СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 546.46'62'47-381

СИНТЕЗ ГИДРОКСОСОЛЕЙ ЦИНКА-МАГНИЯ-АЛЮМИНИЯ СО СТРУКТУРОЙ ГИДРОТАЛЬКИТОВОГО ТИПА И КАТАЛИЗАТОРОВ ОКИСЛИТЕЛЬНОГО ДЕГИДРИРОВАНИЯ ЭТАНА

© 2019 г. О. Н. Краснобаева¹, И. П. Беломестных², Т. А. Носова¹, Т. А. Елизарова¹, Д. Ф. Кондаков¹, В. П. Данилов^{1, *}

¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, Россия, 119991 Москва, Ленинский пр-т, 31 ²Институт органической химии им. Н.Д. Зелинского РАН, Россия, 119334 Москва, Ленинский пр-т, 47

> **E-mail: vpdanilov@igic.ras.ru* Поступила в редакцию 27.12.2018 г. После доработки 24.01.2019 г. Принята к публикации 15.02.2019 г.

Разработан способ синтеза гидроксосолей гидроталькитового типа, содержащих цинк, а также магний, алюминий, ванадий, молибден, ниобий в различных сочетаниях. Методом потенциометрического титрования изучены условия образования этих гидроксосолей, синтезированы образцы и получены их рентгенограммы. Путем термической обработки гидроксосолей синтезированы образцы оксидных катализаторов окислительного дегидрирования (ОД) углеводородов. Исследована их каталитическая активность. Установлено, что ряд катализаторов проявляет высокую эффективность в реакциях ОД этана – увеличивается выход этилена и повышается селективность реакции.

Ключевые слова: гидроксосоли цинка-магния-алюминия гидроталькитового типа, оксидные катализаторы, окислительное дегидрирование

DOI: 10.1134/S0044457X19080063

введение

Работа является продолжением исследований, связанных с разработкой новых катализаторов окислительного дегидрирования (ОД) органических соединений, содержащих оксиды переходных металлов в сочетании с другими каталитически активными оксидами ряда металлов (Zn, Cu, Nb, Ta, Te, V, Cr, Mo, W, Sb и др.). В качестве прекурсоров катализаторов ОД мы использовали сложные гидроксосоли со слоистой структурой гидроталькитового типа [1]. В работах [2-14] нами синтезирован ряд прекурсоров катализаторов ОД, содержащих каталитически активные оксиды различных металлов, в настоящей работе – сложные гидроксосоли, содержашие цинк, а также магний, алюминий, ванадий, молибден, ниобий в различных сочетаниях. Изучены условия образования этих гидроксосолей. Синтезированные гидроксосоли использовали в качестве прекурсоров оксидных катализаторов ОД этана с целью определения влияния добавок цинка на каталитические свойства оксидных катализаторов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез цинксодержащих гидроксосолей, используемых в качестве прекурсоров катализаторов, осуществляли по следующей методике. К раствору, содержащему нитраты цинка, магния и алюминия в заданных количествах, при температуре 60°С добавляли при перемешивании по каплям раствор, содержащий гидроксид и карбонат калия в молярном соотношении 2 : 1 до изменения pH от 1 до 10. Полученный осадок, представлявший собой тройной гидроксокарбонат цинка-магния-алюминия, отмывали водой от ионов калия по тетрафенилборату.

Для осуществления анионного обмена с целью замещения карбонат-ионов в гидроксокарбонате на декаванадат $(V_{10}O_{28})^{6-}$ - или парамолибдат $(Mo_7O_{24})^{6-}$ -ионы полученную после осаждения и промывания пасту разбавляли водой до соотношения т : ж = 1 : 2 и добавляли к ней заданное количество раствора декаванадата калия (0.15 М) и парамолибдата аммония (0.15 М). Пульпу перемешивали в течение 10 мин, затем к ней по каплям добавляли азотную кислоту (0.2 М) до рН 4.5 для обеспечения необходимых условий протекания анионного обмена [15, 16]. После выдерживания смеси в течение 10 мин при рН 4.5 осадок отфильтровывали и отмывали водой от ионов калия и аммония по тетрафенилборату.

Для введения ниобия в состав гидроксосолей сплавляли K₂CO₃ с Nb₂O₅ в мольном соотноше-

Рис. 1. Кривые потенциометрического титрования раствором гидроксида калия растворов нитрата цинка (*1*), нитратов цинка-алюминия (*2*), нитратов цинка-магния-алюминия (*3*).

