ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2019, том 64, № 9, с. 951–956

____ КООРДИНАЦИОННЫЕ ____ СОЕДИНЕНИЯ ____

УДК 546.289:547.476:547.83:541.49:548.73

СИНТЕЗ И СТРУКТУРА КАРКАСНЫХ КСИЛАРАТОГЕРМАНАТНЫХ СОЛЕЙ С ПРОТОНИРОВАННЫМ ФЕНАНТРОЛИНОМ И ЕГО КОМПЛЕКСАМИ С Fe(II) И Ni(II) В КАЧЕСТВЕ КАТИОНОВ[#]

© 2019 г. Е. А. Чебаненко¹, И. И. Сейфуллина¹, Е. Э. Марцинко^{1, *}, В. В. Дьяконенко², С. В. Шишкина^{2, 3}

¹Одесский национальный университет им. И.И. Мечникова, ул. Дворянская, 2, Одесса, 65082 Украина ²Научно-технологический комплекс "Институт монокристаллов" НАН Украины, пр-т Науки, 60, Харьков, 61072 Украина

³Харьковский национальный университет им. В.Н. Каразина, пл. Свободы, 4, Харьков, 61072 Украина

*E-mail: lborn@ukr.net

Поступила в редакцию 17.02.2019 г. После доработки 04.04.2019 г. Принята к публикации 15.04.2019 г.

Разработаны методики синтеза новых супрамолекулярных ксиларатогерманатных солей с различными катионами: (HPhen)₄[(OH)₂Ge₂(μ -HXylar)₄Ge₂(μ -OH)₂] · 13H₂O (I), [Fe(Phen)₃]₂[(OH)₂Ge₂(μ -HXylar)₄Ge₂(μ -OH)₂] · 6H₂O · C₂H₅OH (II), [Ni(Phen)₃]₂[(OH)₂Ge₂(μ -HXylar)₄Ge₂(μ -OH)₂] · 8H₂O (III). Соединения изучены методами рентгеноструктурного анализа, ИК-спектроскопии, термогравиметрии. Определена их молекулярная и кристаллическая структура. В соединениях I–III реализуется одинаковый тетрамерный μ -дигидроксиксиларатогерманатный анион [(OH)₂Ge₂(μ -HXylar)₄Ge₂(μ -OH)₂]⁴⁻, в котором лиганд проявляет себя как дитопный, одна из трех его гидроксильных групп не координируется к германию(IV), а образует внутримолекулярную водородную связь.

Ключевые слова: координационные соединения, германий, ксиларовая кислота, 1,10-фенантролин **DOI:** 10.1134/S0044457X19090046

введение

Стремительный прогресс координационной и супрамолекулярной химии, наметившийся в последние годы, тесно связан с успехами, достигнутыми в области синтеза и конструирования множества гомо- и гетерометаллических разнолигандных, молекулярных и полимерных структурных ансамблей с полезными практическими свойствами [1, 2]. Значительную роль в их формировании играет подбор металлов-комплексообразователей и комплементарных по отношению к ним полинуклеотивных, хелатирующих, гибких, способных выполнять мостиковую функцию органических лигандов. Большое число таких супрамолекулярных ансамблей впервые было получено нами на основе германия(IV), "металлов жизни" Mn(II), Fe(II), Co(II), Ni(II), Cu(II) и биологически активных гидроксикарбоновых кислот [3, 4], в том числе тригидроксидикарбоновой кислоты (ксиларовой, H₅Xylar) [5]. Остается открытым вопрос, какое влияние на структурообразование

соответствующих ксиларатогерманатов окажет введение в их состав дополнительного лиганда – 1,10-фенантролина (Phen), широко применяемого в супрамолекулярной химии [6–10].

