– ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 544.344.3:546.289'24

СИСТЕМА TI-Bi-Er-Te В ОБЛАСТИ СОСТАВОВ Tl₂Te-Tl₉BiTe₆-Tl₉ErTe₆

© 2019 г. С. З. Имамалиева^{1, 2, *}, И. Ф. Мехдиева^{1, 2}, В. А. Гасымов^{1, 2}, М. Б. Бабанлы^{1, 2}

¹Филиал Московского государственного университета им.М.В. Ломоносова в г. Баку, ул. Университетская, 1, пос. Ходжасан, АZ 1144 Баку, Азербайджан

²Институт катализа и неорганической химии НАН Азербайджана,

пр-т Г. Джавида, 113, АZ 1143 Баку, Азербайджан

**E-mail: samira9597a@gmail.com* Поступила в редакцию 13.02.2019 г. После доработки 26.02.2019 г. Принята к публикации 15.03.2019 г.

Методами физико-химического анализа исследованы фазовые равновесия в четверной системе Tl-Bi-Er-Te в области составов $Tl_2Te-Tl_9BiTe_6-Tl_9ErTe_6$ (1). Уточнена фазовая диаграмма граничной системы $Tl_2Te-Tl_9BiTe_6$. Показано, что она квазибинарная, перитектического типа и характеризуется образованием ограниченных твердых растворов на основе исходных соединений. Впервые построен ряд политермических сечений, изотермические сечения при 300, 760 и 780 К фазовой диаграммы, проекции поверхностей ликвидуса и солидуса системы (1). Показано, что в ней образуется широкая область твердых растворов со структурой Tl_5Te_3 (δ -фаза), занимающая свыше 90% площади концентрационного треугольника. Область гомогенности Tl_2Te составляет 5–7 мол. %. Полученные результаты могут быть использованы для выбора составов раствор-расплавов и температурных режимов при выращивании кристаллов δ -фазы заданного состава, представляющих практический интерес как потенциальные термоэлектрические и магнитные материалы.

Ключевые слова: теллуриды таллия-висмута-эрбия, фазовые равновесия, поверхности ликвидуса и солидуса, твердые растворы

DOI: 10.1134/S0044457X19070195

ВВЕДЕНИЕ

Сложные халькогениды тяжелых металлов, в том числе таллия, относятся к числу важных функциональных материалов. Многие из них обладают термоэлектрическими свойствами с аномально низкой теплопроводностью [1–3]. Кроме того, они представляют интерес как топологические изоляторы [4–6] и полуметаллы Вейля [7]. Некоторые из них обладают фотопроводимостью и перспективны для применения в качестве детекторов γ - и рентгеновского излучения [8–10].

Благодаря особенностям кристаллической структуры [11, 12] теллурид таллия Tl_5Te_3 является одним из наиболее подходящих матричных соединений для получения его новых катион- и анионзамещенных аналогов [13–22]. Тройные и более сложные структурные аналоги Tl_5Te_3 обладают рядом уникальных функциональных свойств, что делает их весьма перспективными для применения в различных областях современных высоких технологий [22–30].

Поиск и разработка физико-химических основ целенаправленного синтеза новых многокомпонентных халькогенидных фаз и материалов базируются на данных по фазовым равновесиям и термодинамическим свойствам соответствующих систем [31, 32]. При этом наибольший интерес представляют системы, в которых возможно образование структурных аналогов известных бинарных и тройных соединений или твердых растворов на их основе [33, 34].

Ранее с целью получения многокомпонентных твердых растворов со структурой Tl_5Te_3 – потенциальных термоэлектрических и магнитных материалов – нами были изучены фазовые равновесия в некоторых системах, содержащих Tl_5Te_3 и его РЗЭ-содержащие структурные аналоги [34–36].

В настоящей работе представлены результаты исследования фазовых равновесий в четверной системе Tl-Bi-Er-Te в области $Tl_2Te-Tl_9BiTe_6-Tl_9ErTe_6$.