нии 10: 1 [17], сплав растворяли в воде и полученный раствор (pH 13) использовали для проведения анионного обмена карбонат-иона на полиоксониобат-ионы $[Nb_6O_{19}]^{8-}$ [7, 17]. Анионный обмен проводили в течение 6 ч, после чего осадки отмывали от иона калия водой.

Для установления фазового и химического состава синтезированных гидроксосолей использовали методы химического и рентгенофазового анализа (дифрактометр ДРОН 2.0, CuK_{α} -излучение), а для определения условий их образования — pHметрическое титрование растворов на прецизионном цифровом pH-метре OP-208 Раделикс (Венгрия).

Химический анализ полученных образцов осуществляли классическими методами химического анализа. Алюминий определяли титрованием избытка трилона Б раствором азотнокислого цинка в уротропиновом буфере с ксиленоловым оранжевым. При одновременном присутствии в пробе цинка и алюминия их сумму определяли по вышеописанной методике, затем в отдельной пробе тем же способом определяли цинк, предварительно связывая алюминий фтористым аммонием. При одновременном присутствии в пробе магния, алюминия и цинка сумму магния и цинка определяли в аммиачном буфере с эриохромом черным (алюминий определению не мешает). Сумму цинка и алюминия определяли в уротропиновом буфере с ксиленоловым оранжевым, цинк — тем же способом, связав алюминий фтористым аммонием. Магний этим определениям не мешает. Ванадий определяли волюмометрически с солью Мора и фенилантраниловой кислотой в качестве индикатора, молибден – весовым методом с α-бензоиноксимом, ниобий – прокаливанием при 1000°С и взвешиванием осадка, полученного после кислотного гидролиза.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Кривые потенциометрического титрования нитратов цинка, магния, алюминия и их смесей раствором гидроксида калия представлены на рис. 1. Установлено, что из растворов, содержащих один нитрат металла, цинк осаждается при pH 6.8–7.0 в виде гидроксонитрата $Zn_5(OH)_8(NO_3)_2 \cdot 2H_2O$ (рис. 1, кривая *I*) [18], алюминий – при pH 3.0–3.5 в виде гидроксосоли переменного состава Al(OH)_n(NO₃)_{3 – n} · *m*H₂O, описанной в литературе [1]; магний при pH 10.0–10.5 в виде хорошо окристаллизованного Mg(OH)₂ (брусита).

Из раствора, содержащего нитраты цинка и алюминия, сначала при рН 3.5-4.0 осаждается аморфный гидроксонитрат алюминия, затем при рН 6.0-6.5 образуется плохо окристаллизованная фаза переменного состава $[Zn_mAl(OH)_{2m+2}][(NO_3) \cdot mH_2O].$ На ее рентгенограмме, которая индицируется в гексагональной сингонии с параметрами 3.16 и 26.52 Å, присутствуют рефлексы, отвечающие межплоскостным расстояниям 8.84(003), 4.44(006), 2.56(013) и 1.56(110) Å. Судя по данным РФА и химического анализа, эта фаза представляет собой двойной гидроксонитрат цинка-алюминия со слоистой гидроталькитовой структурой (рис. 2, кривая 1). Из раствора, содержащего нитраты цинка, магния и алюминия, при рН 3.0-3.5 осаждается аморфный гидроксонитрат алюминия, при рН 6.0-7.0 – гидроксонитрат цинка Zn₅(OH)₈(NO₃)₂ · 2H₂O, при pH 8.0-8.5 выпадает тройной гидроталькитоподобный кристаллический гидроксонитрат цинка-магния-алюминия (рис. 2, кривая 2) переменного состава. Двойной гидроксонитрат цинка-алюминия и тройной гидроксонитрат цинка-магния-алюминия изоструктурны (судя по рентгенограммам) синтезированным нами ранее [1-14, 19, 20] сложным гидроксосолям со структурой гидроталькитового типа.

Нами получены два образца тройного гидроксонитрата состава $[Zn_{0.16}Mg_{1.88}Al(OH)_{6.08}][(NO_3) \cdot mH_2O]$ и $[Zn_{0.10}Mg_{1.87}Al(OH)_{5.94}][(NO_3) \cdot mH_2O]$.