Цель настоящей работы — разработка методик синтеза и структурное исследование супрамолекулярных солей, содержащих ксиларатогерманатный анион и фенантролин в протонированной форме и его комплексы с Fe(II), Ni(II) в качестве катионов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез (HPhen)₄[(OH)₂Ge₂(μ -HXylar)₄Ge₂(μ -OH)₂] · 13H₂O (I). Исходными веществами служили GeO₂ (Sigma-Aldrich), ксиларовая кислота и 1,10-фенантролин (Fluka). К смеси сухих навесок GeO₂ (0.1046 г, 1 ммоль), H₅Xylar (0.18 г, 1 ммоль) и Phen (0.198 г, 1 ммоль) приливали смесь растворителей ацетонитрил—вода (20–20 мл). Полученную взвесь кипятили с обратным холодильником при $t = 70-80^{\circ}$ С в течение 5 ч. Через 6 сут образовывался кристаллический осадок розового цвета.

[#] Дополнительная информация для этой статьи доступна для зарегистрированных пользователей по doi 10.1134/ S0044457X19090046.

ИК-спектр (v, см⁻¹): 3403 v(H₂O), 3068 v_s(C–H), 1668 v_{as}(COO⁻), 1597, 1544 v(C–C_{аром}), 1453, 1420 v_s(COO⁻), 1137 δ (C–OH), 1071 v(C–O), 847 v_{as}(GeOGe), 822 δ (Ge–OH), 718 v(Ge–O).

	С	Н	Ge	Ν
Найдено, %:	40.43;	3.94;	14.42;	5.75.
Для C ₆₈ H ₈₂ Ge ₄ N ₈ O ₄₅ ,				
вычислено, %:	40.36;	4.06;	14.36;	5.54.

Синтез [Fe(Phen)₃]₂[(OH)₂Ge₂(μ -HXylar)₄Ge₂(μ -OH)₂] · 6H₂O · C₂H₅OH (II). Комплекс синтезировали постадийно. На первой стадии к смеси навесок GeO₂ (0.1046 г, 1 ммоль) и H₅Xylar (0.18 г, 1 ммоль) добавляли 100 мл воды. Образовавшуюся взвесь при постоянном перемешивании и нагревании ($t = 80-90^{\circ}$ C) растворяли, а затем упаривали на водяной бане при $t = 60-70^{\circ}$ C до 10 мл. На второй стадии после охлаждения до комнатной температуры приливали 10 мл 95%-ного этанола, содержащего 0.5 ммоль FeSO₄ · 7H₂O (Sigma-Aldrich) и 1.5 ммоль Phen. В течение суток из полученного раствора выпадал кристаллический осадок темно-красного цвета.

ИК-спектр (v, см⁻¹): $3372 v(H_2O)$, $3054 v_s(C-H)$, 1685, 1659 $v_{as}(COO^-)$, 1580 $v(C-C_{apoM})$, 1428, 1413 $v_s(COO^-)$, 1140 $\delta(C-OH)$, 1066 v(C-O), 842 $v_{as}(GeOGe)$, 824 $\delta(Ge-OH)$, 722 v(Ge-O).

	С	Н	Fe	Ge	Ν
Найдено, %:	46.91;	4.53;	4.71;	12.16;	7.11.
Для C ₉₄ H ₈₆ Fe ₂ Ge ₄ I	$N_{12}O_{39}$				
вычислено, %:	46.82;	3.57;	4.63;	12.06;	6.97.

Синтез [Ni(Phen)₃]₂[(OH)₂Ge₂(μ -HXylar)₄Ge₂(μ -OH)₂] · 8H₂O (III). Комплекс был получен по методике, аналогичной для комплекса II, с добавлением на второй стадии синтеза 10 мл 95%-ного раствора этанола, содержащего 0.5 ммоль NiCl₂ · · 6H₂O (Aldrich) и 1.5 ммоль Phen. Через 2 сут из полученного раствора выпадал кристаллический осадок розового цвета.