Соединения Tl₂Te и Tl₉BiTe₆ плавятся конгруэнтно при 695 [37] и 830 К [14] соответственно, а Tl₉ErTe₆ – инконгруэнтно с разложением по перитектической реакции Tl₉ErTe₆ \rightarrow ж + TlErTe₂ при 705 К [38]. Соединение Tl₂Te кристаллизуется в моноклинной сингонии (пр. гр. *C*₂/*C*, *a* = 1.5662, *b* = 0.8987, *c* = 3.1196 нм, β = 100.76°, *z* = 44) [39], а

Соединение	Параметры кристаллической решетки, нм		<i>Т</i> _{пл} , К	H_{μ} , МПа
Tl ₂ Te	a = 1.5662, b = 0.8987, c = 3.1196,		695	1400
	$\beta = 100.7$	$6^{\circ}, z = 44$		
Tl ₉ ErTe ₆	0.88501(3)	1.2952(2)	705; 1120	1070
Tl ₉ BiTe ₆	0.88551(3)	1.3048(3)	830	980
$5.3 \text{Tl}_2 \text{Te} - \text{Tl}_9 \text{BiTe}_6$				
Tl _{9.5} Bi _{0.05} Te _{5.05}	-	—	702	1420
$Tl_{9.9}Bi_{0.1}Te_{5.1}$	_	—	702-715	1450
Tl _{9.85} Bi _{0.15} Te _{5.15}	_	_	702-724	_
Tl _{9.8} Bi _{0.2} Te _{5.2}	0.89135(4)	1.2692(3)	708-737	1200; 1450
Tl _{9.7} Bi _{0.3} Te _{5.3}	_	_	720-749	1220
Tl _{9.6} Bi _{0.4} Te _{5.4}	0.89001(4)	1.2780(2)	732-767	1200
Tl _{9.4} Bi _{0.6} Te _{5.6}	0.88863(3)	1.2870(2)	763-790	1160
Tl _{9.2} Bi _{0.8} Te _{5.8}	0.88712(3)	1.2.958(3)	793-815	1080
	I	5Tl ₂ Te–Tl ₉ ErTe ₆		
Tl _{9.95} Er _{0.05} Te _{5.05}	-	_	696	1420
$Tl_{9.9}Er_{0.1}Te_{5.1}$	_	_	698	1450
$Tl_{9.8}Er_{0.2}Te_{5.2}$	_	_	698-701	1230, 1460
$Tl_{9.7}Er_{0.3}Te_{5.3}$	_	_	698-703	1230, 1460
$Tl_{9.6}Er_{0.4}Te_{5.4}$	0.88985(4)	1.2736(4)	700-704	1200
$Tl_{9.4}Er_{0.6}Te_{5.6}$	0.88818(4)	1.2817(5)	702-705	1180
$Tl_{9.2}Er_{0.8}Te_{5.8}$	0.88661(3)	1.2892(3)	705; 1010	1150
$Tl_{9.1}Er_{0.9}Te_{5.9}$	-	—	705; 1085	—

Таблица 1. Данные ДТА, измерений микротвердости и параметры кристаллической решетки сплавов системы Tl₂Te-Tl₉BiTe₆-Tl₉ErTe₆

параметры тетрагональных кристаллических решеток Tl₉BiTe₆ и Tl₉ErTe₆ равны: a = 0.88551, c = 1.3048 нм, z = 2 [40] и a = 0.88501, c = 1.29524 нм, z = 2 [38] соответственно.

Граничная составляющая система $Tl_9BiTe_6-Tl_9ErTe_6$ [38] характеризуется образованием непрерывного ряда твердых растворов со структурой Tl_5Te_3 .

Фазовая диаграмма системы $Tl_2Te-Tl_9BiTe_6$ изучена в работах [14, 41]. Согласно [41], она характеризуется образованием непрерывного ряда твердых растворов со структурой Tl_5Te_3 . Согласно данным [14], в системе наблюдается морфотропный фазовый переход вблизи Tl_2Te . Принимая во внимание, что Tl_2Te и Tl_9BiTe_6 обладают различными кристаллическими структурами, это утверждение представляется маловероятным. Поэтому мы уточнили характер фазовых превращений в системе $Tl_2Te-Tl_9BiTe_6$.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Конгруэнтно плавящиеся соединения Tl_2Te и Tl_9BiTe_6 синтезированы прямым взаимодействием элементарных компонентов высокой степени чистоты (не менее 99.999 ат. %). Все элементарные компоненты были приобретены у компании Alpha Aesar. Синтез проводили в вакуумированных (~ 10^{-2} Па) кварцевых ампулах при температуре 850 К с последующим медленным охлаждением в режиме выключенной печи.