Для выяснения влияния цинка на каталитические свойства оксидных катализаторов в реакциях ОД этана нами синтезированы образцы цинксодержащих прекурсоров катализаторов. Для этого сначала получили тройной гидроксокарбонат цинка-магния-алюминия, в который методом анионного обмена ввели декаванадат- и парамолибдат-ионы (табл. 1, образцы 1, 2). Для приготовления прекурсора катализатора ОД, содержащего гексаниобат-ион вместе с декаванадат- и парамолибдат-ионами, из-за того, что последние замещают карбонат-ион в межслоевом пространстве гидроталькитоподобных гидроксосолей при рН 4.5, а гексаниобат — при pH 13.0, мы вынуждены были использовать смесь двух изоморфных фаз. Для получения прекурсора, состав которого отвечает образцу 2 в табл. 1, использовали смесь молибден-ванадийсодержащей гидроксосоли $[Zn_{0.16}Mg_{1.88}(AIOH)_{6.08}][(Mo_7O_{24})_{0.04}(V_{10}O_{28})_{0.01}(CO_3)_{0.35} \cdot mH_2O]$ и ниобийсодержащей гидроксосоли $[Zn_{0.16}Mg_{1.88}AI(OH)_{6.08}][(Nb_6O_{19})_{0.02}(CO_3)_{0.42} \cdot mH_2O].$

Указанные смеси готовили путем перемешивания в течение 2 ч (для достижения однородности) двух исходных гидроксосолей в весовом соотношении 1 : 1 в водной среде при соотношении т : $\pi = 1 : 2$. Смеси получались достаточно однородными, о чем свидетельствовали характер седиментации осадков, а также данные химического анализа проб пульпы, отобранных в верхней и нижней частях седиментационного цилиндра (соотношения Al : Nb, Al : Мо и Al : V в этих пробах были одинаковыми). Состав полученных образцов-прекурсоров ОД представлен в табл. 1.

Для получения оксидных катализаторов синтезированные образцы прекурсоров подвергали термической обработке, которая заключалась в подсушивании осадка при 100–120°С до влажности 40%, таблетировании и прокаливании в муфеле в токе воздуха при постоянном подъеме температуры со скоростью 100 град/ч до 500°С и выдерживании при этой температуре в течение 4–5 ч.

Каталитические свойства полученных материалов изучали в кварцевом реакторе проточного типа с загрузкой 1–2 мл катализатора. В качестве окислителей использовали кислород воздуха и углекислый газ. Для поддержания изотермичности катализатор смешивали с равным объемом измельченного кварца. Температуру реакции, объемную скорость подачи углеводорода и соотношение углеводород/кислород/углекислый газ в исходной смеси варьировали в широких пределах. Продукты реакции анализировали методом жидкостной хроматографии с использованием колонки, наполненной фазой Порапак-Q.

В контактном газе определяли содержание непрореагировавшего исходного углеводорода (этан), продуктов дегидрирования (этилен, CO₂, CO). По результатам опытов рассчитывали конверсию исходного соединения, селективность реакции и выход целевых продуктов [14].

На синтезированных из образцов 1 и 2 катализаторах проводили окислительное дегидрирование этана (табл. 2).

Рис. 2. Дифрактограммы двойного гидроксонитрата цинка-алюминия (*1*), тройного гидроксонитрата цинка-магния-алюминия (*2*).

Анализ результатов каталитических исследований показал, что на цинксодержащих катализаторах процесс превращения этана в этилен идет при низкой температуре (450°C).

На катализаторе состава Zn-Mg-Al-V-Mo-O (образец 1) ОД этана идет с высокой селективностью (94%), но с небольшим выходом (12.5%). При введении в состав катализатора ниобия (образец 2) селективность возрастает до 96%, а выход — до 20%.

Сравнение работы катализаторов, содержащих вместо Zn другие *d*-элементы 4-го периода (M-Al-Mg-V-Mo-O, где M = Ni, Cr, Fe), указывает на то, что у Ni,Cr,Fe-содержащих катализаторов процесс OД этана идет при высоких температурах (700–800°С), при этом выход достигает 40–60% при селективности 40–70%.

При низких температурах (550°С) Ni- и Feсодержащие катализаторы состава M-Al-Mg-V-Мо-О дают выход 2.6–3% при селективности 38–44%.

Таблица 1. Состав цинксодержащих гидроталькитоподобных солей прекурсоров ОД этана

№ образца	№ образца Состав прекурсора			
1	$[Zn_{0.1}Mg_{1.87}Al(OH)_{5.94}][(Mo_7O_{24})_{0.02}(V_{10}O_{28})_{0.005}(CO_3)_{0.425} \cdot mH_2O]$			
2	$[Zn_{0.16}Mg_{1.88}Al(OH)_{6.08}][(Mo_7O_{24})_{0.02}(V_{10}O_{28})_{0.005}(Nb_6O_{19})_{0.01}(CO_3)_{0.385} \cdot mH_2O]$			