ИК-спектр (v, см⁻¹): 3420 v(H₂O), 3060 v_s(C–H), 1689 v_{as}(COO⁻), 1587, 1517 v(C–C_{аром}), 1497, 1426 v_s(COO⁻), 1144 δ (C–OH), 1068 v(C–O), 849 v_{as}(GeOGe), 820 δ (Ge–OH), 726 v(Ge–O).

Монокристаллы I–III, пригодные для РСА, были отобраны из реакционных сред.

Элементный анализ проводили с помощью полуавтоматического C, N, H-анализатора Elemental Analyzer CE-440. Содержание германия, железа и никеля определяли методом атомно-эмиссионной спектроскопии с индуктивно-связанной плазмой на приборе Optima 2000 DV фирмы Perkin—Elmer.

ИК-спектры поглощения (400–4000 см⁻¹) комплексов в виде таблеток с КВг записывали на спектрофотометре Frontier фирмы Perkin–Elmer.

Термогравиметрический анализ проводили на дериватографе Q-1500Д (воздушная атмосфера, интервал температур 20–1000°С, скорость нагрева 10 град/мин).

Рентгеноструктурный анализ. Кристаллы I триклинные, пр. гр. PI, T = 100 K, a = 12.5685(5), b = 15.0180(6), c = 21.6835(8) Å, $\alpha = 81.872(3)^\circ$, $\beta = 74.462(4)^\circ$, $\gamma = 85.928(3)^\circ$, V = 3901.3(3) Å³, Z = 2, μ (Mo K_{α}) = 1.639 мм⁻¹, $\rho_{\rm выч} = 1.721$ г/см³, измерено 33335 отражений, 17914 независимых ($R_{\rm int} = 0.039$). Окончательные значения: $R_1 = 0.046$ (для 13849 отражений с интенсивностью $I > 2\sigma(I)$) и $wR_2 = 0.103$ (для всех отражений), S = 1.02.

Кристаллы II триклинные, пр. гр. P_1 , T = 293 K, a = 16.048(4), b = 16.762(3), c = 19.115(4) Å, $\alpha = 85.119(15)^\circ$, $\beta = 77.443(18)^\circ$, $\gamma = 76.742(18)^\circ$, V = = 4881.8(18) Å³, Z = 2, μ (Мо K_{α}) = 1.603 мм⁻¹, $\rho_{\text{выч}} =$ = 1.639 г/см³, измерено 45297 отражений, 19146 независимых ($R_{\text{int}} = 0.164$). Окончательные значения: $R_1 = 0.106$ (для 8199 отражений с интенсивностью $I > 2\sigma(I)$) и $wR_2 = 0.281$ (для всех отражений), S = 0.98.

Кристаллы III триклинные, пр. гр. P_{1} , T = 294 K, a = 13.6416(6), b = 13.6664(7), c = 14.0617(6) Å, $\alpha =$ $= 100.204(4)^{\circ}$, $\beta = 105.207(4)^{\circ}$, $\gamma = 98.174(4)^{\circ}$, V = = 2440.1(2) Å³, Z = 1, $\rho_{\text{выч}} = 1.637$ г/см³, измерено 19360 отражений, 9572 независимых ($R_{\text{int}} = 0.079$). Окончательные значения: $R_{1} = 0.076$ (для 5942 отражений с интенсивностью $I > 2\sigma(I)$) и $wR_{2} = 0.214$ (для всех отражений), S = 1.04.

Рентгеноструктурные данные для соединений I–III получены на дифрактометре Xcalibur-3 (Мо K_{α} -излучение, CCD-детектор, графитовый монохроматор, ω -сканирование). Структуры расшифрованы прямым методом и уточнены по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов с использованием комплекса программ SHELXTL [11, 12]. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены по модели "наездника" с $U_{\mu_{30}} = nU_{3KB}$ неводородного атома, связанного с данным водородным (n = 1.5для молекул воды и n = 1.2 для остальных атомов водорода). Координаты атомов, а также полные таблицы длин связей и валентных углов депонированы в Кембриджском банке структурных данных (e-mail: deposit@ccdc.cam.ac.uk) (CCDC 1883675 (I), 1883676 (II), 1883677 (III)).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