Поскольку для предотвращения окисления на воздухе таллий хранился в воде, его высушивали непосредственно перед использованием. Принимая во внимание токсичность таллия и его соединений, во время работы с ним использовали защитные перчатки.

При синтезе Tl_9ErTe_6 учитывали, что Tl и Er образуют между собой термодинамически устойчивые соединения, что несколько затрудняет получение тройного соединения из элементов. Поэтому синтез соединения проводили сплавлением стехиометрических количеств Tl_2Te , Er и Te. Учитывая инконгруэнтный характер плавления Tl_9ErTe_6 [38], после сплавления этой смеси полученный слиток Tl_9ErTe_6 перетирали в порошок, тщательно перемешивали, запрессовывали в таблетку и отжигали при 680 К в течение 800 ч. С целью предотвращения взаимодействия кварца с эрбием синтез соединения Tl_9ErTe_6 и сплавов исследуемой системы проводили в графитизированных ампулах. Индивидуальность синтезированных соединений контролировали методами дифференциального термического (ДТА) и рентгенофазового анализа (РФА). На термограмме нагревания было обнаружено по одному эндотермическому эффекту для Tl_2Te (695 K) и Tl_9BiTe_6 (830 K), а также два пика для Tl_9ErTe_6 , которые соответствовали перитектической реакции (705 K) и концу кристаллизации (1120 K), что соответствует литературным данным [14, 37, 38].

Результаты РФА также подтвердили однофазность синтезированных соединений. Параметры кристаллических решеток, определенные по данным порошковых рентгенограмм с помощью программного обеспечения Тораз V3.0, находились в хорошем соответствии с литературными данными [38–40].

Сплавлением синтезированных и идентифицированных исходных соединений в условиях вакуума при 900 К были получены сплавы системы $Tl_2Te-Tl_9BiTe_6-Tl_9ErTe_6$ (каждый массой 1 г). После синтеза для ускорения достижения равновесного состояния литые негомогенизированные образцы перетирали в порошок в агатовой ступке, тщательно перемешивали, запрессовывали в таблетки и отжигали при температуре 650 К в течение 800 ч.

Исследования проводили методами ДТА и РФА, а также измерением микротвердости. Кривые нагревания снимали на дифференциальном сканирующем калориметре NETZSCH 404 F1 Pegasus system в интервале температур от комнатной до ~1300 K со скоростью нагревания 10 град/мин и точностью $\pm 2^{\circ}$.

Кристаллическую структуру исходных соединений и промежуточных сплавов анализировали по порошковым рентгенограммам, снятым при комнатной температуре на дифрактометре Bruker D8 (Си K_{α} -излучение) в интервале углов 2 $\theta = 10^{\circ}-70^{\circ}$. Точность определения параметров кристаллической решетки приведена в скобках (табл. 1).

Измерения микротвердости проводили на микротвердомере ПМТ-3 с нагрузкой 20 г. Точность определения микротвердости составляла ±20 МПа.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Совместная обработка экспериментальных данных, полученных методами ДТА и РФА, а также измерением микротвердости, позволила установить характер фазовых равновесий в системе $Tl_2Te-Tl_9BiTe_6-Tl_9ErTe_6$.

Система $Tl_2Te-Tl_9BiTe_6$ (рис. 1). РФА показал наличие широких областей твердых растворов в системе $Tl_2Te-Tl_9BiTe_6$. На дифрактограммах этой системы наблюдали три типа дифракцион-

Рис. 1. Фазовая диаграмма (а), зависимости микротвердости (б) и параметров кристаллической решетки (в) сплавов системы $\frac{16}{3}$ Tl₂Te–Tl₉BiTe₆.

Рис. 2. Порошковые рентгенограммы сплавов системы $Tl_2Te-Tl_9BiTe_6$: $1 - Tl_2Te$, 2 - 10 мол. % Tl_9BiTe_6 , 3 - 20 мол. % Tl_9BiTe_6 , $4 - Tl_9BiTe_6$.

ных картин. Так, дифратограммы образцов с составами до 5 мол. % Tl_9BiTe_6 содержали рефлексы только соединения Tl_2Te (α -фаза), образцы с составами ≥ 20 мол. % Tl_9BiTe_6 имели дифракционную картину, идентичную таковой для Tl_9BiTe_6

Рис. 3. Фазовая диаграмма (а), зависимости микротвердости (б) и параметров кристаллической решетки (в) сплавов системы $\frac{16}{3}$ Tl₂Te–Tl₉ErTe₆.