№ образца	Состав катализатора	t, °C	Конверсия С ₂ Н ₆ , %	Выход С ₂ Н ₄ , %	Селективность С ₂ Н ₄ , %
1	Zn-Mg-Al-V-Mo-O	400 450	12.5 13.2	11.2 12.5	90.0 94.0
2	Zn-Mg-Al-Nb-V-Mo-O	400 450 450	17.0 19.7 20.0	16.5 19.0 19.6	96.5 96.0 95.7

Таблица 2. Результаты окислительного дегидрирования этана на цинксодержащих катализаторах (состав реакционной смеси C₂H₆ : CO₂ : O₂ = 1 : 0 : 0.3 моль)

Таблица 3. ОД этана на медьсодержащих катализаторах (состав реакционной смеси C_2H_6 : CO_2 : $O_2 = 1:0:0.3$ моль)

№ образца	Состав катализатора	t, °C	Конверсия, С ₂ Н ₆ , %	Выход $C_2H_{4\%}$	Селективность С ₂ Н ₄ , %
1	Cu-Mg-Al-V-Mo-O	400 450	12.5 13.8	11.2 12.5	90.0 90.5
2	Cu-Mg-Al-V-Mo-Nb-O	400 450	17.6 20.0	17.5 19.6	97.2 95.7

Результаты ОД этана, очень близкие к результатам цинксодержащих катализаторов, дают Сисодержащие катализаторы, они также работают при низких температурах (400–450°С, табл. 3).

Как видно из сравнения результатов ОД этана для Си- и Zn-содержащих катализаторов, при низких температурах (400–450°С) их характеристики близки: выход – 12.5%, селективность 90–97%.

ЗАКЛЮЧЕНИЕ

Разработан способ введения цинка в состав катализаторов, содержащих Mg, Al, V, Mo, Nb в различных соотношениях.

Синтезированы новые гидроксосоли со слоистой структурой гидроталькитового типа $[Zn_nMg_mAl(OH)_{2(n + m) + 2})]^+[An \cdot pH_2O]^-$, где An = $= NO_3^-$ (гидроксонитраты) или $(CO_3)_{0.5}^-$ (гидроксо-карбонаты). Гидроксокарбонаты применяли для анионного обмена (CO₃) частично на $(Mo_7O_{24})^{6-}$, $(V_{10}O_{28})^{6-}$, $(Nb_6O_{19})^{8-}$ с дальнейшим использова-

нием полученных гидроксосолей в качестве прекурсоров катализаторов ОД этана.

При исследовании каталитических свойств полученных катализаторов в реакциях ОД этана установлено, что в присутствии как цинксодержащих, так и медьсодержащих катализаторов реакция окислительного дегидрирования этана идет при низких температурах – 400–450°С. Введение добавок ниобия в состав катализаторов приводит к повышению селективности и увеличению выхода этилена.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке Программы фундаментальных научных исследований Президиума РАН № 37 "Фундаментальные основы создания металлических, керамических и композиционных конструкционных материалов с повышенным комплексом эксплуатационных характеристик".

СПИСОК ЛИТЕРАТУРЫ

- Krasnobaeva O.N., Belomestnykh I.P., Isagulyants G.V. et al. // Russ. J. Inorg. Chem. 2004. V. 49. № 10. P. 1482. [Краснобаева О.Н., Беломестных И.П., Исагулянц Г.В. и др. // Журн. неорган. химии. 2004. T. 49. № 10. С. 1604.]
- Krasnobaeva O.N., Belomestnykh I.P., Isagulyants G.V. et al. // Russ. J. Inorg. Chem. 2005. V. 50. № 9. Р. 1295. [Краснобаева О.Н., Беломестных И.П., Исагулянц Г.В. и др. // Журн. неорган. химии. 2005. Т. 50. № 9. С. 1397.]
- Krasnobaeva O.N., Belomestnykh I.P., Isagulyants G.V. et al. // Russ. J. Inorg. Chem. 2007. V. 52. № 2. Р. 141. [Краснобаева О.Н., Беломестных И.П., Исагулянц Г.В. и др. // Журн. неорган. химии. 2007. Т. 52. № 2. С. 181.]
- Krasnobaeva O.N., Belomestnykh I.P., Isagulyants G.V. et al. // Russ. J. Inorg. Chem. 2008. V. 53. № 8. Р. 1176. [Краснобаева О.Н., Беломестных И.П., Исагулянц Г.В. и др. // Журн. неорган. химии. 2008. Т. 53. № 8. С. 1267.].
- Krasnobaeva O.N., Belomestnykh I.P., Isagulyants G.V. et al. // Russ. J. Inorg. Chem. 2009. V. 54. № 4. Р. 495. [Краснобаева О.Н., Беломестных И.П., Исагулянц Г.В. и др. // Журн. неорган. химии. 2009. Т. 54. № 4. С. 547.]
- 6. Krasnobaeva O.N., Belomestnyrh I.P., Isagulyants G.V. et al. // Russ. J. Inorg. Chem. 2009. V. 54. № 12.