По данным РСА, I–III представляют собой комплексные соединения катион-анионного типа, в которых в качестве аниона выступает $[(OH)_2Ge_2(\mu-HXylar)_4Ge_2(\mu-OH)_2]^{4-}$ (рис. 1), а катионами служат четыре молекулы фенантролина в протонированной форме (I), два комплекса [Fe(Phen)_3]²⁺ (II) либо [Ni(Phen)_3]²⁺ (III) (рис. S1).

Комплексный анион [(OH)2Ge2(µ-HXylar)4Ge2(µ-ОН)₂]⁴⁻ в структурах I-III представляет собой симметричный четырехъядерный комплекс. Анион в структурах II и III находится в частном положении относительно центра инверсии, при этом в II он состоит из двух симметрически независимых изоморфных молекул А и Б. Атомы германия в анионе структур I-III имеют два разных типа координации. Координационные полиздры атомов Ge(1) (I-III) и Ge(3) (I) – искаженные тригональные бипирамиды, в экваториальной плоскости которых находятся два атома кислорода карбоксильных групп лигандов Xylar⁵⁻ и атом кислорода гидроксильного аниона, а в аксиальном положении – два атома кислорода двух депротонированных карбоксильных групп лигандов Xylar⁵⁻. Длина связей Ge-O в экваториальнаправлении изменяется в пределах ном 1.737(2)-1.807(7) Å, а в аксиальном направлении – в интервале 1.831(9)-1.934(4) Å (табл. 1). Валентные углы OGeO в экваториальном направлении изменяются в пределах 112.9(4)°-129.7(9)°, а в аксиальном направлении – 86.4(9)°-96.7(3)°. Координационные полиэдры двух центральных атомов германия комплексного аниона [(OH)₂Ge₂(µ- $HXylar)_4Ge_2(\mu-OH)_2^{4-}$ B I–III (Ge(2) (I–III), Ge(4) (I)) представляют собой искаженные октаэдры. образованные четырьмя атомами кислорода депротонированных гидроксильной и карбоксильной групп двух лигандов Xylar⁵⁻ и двумя атомами кислорода гидроксолиганда. При этом атомы кислорода гидроксолигандов являются мостиковыми между двумя центральными атомами германия. Длины связей Ge-O изменяются в пределах 1.749(2)-1.958(7) Å, а валентные углы ОGeO – в интервале 78.2(3)°-97.0(3)°. Гидроксильные группы лигандов Xylar⁵⁻ участвуют в образовании внутримолекулярных водородных связей (табл. S1).

Катионы в структуре I представляют собой монопротонированный 1,10-фенантролин (рис. S1). Его образование подтверждают выявленные из

Рис. 1. Строение аниона $[(OH)_2Ge_2(\mu-HXylar)_4Ge_2(\mu-OH)_2]^{4-}$. Внутримолекулярные водородные связи обозначены пунктирной линией. Нумерация атомов приведена для структуры I, находящейся в общем положении.

Рис. 2. Кристаллическая структура соединения I (вид вдоль кристаллографической оси *b*).

разностного синтеза электронной плотности атомы водорода при N(1), N(3), N(5) и N(7).

Симметрически независимые катионы $[Fe(phen)_3]^{2+}$ (A и Б) в структуре II и $[Ni(phen)_3]^{2+}$ в структуре III изоструктурны (рис. S2). Ионы металла в комплексах связаны с тремя молекулами фенантролина, при этом координационные полиэдры для катионов железа и никеля в структурах II и III – октаэдры. В структуре II длины связей Fe–N изменяются в пределах 1.959(9)–2.002(9) Å, а валентные углы NFeN – в интервале 82.5(3)°–95.4(4)°. В структуре III длины связей Ni–N изменяются в пределах 2.068(6)°–2.121(5) Å, а валентные углы NNiN – в интервале 79.6(2)°–99.3(2)°.

