ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 546(56.72.22)

КВАЗИБИНАРНЫЙ РАЗРЕЗ CuInS₂-FeIn₂S₄

© 2020 г. Ш. С. Абдуллаева^{а,} *, Ф. М. Мамедов^а, И. Б. Бахтиярлы^а

^аИнститут катализа и неорганической химии им. М. Нагиева НАН Азербайджана, пр-т Г. Джавида, 113, Баку, Az1143 Азербайджан *e-mail: sehri.abdullayeva.83@mail.ru Поступила в редакцию 18.12.2018 г.

После доработки 30.04.2019 г.

Принята к публикации 13.05.2019 г.

Методами физико-химического анализа изучено фазовое равновесие в системе CuInS₂—FeIn₂S₄ и построена ее диаграмма состояния. Показано, что система CuInS₂—FeIn₂S₄ является квазибинарной. В ней образуется соединение состава CuFeIn₃S₆, которое плавится конгруэнтно при температуре 1365 К и кристаллизуется в ромбической сингонии с параметрами решетки: a = 11.236, b = 11.457, c = 4.015 Å, $V_{3\pi, 94} = 516.854$ Å³, пр. гр. *Рпта*. Координаты эвтектик: 31 мол. % FeIn₂S₄, 1285 К и 68 мол. % FeIn₂S₄, 1315 К. При температуре 300 К выявлены области твердых растворов на основе CuInS₂ 12 мол. % FeIn₂S₄ и на основе FeIn₂S₄ 3 мол. % CuInS₂, а при температуре 1000 К область растворимости распространяется до 15 мол. % FeIn₂S₄ и 5 мол. % CuInS₂.

Ключевые слова: диаграмма состояния, фазовое равновесие, твердые растворы, магнитные проводники, кристаллическая структура, эвтектика, ромбическая сингония, параметры решетки **DOI:** 10.31857/S0044457X19110023

введение

Полупроводниковые соединения $A^{I}B^{III}C_{2}^{VI}$ ($A^{I} = Cu, Ag; B^{III} = Al, Ga, In; C^{VI} = S, Se, Te$) – одни из наиболее перспективных материалов для создания эффективных солнечных батарей [1–5]. Достаточно хорошо исследован полупроводник CuInS₂, применяющийся в качестве слоя поглотителя *p*-типа проводимости в трехмерных солнечных ячейках [6–11]. В последние годы изучаются также магнитные полупроводники типа $AB_{2}X_{4}$, где A = Mn, Fe, Co, Ni; B = Ga, In; X = S, Se, Te [12–16]. Эти соединения обладают уникальными физическими свойствами, что дает основание полагать перспективность их использования для изготовления оптоэлектронных приборов, управляемых с помощью магнитного поля.

Квазибинарные системы FeS–In₂S₃ и Cu₂S–In₂S₃ подробно изучены в работах [17–20]. Система FeS–In₂S₃ [17, 18] характеризуется образованием соединения FeIn₂S₄, кристаллизующегося в структурном типе MgAl₂O₄ (a = 10.61 Å, пр. гр. *Fd*3*m*), которое плавится конгруэнтно при температуре 1400 К. В системе Cu₂S–In₂S₃ [19, 20] образуются три соединения: CuInS₂, CuIn₅S₈ и Cu₃In₅S₉. Соединение CuInS₂ существует в трех полиморфных модификациях: α -фаза (<1253 K) имеет параметры решетки a = 5.5228, c = 11.1220 Å, пр. гр. *I*42*d* со структурой халькопирита; β-фаза (1253–1318 K) кристаллизуется в структурном типе сфалерита с параметром a = 5.51 Å, пр. гр. F43m; γ -фаза (<1318 K) кристаллизуется в структурном типе вюрцита с параметрами a = 3.9065, c = 6.4289 Å (пр. гр. $P6_3mc$) и плавится конгруэнтно при температуре 1365 K. CuIn₅S₈ кристаллизуется в структурном типе шпинели (a = 10.685 Å, пр. гр. Fd3m).

Одним из путей поиска и разработки методом направленного синтеза новых многокомпонентных фаз и материалов является изучение фазовых равновесий. В связи с этим целью настоящей работы является исследование фазовой диаграммы $CuInS_2$ —FeIn₂S₄ тройной системы Cu_2S —FeS—In₂S₃ и определение границ твердых растворов на основе обоих компонентов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез тройных соединений α -CuInS₂ и FeIn₂S₄ проводили из элементов высокой степени чистоты (железо восстановленное, индий "In-000" (99.9995%), сера "ос. ч." (99.9999%), медь МО (99.995%), РФ) в вакуумированных до 0.133 Па кварцевых ампулах.

Рентгенофазовый анализ (РФА) полученных соединений $FeIn_2S_4$ и $CuInS_2$ показывает, что кристаллографические параметры их кристаллов соответствуют литературным данным [18–20].