Р. 1862. [*Краснобаева О.Н., Беломестных И.П., Исагулянц Г.В. и др. //* Журн. неорган химии. 2009. Т. 54. № 12. С. 1944.]

- Krasnobaeva O.N., Belomestnykh I.P., Nosova T.A. et al. // Russ. J. Inorg. Chem. 2011. V. 56. № 2. Р. 168. [Краснобаева О.Н., Беломестных И.П., Носова Т.А. и др. // Журн. неорган. химии. 2011. Т. 56. № 2. С. 204.]
- Krasnobaeva O.N., Belomestnykh I.P., Nosova T.A. et al. // Russ. J. Inorg. Chem. 2011. V. 56. № 7. Р. 1012. [Краснобаева О.Н., Беломестных И.П., Носова Т.А. и др. // Журн. неорган. химии. 2011. Т. 56. № 7. С. 1073.]
- Krasnobaeva O.N., Belomestnykh I.P., Nosova T.A. et al. // Russ. J. Inorg. Chem. 2012. V. 57. № 12. Р. 1540. [Краснобаева О.Н., Беломестных И.П., Носова Т.А. и др. // Журн. неорган. химии. 2012. Т. 57. № 11. С. 1639.]

https://doi.org/10.1134/S003602361212011X

- Krasnobaeva O.N., Belomestnykh I.P., Nosova T.A. et al. // Russ. J. Inorg. Chem. 2013. V. 58. № 6. Р. 644. [Краснобаева О.Н., Беломестных И.П., Носова Т.А. и др. // Журн. неорган. химии. 2013. Т. 58. № 6. С. 733.] https://doi.org/10.1134/S0036023613060168
- Krasnobaeva O.N., Belomestnykh I.P., Kogan V.M. et al. // Russ. J. Inorg. Chem. 2014. V. 59 № 7. Р. 692. [Краснобаева О.Н., Беломестных И.П., Коган В.М. и др. // Журн. неорган. химии. 2014. Т. 59. № 7. С. 904.] https://doi.org/10.1134/S0036023614070109
- Krasnobaeva O.N., Belovestnykh I.P., Nosova T.A. et al. // Russ. J. Inorg. Chem. 2015. V. 60. № 4. Р. 467. [Краснобаева О.Н., Беломестных И.П., Носова Т.А. и др. // Журн. неорган. химии. 2015. Т. 60. № 4. С. 467.] https://doi.org/10.1134/S0036023615040099

- Krasnobaeva O.N., Belomestnykh I.P., Nosova T.A. et al. // Russ. J. Inorg. Chem. 2016. V. 61. № 9. Р. 942. [Краснобаева О.Н., Беломестных И.П., Носова Т.А. и др. // Журн. неорган. химии. 2016. Т. 61. № 9. С. 1129. https://doi.org/1134/S0036023616090126]
- Krasnobaeva O.N., Belomestnykh I.P., Nosova T.A. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 7. Р. 879. [Краснобаева О.Н., Беломестных И.П., Носова Т.А. и др. // Журн. неорган. химии. 2017. Т. 62. № 7. С. 897.] https://doi.org/10.1134/S0036023617070129
- Аналитическая химия ванадия. Сер. Аналитическая химия элементов / Под ред. Золотова Ю.А. М.: Наука, 1981. С. 216.
- Tachyun Kwon, George A., Tsigdinnos G.A. et al. // J. Am. Chem. Soc. 1988. V. 110. P. 3653.
- Аналитическая химия ниобия и тантала. Сер. Аналитическая химия элементов / Под ред. Виноградова А.П. М.: Наука, 1976. С. 352.
- Stalin W., Oswald H.D. // Acta Crystallogr. 1970. V. 26B. P. 860.
- Krasnobaeva O.N., Nosova T.A., Kondakov D.F. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 9. Р. 1122. [Краснобаева О.Н., Носова Т.А., Кондаков Д.Ф. и др. // Журн. неорган. химии. 2018. Т. 63. № 9. С. 1092.] https://doi.org/10.1134/S0036023618090085
- Krasnobaeva O.N., Belomestnykh I.P., Nosova T.A. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 11. Р. 1419. [Краснобаева О.Н., Беломестных И.П., Носова Т.А. и др. // Журн. неорган. химии. 2018. Т. 63. № 11. С. 1394.]

https://doi.org/10.1134/S0036023618110098