В кристаллической структуре соединений I–III анионы, катионы, а также молекулы воды образуют чередующиеся слои, параллельные кристаллографическим плоскостям (101), (110) и (110) для I,

) (++, -F)			
Связь	<i>d</i> , Å	Связь	<i>d</i> , Å		
Соединение І					
Ge(1) - O(1)	1.7369(19)	Ge(4)–O(32)	1.9252(18)		
Ge(1)-O(10)	1.915(2)	Ge(4)–O(16)	1.8850(19)		
Ge(1)–O(9)	1.7864(19)	Ge(4)–O(6)	1.8217(18)		
Ge(1) - O(2)	1.934(2)	Ge(4)–O(8)	1.9387(18)		
Ge(1) - O(3)	1.7791(19)	Ge(4)–O(24)	1.913(2)		
Ge(2)–O(14)	1.8163(18)	Ge(4)–O(22)	1.8187(18)		
Ge(2)–O(15)	1.921(2)	Ge(3)–O(25)	1.7842(19)		
Ge(2)–O(32)	1.9255(19)	Ge(3)–O(26)	1.898(2)		
Ge(2)–O(16)	1.9064(18)	Ge(3)–O(17)	1.7495(19)		
Ge(2)–O(31)	1.9337(18)	Ge(3)–O(18)	1.912(2)		
Ge(2)-O(30)	1.8201(18)	Ge(3)–O(19)	1.7871(19)		
	Соеди	инение II	1		
Моле	кула А	Моле	кула Б		
Ge(1) - O(1)	1.807(6)	Ge(1)–O(1)	1.831(9)		
Ge(1) - O(2)	1.754(7)	Ge(1)–O(2)	1.753(8)		
Ge(1) - O(3)	1.813(7)	Ge(1)–O(3)	1.745(8)		
Ge(1)–O(9)	1.915(8)	Ge(1)–O(9)	1.914(9)		
Ge(1)-O(10)	1.899(8)	Ge(1)–O(10)	1.778(8)		
Ge(2)–O(16)	1.963(9)	Ge(2)–O(16)	1.967(10)		
Ge(2)-O(15)	1.961(9)	Ge(2)–O(15)	1.997(9)		
Ge(2)–O(14)	1.962(8)	Ge(2)–O(14)	1.971(9)		
	Соеди	нение III	1		
Ge(2)–O(16)	1.916(5)	Ge(1)–O(1)	1.749(5)		
Ge(2)–O(14)	1.828(4)	Ge(1)–O(2)	1.894(6)		
Ge(2)–O(15)	1.903(4)	Ge(1)–O(10)	1.917(6)		
Ge(1)–O(3)	1.790(5)	Ge(1)-O(9)	1.783(5)		
Угол	ω, град	Угол	ω, град		
	Соед	инение I			
O(1)Ge(1)O(10)	94.71(9)	O(30)Ge(2)O(31)	85.96(8)		
O(1)Ge(1)O(9)	118.28(9)	O(25)Ge(3)O(18)	88.64(9)		
O(1)Ge(1)O(2)	96.48(9)	O(25)Ge(3)O(19)	129.75(9)		
O(1)Ge(1)O(3)	114.58(9)	O(17)Ge(3)O(25)	114.37(9)		
O(9)Ge(1)O(2)	87.45(8)	O(17)Ge(3)O(26)	95.42(9)		
O(3)Ge(1)O(10)	88.76(8)	O(17)Ge(3)O(18)	96.18(9)		
O(3)Ge(1)O(9)	127.14(9)	O(17)Ge(3)O(19)	115.86(9)		
O(3)Ge(1)O(2)	86.45(8)	O(19)Ge(3)O(26)	87.15(9)		
O(14)Ge(2)O(15)	86.15(8)	O(19)Ge(3)O(18)	87.17(8)		
O(14)Ge(2)O(32)	89.57(8)	O(16)Ge(4)O(32)	78.78(8)		
O(14)Ge(2)O(16)	95.84(8)	O(16)Ge(4)O(8)	93.51(8)		
O(14)Ge(2)O(31)	85.96(8)	O(6)Ge(4)O(32)	90.66(8)		
O(15)Ge(2)O(31)	99.99(8)	O(6)Ge(4)O(8)	85.68(8)		
O(16)Ge(2)O(15)	87.15(8)	O(6)Ge(4)O(24)	91.17(8)		
O(16)Ge(2)O(32)	78.26(8)	O(24)Ge(4)O(32)	93.03(8)		
O(30)Ge(2)O(15)	92.73(8)	O(24)Ge(4)O(8)	95.04(8)		
O(30)Ge(2)O(32)	93.64(8)	O(22)Ge(4)O(16)	89.07(8)		
O(30)Ge(2)O(16)	92.49(8)	O(22)Ge(4)O(8)	88.30(8)		

