонатные лиганды $(L_{\text{при}})^{3-}$, 2,3-ди(гидрокси)пропилдигидрофосфато $OCH_2C(O)CH_2OP(O)(OH)O$, в обеих структурах замыкающие по два сочлененных по связям Re-O(2), O(2)-C металлоцикла ReOC₂OPO и пятичленный (семичленный ReOC₂O), координируют атом рения тремя атомами кислорода на общей грани октаэдра ${\rm ReO_4N_2}$. Интервал углов ${\rm OReO_{\it uuc}}$ в I, II составляет $82.3^{\circ}-88.5^{\circ}$. Связи $Re-O(L_{три})$ с нейтральными атомами кислорода фосфатогрупп в транс-позициях к O(оксо) (2.067 и 2.102 Å соответственно в I и II) заметно длиннее (в среднем на 0.119 и 0.165 Å) аналогичных связей $Re-O(L_{TDM})_{uuc}$ (1.948 ± 0.007 и $1.937 \pm 0.020 \,\text{Å}$) вследствие СПТВ. Авторы [13] отмечают, что в единственном структурно исследованном комплексе $[Re^{V}O(L_{MOHO})(1-MeIm_4)](PF_6)_2$ толуол [14] с лигандом L — диэфиром фосфорной кислоты $OP(O)(OMe)_2$ — связь $Re-O_{mnanc}$ (1.988 Å) существенно короче, чем в I и II. В тетраэдре PO₄ обеих структур атомы фосфора координированы атомами кислорода в разной функции и на разных расстояниях P-O: 1.587 и 1.583 Å соответственно в I и II с атомом O(1) семичленного металлоцикла; 1.528 и 1.527 Å c O(4) (координирован c Re); 1.558 и 1.558 Å с O(5) (гидроксогруппа);

1.483 и 1.490 Å с O(6) (концевой). Фосфатогруппы депротонированы по атомам O(1). В структуре I есть прочная водородная связь (BC) O(5)— Н...О(w) между концевой гидроксогруппой и сольватной молекулой воды (О...О 2.522 Å). В структуре II две короткие BC типа O(5)—Н...О(6) (О...О 2.495 Å) формируют центросимметричный димер.

$COEДИНЕНИЯ [ReO(L_{TETDA})(L_{MOHO})]$

Определена кристаллическая структура двух соединений [15], содержащих комплексные моформулой $[M(NCMe)_2]$ лекулы с общей $[ReO(L_{\text{тетра}})(L_{\text{моно}})] \cdot 4MeCN$, где $L_{\text{моно}} = PPh_3$, M == Na (III, рис. 1б) и K (IV). Кристаллы III и IV изоструктурные. Четырехзарядный лиганд $(L_{\text{тетра}})^{4-}$ μ₂-5,11,17,23-тетра-4-бутилкаликс(4)арен-25,26,27,28тетраолат (OC_6H_2 (трет-Bu) CH_2) $_4$ — имеет эллиптическую форму и содержит четыре эквивалентных фрагмента OC_6H_2 (трет-Bu) CH_2 , координирующих атом рения ацидоатомами кислорода. При координации рения с лигандом L_{тетпа} замыкаются четыре восьмичленных металлоцикла ReOC₅O, попарно сочлененных по связям Re-O, O-C. Кроме того, в структурах III, IV формируется биметаллический четырехчленный хелатный цикл ReOMO. Связи Re $-O(L_{\text{тетра}})_{mpanc}$ (1.938 и 1.925 Å соответственно в III и IV) существенно короче, а не длиннее, как в I, II, чем $Re-O(L_{TETDa})_{uuc}$ (средн. 2.059 и 2.062, $\Delta = -0.121$ и -0.137 Å). Атомы щелочных металлов M имеют KY = 4: $M - O_{MOCT}$ 2.309 и 2.591, M-N 2.386 \pm 0.010 Å (III, M = Na); M–O 2.595 и 2.867, M–N 2.745 \pm 0.040 Å (IV, M = = K). Валентные углы NMN 92.54°, ОМО 66.39° (III, M = Na); 92.90°, 59.45° (IV, M = K). Расстояния Re-Na 3.525, Re-K 3.834 Å, углы ReONa 101.64° и 107.55°, ReOK 104.52° и 110.19°.

Рис. 1. Строение комплексов [ReO($L_{\text{три}}$)(Tmen)] (I) и [ReO($L_{\text{тетра}}$)(PPh₃)]] $^-$ (III).

ОСОБЕННОСТИ СТРОЕНИЯ МОНОМЕРНЫХ ОКТАЭДРИЧЕСКИХ МОНООКСОКОМПЛЕКСОВ РЕНИЯ(V). [ReO($L_{\text{три}}$)($L_{\text{би}}$)] и [ReO($L_{\text{тетра}}$)($L_{\text{моно}}$)] С ТРИДЕНТАТНО (O,O,O)-И ТЕТРАДЕНТАТНО (O,O,O,O)-ХЕЛАТНЫМИ ЛИГАНДАМИ

В табл. 1 приведены средние значения основных геометрических параметров в структурах I—IV. Отметим две особенности стереохимии октаэдрических монооксокомплексов металлов V—VII групп (в том числе рения).