(δ -фаза), а образцы состава 8–18 мол. % Tl₉BiTe₆ наряду с α -фазой содержали рефлексы δ -фазы, т.е. были двухфазные. На рис. 2 представлены порошковые рентгенограммы некоторых сплавов системы. В пределах области гомогенности δ -фазы зависимости параметров кристаллической решетки от состава являются линейными.

Согласно фазовой диаграмме, данная система является квазибинарной и образует фазовую диаграмму перитектического типа. Координаты перитектической точки (p_1) для равновесия ж + $\delta \leftrightarrow \alpha$ составляют 5 мол. % Tl₉BiTe₆ и 702 K (α - и δ - твердые растворы на основе Tl₂Te и Tl₉BiTe₆ соответственно). При перитектической температуре области гомогенности Tl₂Te и Tl₉BiTe₆ составляют около 7 и 85 мол. %. При понижении температуры эти области несколько сужаются и, согласно данным измерений микротвердости и РФА, составляют 5 и 80 мол. % соответственно при 300 K (рис. 1в).

Характер зависимости микротвердости от состава находится в соответствии с фазовой диаграммой (рис. 1б). Значения микротвердости исходных соединений несколько повышаются в пределах областей гомогенности α - и δ -фаз, а в двухфазной области α + δ остаются постоянными (рис. 1в).

Рис. 4. Диаграмма твердофазных равновесий системы $Tl_2Te-Tl_9BiTe_6-Tl_9ErTe_6$ при 300 К.

Система Tl₂Te–Tl₉ErTe₆ (рис. 3) неквазибинарная в силу перитектического характера плавления Tl₉ErTe₆ и характеризуется широкой областью твердых растворов (δ) со структурой Tl₅Te₃. Ликвидус состоит из трех кривых, отвечающих первичной кристаллизации α - и δ -фаз на основе Tl₂Te и Tl₉ErTe₆ соответственно, а также TlErTe₂. Горизонтали при 705 и 698 К отвечают перитектическим равновесиям ж + $\delta \leftrightarrow \alpha$ и ж + TlErTe₂ $\leftrightarrow \delta$. Точки перитектики p_2 и p_3 имеют составы 8 и 70 мол. % Tl₉ErTe₆ соответственно.

Диаграмма твердофазных равновесий при 300 К (рис. 4) наглядно демонстрирует расположение фазовых областей в системе $Tl_2Te-Tl_9BiTe_6$ - Tl_9ErTe_6 при этой температуре. Система состоит из двух однофазных полей (α - и δ -фазы), ограниченных двухфазным полем α + δ . На рис. 4 представлены составы изученных сплавов.

Проекции поверхностей ликвидуса и солидуса системы $Tl_2Te-Tl_9BiTe_6-Tl_9ErTe_6$ приведены на рис. 5. Ликвидус состоит из трех полей первичной кристаллизации α -, δ -фаз и соединения $TlErTe_2$. Кривые p_1p_2 и p_3p_4 , разграничивающие эти поля, отвечают моновариантным перитектическим равновесиям ж + $\delta \leftrightarrow \alpha$ и ж + $TlErTe_2 \leftrightarrow \delta$. Вблизи точки эвтектики (*e*) равновесие ж + $\delta \leftrightarrow \alpha$ должно трансформироваться в эвтектическое ж $\leftrightarrow \alpha + \delta$. Поверхность солидуса состоит из двух поверхностей, соответствующих завершению кристаллизации α - и δ -фаз.

Результаты исследований внутренних политермических сечений $Tl_2Te-[A]$, $Tl_2Te-[B]$ и

Рис. 5. Поверхности ликвидуса и солидуса (пунктирные линии) системы $Tl_2Te-Tl_9BiTe_6-Tl_9ErTe_6$. Поля первичной кристаллизации: $1 - \alpha$ -фаза, $2 - \delta$ -фаза, $3 - TlErTe_2$.

 $Tl_2Te-[C]$ фазовой диаграммы системы $Tl_2Te-Tl_9BiTe_6-Tl_9ErTe_6$ (А, В, С – составы 20, 50, 80 мол. % Tl_9ErTe_6 системы $Tl_9BiTe_6-Tl_9ErTe_6$) представлены на рис. 6. Для подтверждения правильного построения политермических разрезов на рис. 7 приведены порошковые рентгенограммы некоторых сплавов по разрезу $Tl_2Te-[B]$.