Таблица 1. Некоторые длины связи (d, Å) и валентные углы (ω , град) в соединениях I–III

Таблица 1.	Окончание
------------	-----------

Угол	ω, град	Угол	ω, град		
Соединение II					
Моле	Молекула А		Молекула Б		
O(16)Ge(2)O(15)	94.1(3)	O(16)Ge(2)O(15)	95.0(3)		
O(14)Ge(2)O(16)	94.9(3)	O(14)Ge(2)O(16)	94.4(3)		
O(14)Ge(2)O(15)	86.4(3)	O(14)Ge(2)O(15)	84.8(3)		
O(9)Ge(1)O(3)	89.6(4)	O(9)Ge(1)O(3)	129.7(3)		
O(9)Ge(1)O(10)	86.9(4)	O(9)Ge(1)O(10)	86.8(3)		
O(2)Ge(1)O(3)	87.5(4)	O(2)Ge(1)O(3)	88.3(3)		
O(2)Ge(1)O(9)	129.2(4)	O(2)Ge(1)O(9)	130.2(4)		
O(2)Ge(1)O(10)	87.8(4)	O(2)Ge(1)O(10)	87.5(3)		
O(1)Ge(1)O(3)	94.7(5)	O(1)Ge(1)O(3)	112.9(4)		
O(1)Ge(1)O(9)	115.8(4)	O(1)Ge(1)O(9)	117.3(4)		
O(1)Ge(1)O(10)	94.8(6)	O(1)Ge(1)O(10)	96.6(4)		
Соединение III					
O(14)Ge(2)O(16)	93.8(2)	O(9)Ge(1)O(2)	90.2(3)		
O(14)Ge(2)O(15)	86.20(19)	O(9)Ge(1)O(10)	87.0(3)		
O(15)Ge(2)O(16)	95.0(2)	O(1)Ge(1)O(3)	116.6(3)		
O(3)Ge(1)O(2)	88.1(2)	O(1)Ge(1)O(2)	96.7(3)		
O(3)Ge(1)O(10)	86.5(2)	O(1)Ge(1)O(10)	92.8(3)		
O(9)Ge(1)O(3)	129.0(2)	O(1)Ge(1)O(9)	114.2(3)		

II и III соответственно (рис. 2, 3). Образующиеся слои можно разделить на два вида: слои, содержащие анионы и молекулы воды, связанные друг с другом межмолекулярными водородными связями (табл. S1), и слои, содержащие катионы.

Термическое разложение соединений I–III имеет однотипный характер, начинается с эндотермического эффекта в интервале температур 100—210 (130°С↓) для I, 80—150 (100°С↓) для II, 70—160 (100°С↓) для III; убыль массы соответствует удалению 13 ($\Delta m = 11.5\%$, I) и 8 ($\Delta m = 6\%$, III) молекул воды, для II — 6 молекул воды и 1 молекулы этанола ($\Delta m = 6.3\%$). Дальнейший термораспад комплексов сопровождается серией экзоэффектов: 220—400 (360°С↑), 400—620 (550°С↑), 620—950 (650°С↑) для I; 300—390 (350°С↑), 390—500

Рис. 3. Кристаллическая структура соединений II (а – вид вдоль кристаллографической оси *c*) и III (б – вид вдоль кристаллографической оси *a*).