- 1. Выбор *транс*-партнера (при наличии конкурирующих лигандов) определяется правилом самосогласованности [2]: в *транс*-положении к кратносвязанному лиганду O(оксо), как правило, размещается наименее поляризуемый нейтральный σ-донорный лиганд (атом), связь с которым легче ослабить, а не отрицательно заряженный (ацидо) лиганд (атом).
- 2. Связи Re–L, *танс* к O(оксо), удлиняются из-за СПТВ кратносвязанного оксолиганда.

Оба правила реализуются в комплексах I и II. В этих соединениях *транс*-положение к оксолигандам занимают нейтральные атомы кислорода лиганда $L_{\rm три}$, связи $Re-O_{\it mpane}$ с которыми (2.067 и 2.102 Å соответственно в I и II) существенно длиннее (на 0.119 и 0.165 Å), чем $Re-O(L_{\rm три})_{\it que}$ (средн. 1.948 и 1.937 Å).

В комплексах III и IV в *транс*-позициях к O(okco) расположены ацидоатомы кислорода лиганда L_{retra} .

При этом в соединениях III, IV имеет место принципиально иной вариант, чем в вышеописанных комплексах I, II. В комплексах III, IV связи $\text{Re-O}(L_{\text{тетра}})_{mpanc}$ (1.938, 1.925 Å), как сказано выше, существенно (в среднем на 0.121 и 0.137 Å) короче, чем $\text{Re-O}(L_{\text{тетра}})_{uuc}$, а не длиннее вследствие СПТВ, как в I, II и в большинстве монооксооктаэдрических комплексов d^2 -Re(V). Этот факт, казалось бы, противоречит правилу самосогласованности [2]. Однако на самом деле связи Re-O(L) в *транс*-позициях к оксолигандам в соединениях III, IV можно рассматривать как имеющие повышенную кратность, так как они меньше не только одноименных расстояний Re- $O(L_{\text{тетра}})$ (отрицательная величина параметра Δ), но и величины Re-O(CT) 2.04 Å [4], т.е. в этом случае можно говорить о псевдодиоксокомплексах, содержащих два лиганда (O(oкco) и $O(L)_{mpanc}$) повышенной кратности. Напомним, что в диоксокомплексах d^2 -металлов V–VII групп два кратносвязанных лиганда всегда располагаются в транс-позициях друг к другу.

БЛАГОДАРНОСТЬ

Автор признателен А.В. Чуракову за помощь в выборке данных из Кембриджского банка структурных данных.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Порай-Кошиц М.А., Гилинская Э.А.* Кристаллохимия. М.: ВИНИТИ, Итоги науки и техники. 1966. С. 126.
- 2. *Порай-Кошиц М.А., Атовмян Л.О.* // Коорд. химия. 1975. Т. 1. С. 1271.
- 3. *Griffith F., Wicing C.* // J. Chem. Soc. A. 1968. P. 379.
- 4. *Порай-Кошиц М.А.* // Изв. Югосл. кристаллогр. центра. 1974. Т. 9. С. 19.
- 5. *Порай-Кошиц М.А., Атовмян Л.О.* Кристаллохимия координационных соединений молибдена. М.: Наука, 1974. 231 с.
- Shustorovich E.M., Porai-Koshits M.A., Buslaev Yu.A. // Coord. Chem. Rev. 1975. V. 17. P. 1.
- 7. Порай-Кошиц М.А., Сергиенко В.С. // Успехи химии. 1990. Т. 59. С. 86.
- 8. Allen F.H. // Acta Crystallogr. 2002. V. 58B. P. 380.

- 9. *Sergienko V.S.*, *Churakov A.V.* // Russ. J. Inorg. Chem. 2016. V. 61. № 13. P. 1708.
- Sergienko V.S. // Russ. J. Inorg. Chem. 2015. V. 60.
 № 14. P. 1723.
- 11. Sergienko V.S., Churakov A.V. // Crystallogr. Rep. 2014. V. 59. № 3. P. 300. doi 10 1134/S106377451140301711 [Сергиенко В.С., Чураков А.В. // Кристаллография. 2014. Т. 59. № 3. С. 341.]
- 12. Sergienko V.S., Churakov A.V. // Crystallogr. Rep. 2013. V. 58. № 1. Р. 5. doi 10 1134/S1063774513010112 [Сереиенко В.С., Чураков А.В. // Кристаллография. 2013. Т. 58. № 1. С. 3.]
- 13. *Steinborn M., Suhanji M., Klüfter P. //* Dalton Trans. 2013. V. 42. P. 5749.
- 14. *Bëlanger S., Beauchamp A.L.* // Inorg. Chem. 1997. V. 36. P. 3640.
- Redshaw C., Liu X., Zhan S. et al. // Eur. J. Inorg. Chem. 2008. P. 2698.