Характер фазовых равновесий по разрезам Tl₂Te-[A] и Tl₂Te-[B] (рис. 6а, 6б) качественно аналогичен. Кривые ликвидуса состоят из двух ветвей, отвечающих первичной кристаллизации α- и δ-фаз. Их точки пересечения соответствуют началу моновариантной перитектической реакции ж + $\delta \leftrightarrow \alpha$. По разрезу Tl₂Te–[C] ликвидус состоит из трех кривых первичной кристаллизации α - и δ -фаз, а также TlErTe₂ (рис. 6в). Термические эффекты, отвечающие первичной кристаллизации TlErTe₂ по данному разрезу, не были обнаружены на кривых нагревания, хотя, согласно рис. 5, разрез должен пересекать поверхность ликвидуса TlErTe₂. На кривой охлаждения сплава состава 10 мол. % Tl₂Te фиксируется слабый экзотермический эффект при 945 К, который мы отнесли к первичной кристаллизации TlErTe₂. Ниже солидуса вышеуказанные политермические разрезы проходят через фазовые поля α , $\alpha + \delta$ и δ .

Наличие моновариантной перитектической реакции $\# + \delta \leftrightarrow \alpha$ (рис. 5, кривая p_1p_2) в системе $Tl_2Te-Tl_9BiTe_6-Tl_9ErTe_6$ должно привести к образованию трехфазной области $\# + \alpha + \delta$ на всех

Рис. 6. Политермические разрезы $Tl_2Te-[A]$ (a), $Tl_2Te-[B]$ (б) и $Tl_2Te-[C]$ (в) фазовой диаграммы системы $Tl_2Te-Tl_9BiTe_6-Tl_9ErTe_6$ (A, B, C- составы 20, 50, 80 мол. % Tl_9ErTe_6 системы $Tl_9BiTe_6-Tl_9ErTe_6$). Обозначение Δ на рис. 6в – термический эффект на кривой охлаждения.

рассмотренных выше политермических сечениях (рис. 6). Очень узкий температурный интервал (698—702 К) протекания этой реакции не позволяет зафиксировать данную область методом ДТА. Учитывая известные положения [42] построения политермических сечений, эти узкие

Рис. 7. Порошковые рентгенограммы сплавов политермического разреза $Tl_2Te-[B]$ ($Tl_9Bi_{0.5}Er_{0.5}Te_6$): $1 - Tl_2Te$, 2 - 80 мол. % Tl_2Te , 3 - 70 мол. % Tl_2Te , $4 - Tl_9Bi_{0.5}Er_{0.5}Te_6$.

Рис. 8. Изотермические сечение фазовой диаграммы системы $Tl_2Te-Tl_9BiTe_6-Tl_9ErTe_6$ при 780 и 760 К.

области, а также область ж + TlErTe₂ + δ на разрезе Tl₂Te–[C] разграничили пунктиром.

Изотермические сечения при 780 и 760 К фазовой диаграммы представлены на рис. 8. Первое сечение состоит из сопряженных кривых ликвидуса и солидуса, разграничивающих однофазные области L и δ . Эти кривые находятся в коннодной связи и образуют двухфазное поле ж + δ . Изотермическое сечение при 760 К помимо этих фазовых областей отражает также гетерогенные области ж + TlErTe₂ и ж + TlErTe₂ + δ , которые разграничены с учетом данных по граничной системе Tl₉BiTe₆-Tl₉ErTe₆ [38].

Сопоставление изотермических (рис. 8) и политермических (рис. 6) сечений фазовой диаграммы $Tl_2Te-Tl_9BiTe_6-Tl_9ErTe_6$ наглядно пока-

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 7 2019

зывает, что направления коннодных линий не совпадают с плоскостями T-x изученных внутренних разрезов, что характерно для неквазибинарных политермических разрезов.