(400°С[↑]), 550–700 (620°С[↑]) для II; 300–400 (350°С[↑]), 400–490 (410°С[↑]), 490–610°С (570°С[↑]) для III, в результате которых происходит разрушение и окислительная деструкция комплексов. Конечными продуктами термораспада при 1000°С являются GeO₂ (для I), смесь FeGeO₃ + + GeO₂ (для II), NiGeO₃ + GeO₂ (для III).

В ИК-спектрах комплексов I–III присутствует подобный набор полос поглощения. Их отнесение сделано путем сравнения со спектрами, полученными для ксиларовой кислоты и 1,10-фенантролина. Данные ИК-спектроскопии полностью согласуются с результатами PCA. В спектрах I–III отсутствует полоса валентных колебаний свободной карбоксильной группы $v(C=O) = 1732 \text{ см}^{-1}$ и появляются полосы асимметричных v_{as}(COO⁻) ~ ~ 1689 см⁻¹, симметричных v_s(СОО⁻) ~ 1453 см⁻¹ валентных колебаний карбоксилатных групп и v(C−O) ~ 1071 см⁻¹ алкоголятного типа [13]. При этом сохраняется полоса $\delta(C-OH) \sim 1144$ см⁻¹. характерная для ксиларовой кислоты. Обнаружены полосы поглощения v(Ge-O) ~ 726 см⁻¹, v_{as} (GeOGe) ~ 849 см⁻¹, свидетельствующие о связывании германия с ксиларовой кислотой и образовании мостиковой группировки Ge-O-Ge [14]. В комплексах реализуется гидролизованная форма германия, на что указывает полоса $\delta(Ge-$ OH) ~ 824 см⁻¹. О наличии в I–III молекул кристаллизационной воды и 1,10-фенантролина свидетельствует следующий набор полос: v(OH) ~ ~ 3420; v_s (С-H_{аром}) 3068 (I), 3054 (II), 3060 см⁻¹ (III); v(C-C_{аром}) 1597, 1544 (I), 1580 (II), 1587, 1517 см⁻¹ (III) соответственно [15].

ЗАКЛЮЧЕНИЕ

Установлено, что в соединениях I-III независимо от природы катиона реализуется одинаковый тетраядерный ксиларатогерманатный анион HXvlar⁴⁻. Такой же комплексный анион обнаружен в структурах $[Fe(bipy)_3]_2[(OH)_2Ge_2(\mu HXylar)_4Ge_2(\mu-OH)_2$] · 12 H_2O · 2C H_3CN и $[Ni(bipy)_3]_2[(OH)_2Ge_2(\mu-HXylar)_4Ge_2(\mu-OH)_2]$ · 20H₂O · 2C₂H₅OH [16]. Из этого следует, что тетрамерный ксиларатогерманатный анион характеризуется высокой устойчивостью в растворе и его можно рассматривать в качестве конструкционного блока в составе соединений такого типа. Последнее очень важно для создания и дизайна новых катион-анионных гидроксикарбоксилатогерманатных комплексных соединений с заданной структурой.

ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ

Рис. 1. Структура катиона HPhen+ в I.

Рис. 2. Структура катионов [Fe/Ni(phen)3]2+ в II.

Таблица 1. Геометрические характеристики водородных связей в соединениях I–III (операции симметрии: (i) x, y - 1, z; (ii) -x + 1, -y + 1, -z + 1; (iii) -x + 1, -y, -z + 1; (iv) x + 1, y, z; (v) -x + 1, -y + 1, -z; (vi) x - 1, y, z; (vii) x, y + 1, z; (vii) -x + 1, -y + 1, -z + 2; (viii) -x + 1, -y + 2, -z + 2).