ЗАКЛЮЧЕНИЕ

Впервые получена полная картина фазовых равновесий в области составов $Tl_2Te-Tl_9BiTe_6-Tl_9ErTe_6$ системы Tl-Bi-Er-Te в координатах T-x-y. Построены фазовые диаграммы боковых систем $Tl_2Te-Tl_9BiTe_6$ и $Tl_2Te-Tl_9ErTe_6$, диаграмма твердофазных равновесий при 300 K, проекции поверхностей ликвидуса и солидуса, а также некоторые политермические и изотермические (760 и 780 K) сечения фазовой диаграммы указан-

ной подсистемы. Показано, что более 90% площади концентрационного треугольника данной системы занимает область гомогенности твердых растворов со структурой Tl_5Te_3 (δ -фаза) — потенциальных термоэлектрических и магнитных материалов.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках научной программы международной лаборатории "Перспективные материалы для спинтроники и квантовых вычислений", созданной на базе Института катализа и неорганической химии НАН Азербайджана и Международного физического центра Доностиа (Испания).

СПИСОК ЛИТЕРАТУРЫ

1. Шевельков А.В. // Успехи химии. 2008. Т. 77. № 1. С. 31.

https://doi.org/10.1070/RC2008v077n01ABEH003746

- Kurosaki K., Yamanaka S. // Phys. Status Solidi A. 2013. V. 210. № 1. P. 82. https://doi.org/10.1002/pssa.201228680
- Shi Y., Assoud A., Ponou S. et al. // J. Am. Chem. Soc. 2018. V. 140. № 27. P. 8578. https://doi.org/10.1021/jacs.8b04639
- Eremeev S.V., Koroteev Y.M., Chulkov E.V. // JETP Lett. 2010. V. 91. P. 594. https://doi.org/10.1134/S0021364010110111
- Breunig O., Wang Z., Taskin A.A. et al. // Nat. Commun. 2017. V. 8. P. 15545. https://doi.org/10.1038/ncomms15545
- Singh B., Lin H., Prasad R. et al. // Phys. Rev. B. 2016.
 V. 93. P. 085113.
- https://doi.org/10.1103/PhysRevB.93.085113
 7. *Ruan J., Jian S.K., Zhang D. et al.* // Phys. Rev. Lett. 2016. V. 115. P. 226801.
- https://doi.org/10.1103/PhysRevLett.116.226801 8. Lin W., Chen H., He J. et al. // ACS Photonics. 2017.
- V. 4. № 11. P. 2891. https://doi.org/10.1021/acsphotonics.7b00891
- Lin W., Kontsevoi O.Y., Liu Z. et al. // Cryst. Growth Des. 2018. V. 18. № 6. P. 3484. https://doi.org/10.1021/acs.cgd.8b00242
- 10. *Guler I., Gasanly N.* // Optik. 2018. V. 157. P. 895. https://doi.org/10.1016/j.ijleo.2017.11.120
- Schewe I., Böttcher P., Schnering H.G. // Z. Kristallogr. 1989. Bd. 188. P. 287. https://doi.org/10.1524/zkri.1989.188.14.287
- Bhan S., Shubert K. // J. Less. Common. Met. 1970.
 B. 20. № 3. P. 229. https://doi.org/10.1016/0022-5088(70)90066-4
- 13. Babanly M.B., Akhmadyar A., Kuliev A.A. // Russ. J. Inorg. Chem. 1985. V. 30 P. 1051. [Бабанлы М.Б., Ахмадьяр А., Кулиев А.А. // Журн. неорган. химии. 1985. Т. 30. № 4. С. 1051.]

- 14. *Babanly M.B., Akhmadyar A., Kuliev A.A.* // Russ. J. Inorg. Chem. 1985. V. 30. № 9. Р. 2356. [*Бабанлы М.Б., Ахмадьяр А., Кулиев А.А.* // Журн. неорган. химии. 1985. Т. 30. № 9. С. 2356.]
- 15. Имамалиева С.З., Садыгов Ф.М., Бабанлы М.Б. // Неорган. материалы. 2008. Т. 44. № 9. С. 1054. https://doi.org/10.1134/S0020168508090070
- Babanly D.M., Amiraslanov I.R., Shevelkov A.V. et al. // J. Alloys. Compd. 2015. V. 644. P. 106.
- Bradtmöller S., Böttcher P. // Z. Kristallogr. 1994.
 V. 209. № 1. P. 97. https://doi.org/10.1524/zkri.1994.209.1.97
- Bradtmöller S., Böttcher P. // Z. Kristallogr. 1994. V. 209. № 1. P. 75. https://doi.org/10.1524/zkri.1994.209.1.75
- Bradtmöller S., Böttcher P. // Z. Anorg. Allg. Chem. 1993. V. 619. P. 1155.
- https://doi.org/10.1002/zaac.19936190702
- Blachnik R., Dreibach H.A. // J. Solid State Chem. 1984. V. 52. P. 53. https://doi.org/10.1016/0022-4596(84)90197-X
- 21. Babanly D.M., Chiragov M.I., Babanly M.B. // Chem. Problems. 2005. № 2. P. 149.
- Piasecki M., Brik M.G., Barchiy I.E. et al. // J. Alloys Compd. 2017. V. 710. P. 600. https://doi.org/10.1016/j.jallcom.2017.03.280
- Heinke F., Eisenburger L., Schlegel R. et al. // Z. Anorg. Allg. Chem. 2017. V. 643. P. 447. https://doi.org/10.1002/zaac.201600449
- 24. Arpino K.E., Wasser B.D., McQueen T.M. // APL Mattr. 2015. V. 3. № 4. P. 041507. https://doi.org/10.1063/1.4913392
- Bangarigadu-Sanasy S., Sankar C.R., Schlender P. et al. // J. Alloys Compd. 2013. V. 549. P. 126. https://doi.org/10.1016/j.jallcom.2012.09.023
- Bangarigadu-Sanasy S., Sankar C.R., Dube P.A. et al. // J. Alloys. Compd. 2014. V. 589. P. 389. https://doi.org/10.1016/j.jallcom.2013.11.229
- Guo Q., Kleinke H. // J. Alloys Compd. 2015. V. 630. P. 37. https://doi.org/10.1016/j.jallcom.2015.01.025
- 28. *Shah W. H., Khan A., Waqas M. et al.* // Chalcogenide Lett. 2017. V. 14. № 2. P. 61.
- 29. *Shah W.H., Khan A., Tajudin S. et al.* // Chalcogenide Lett. 2018. V. 14. P. 187.
- Khan W.M., Shah W.H., Khan S. et al. // Int. J. Heat Techn. 2018. V. 36. P. 602. https://doi.org/10.18280/ijht.360224
- 31. *Tomashyk V.N.* Multinary Alloys Based on III–V Semiconductors. RC Press, 2016.
- Zlomanov V.P. // Russ. J. Inorg. Chem. 2010. V. 55. № 11. P. 1740. https://doi.org/10.1134/S0036023610110112
- 33. Babanly M.B., Chulkov E.V., Aliev Z.S. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 13. P. 1703. https://doi.org/10.1134/S0036023617130034
- 34. Imamaliyeva S.Z., Babanly D.M., Tagiev D.B., Babanly M.B. // Russ. J. Inorg. Chem. 2018. V. 63.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 7 2019

760

P. 1703.

https://doi.org/10.1134/S0036023618130041

- Imamaliyeva S.Z., Gasanly T.M., Sadygov F.M. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 2. Р. 262. [Имамалиева С.З., Гасанлы Т.М., Садыгов Ф.М. и др. // Журн. неорган. химии. 2018. Т. 63. № 2. С. 251.] https://doi.org/10.1134/S0036023618020079
- 36. Имамалиева С.З., Гасанлы Т.М., Зломанов В.П. и др. // Неорган. материалы. 2017. Т. 53. № 4. С. 354. https://doi.org/10.1134/S0020168517040069
- 37. *Асадов М.М., Бабанлы М.Б., Кулиев А.А.* // Неорган. материалы. 1977. Т. 13. № 8. С. 1407.

- 38. *Mekhdiyeva I.F., Babanly K.N., Mahmudova M.A. et al.* // Azerb. Chem. J. 2018. № 2. P. 80.
- 39. Cerny R., Joubert J., Filinchuk Y., Feutelais Y. // Acta Crystallogr. C. 2002. V. 58. № 5. P. 163. https://doi.org/10.1107/S0108270102005085
- 40. *Doert T., Böttcher P.* // Z. Kristallogr. 1994. V. 209. P. 95. https://doi.org/10.1524/zkri.1994.209.1.95
- Gawel W., Zaleska E., Terpilowski J. // J. Therm. Anal. 1989. V. 35. P. 59. https://doi.org/10.1007/BF01914264
- 42. Афиногенов Ю.П., Гончаров Е.Г., Семенова Г.В. и др. Физико-химический анализ многокомпонентных систем. М., 2006. 332 с.