Сіf-файлы соединений І-ІІІ.

СПИСОК ЛИТЕРАТУРЫ

- Gale P.A. // Coord. Chem. Rev. 2003. V. 240. № 1–2. P. 191.
- https://doi.org/10.1016/S0010-8545(02)00258-8
- 2. *Zhang C., Jin G.-C., Chen J.-X. et al.* // Coord. Chem. Rev. 2001. V. 213. № 1. P. 51. https://doi.org/10.1016/S0010-8545(00)00377-5
- 3. Марцинко Е.Э., Миначева Л.Х., Чебаненко Е.А. и др. // Журн. неорган. химии. 2013. Т. 58. № 5. С. 588. [Martsinko E.E., Minacheva L.Kh., Chebanenko E.A. et al. // Russ. J. Inorg. Chem. 2013. V. 58. № 5. Р. 515. https://doi.org/10.1134/S003602361305015X] https://doi.org/10.7868/S0044457X13050152
- Сейфуллина И.И., Илюхин А.Б., Марцинко Е.Э. и др. // Журн. неорган. химии. 2014. Т. 59. № 4. С. 452. [Seifullina I.I., Ilyukhin A.B., Martsinko E.E. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 4. Р. 298. https://doi.org/10.1134/S0036023614040172] https://doi.org/10.7868/S0044457X14040187
- 5. Марцинко Е.Э., Миначева Л.Х., Сейфуллина И.И. и др. // Журн. неорган. химии. 2013. Т. 58. № 2. С. 187. [Martsinko E.E., Minacheva L.Kh., Seifullina I.I. et al. // Russ. J. Inorg. Chem. 2013. V. 58. № 2. Р. 152. https://doi.org/10.1134/S0036023613020174] https://doi.org/10.7868/S0044457X13020177
- Guo Y., Xiao D., Wang E. et al. // J. Solid State Chem. 2005. V. 178. P. 776. https://doi.org/10.1016/j.jssc.2004.12.042
- Lu J., Chu D.-Q., Yu J.-H. F. et al. // Inorg. Chim. Acta. 2006. V. 359. P. 2495. https://doi.org/10.1016/j.ica.2006.02.043
- Xu X., Lu Y., Wang E. et al. // Inorg. Chim. Acta. 2007. V. 360. P. 455. https://doi.org/10.1016/j.ica.2006.07.111
- Chen D., Wang Y., Lin Z. et al. // J. Mol. Struct. 2010. V. 966. № 1–3. P. 59. https://doi.org/10.1016/j.molstruc.2009.12.007
- Dong G.-Y., He C.-H., Liu T.-F. et al. // Acta Crystallogr. 2011. V. E67. P. m1005. https://doi.org/10.1107/S1600536811024780
- 11. *Sheldrick G.M.* // Acta Crystallogr. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
- 12. *Sheldrick G.M.* // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- 13. *Тарасевич Б.Н.* ИК-спектры основных классов органических соединений. М.: Изд-во МГУ, 2012.
- 14. Гар Т.К., Минаева Н.А., Миронов В.Ф. и др. Инфракрасные спектры поглощения соединений германия. М.: Наука, 1977.
- 15. *Иванов С.М., Зубарев А.А.* // Успехи в химии и химической технологии. 2014. Т. 28. № 4. С. 47.
- 16. Чебаненко Е.А., Марцинко Е.Э., Сейфуллина И.И. и др. // Журн. структур. химии. 2018. Т. 59. № 6. С. 1514. [Chebanenko E.A., Martsinko E.E., Seifullina I.I. et al. // J. Struct. Chem. 2018. V. 59. № 6. Р. 1462. https://doi.org/10.1134/S0022476618060318] https://doi.org/10.26902/JSC20180631