КВАЗИБИНАРНЫЙ РАЗРЕЗ CuInS₂-FeIn₂S₄

Состав, мол. %		Tanu uwaanna addaumu K	П	Фага
CuInS ₂	FeIn ₂ S ₄	гермические эффекты, к	Плотность, г/см ³	Фаза
100	0	1250, 1325, 1365	4.780	α
95	05	1225, 1245, 1395, 1315, 1345, 1360	4.775	α
90	10	1205, 1225, 1280, 1305, 1330, 1350	4.758	α
80	20	1175, 1195, 1255, 1275, 1305, 1325	4.731	$\alpha + A$
70	30	1175, 1245, 1285	4.719	$\alpha + A$
69	31	1285	Эвтектика	Эвтектика
60	40	1175, 1245, 1285, 1325	4.698	$\alpha + A$
50	50	1365	4.675	А
40	60	1315, 1350	4.652	$A + \theta$
32	68	1315	Эвтектика	Эвтектика
30	70	1315, 1325	4.637	$A + \theta$
20	80	1315, 1350	4.612	$A + \theta$
10	90	1315, 1380	4.609	$A + \theta$
3	97	1350, 1390	4.591	θ
0	100	1400	4.58	θ

Таблица 1. Состав, результаты ДТА, плотность и микроструктура сплавов системы $CuInS_2$ -FeIn $_2S_4$

Сплавы системы $CuInS_2$ —FeIn₂S₄ синтезировали в вакуумированных до 0.133 Па кварцевых ампулах из лигатур в температурном интервале 1365—1400 К в зависимости от состава. Для гомогенизации сплавов проводили отжиг при температурах на 50—60 К ниже солидуса в течение 240 ч.

Для определения границ твердых растворов дополнительно синтезировали сплавы с 10, 12, 14, 16, 18 и 92, 94, 96, 98 мол. % FeIn₂S₄. Эти сплавы отжигали в течение 320 ч при 1000, 900, 800 К и затем закаляли. После такой термообработки и тщательного изучения микроструктуры этих сплавов определяли границы растворимости.

Взаимодействие в системе $CuInS_2$ —FeIn₂S₄ изучали следующими методами физическо-химического анализа. ДТА проводили в динамическом режиме в инертной атмосфере (гелий) на термоанализаторе STA 449F3 марки "Jupiter" (Netzsch, Германия) при скорости нагрева 15 град/мин с использованием Pt-Pt/Rh термопары. Прибор работает под управлением программного обеспечения "Proteus". РФА образцов системы осуществляли на автоматическом дифрактометре D2 Phaser (Bruker, Германия) с использованием CuK_{α} -излучения и Ni-фильтра. Скорость съемки составляла 2 град/мин. Для управления устройством и анализа полученной информации использовали уникальный программный пакет "Diffrac suite". При исследовании микроструктуры сплавов применяли травитель состава NH_4NO_3 (3–8 мас. %) + $K_2Cr_2O_7$ (0.02-0.5 мас. %) + конц. H₂SO₄, время травления 20 с. Микротвердость сплавов измеряли на микротвердомере ПМТ-3 при нагрузках 0.01 и 0.02 Н. Микроструктуру сплавов исследовали с помощью металлографического микроскопа МИМ-8 на предварительно протравленных шлифах образцов, полированных пастой ГОИ. Плотность сплавов определяли стандартным пикнометрическим методом. В качестве пикнометрической жидкости использовали толуол.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для изучения фазового равновесия в системе $CuInS_2$ —FeIn₂S₄ синтезировано 15 образцов различного состава (табл. 1). Из данных ДТА видно, что при соотношении исходных компонентов 1 : 1 образуется четверное соединение $CuFeIn_3S_6$, конгруэнтно плавящееся при температуре 1365 К (рис. 1а).

Согласно РФА, на рентгенограммах образцов состава 50 мол. % FeIn₂S₄ дифракционные максимумы соответствуют новой фазе CuFeIn₃S₆. На дифрактограммах образцов в области составов 88–100 мол. % CuInS₂ наблюдаются только линии CuInS₂, состава 50 мол. % CuInS₂ – линии четверного соединения CuFeIn₃S₆ и в интервале 0– 3 мол. % CuInS₂ – линии FeIn₂S₄. Составы 50– 88 мол. % CuInS₂ и 3–50 мол. % CuInS₂ являются двухфазными (рис. 2). Рентгенографическое исследование показало, что соединение CuFeIn₃S₆ кристаллизуется в ромбической сингонии с параметрами элементарной ячейки: a = 11.236, b = 11.457, c = 4.015 Å, $V_{эл. яч} = 516.854$ Å³, пр. гр.

Рис. 1. Термограммы нагревания и охлаждения сплавов системы $CuInS_2$ - $FeIn_2S_4$: a – A ($CuFeIn_3S_6$), б – e_1 ($CuInS_2$)_{0.690}($FeIn_2S_4$)_{0.310}, в – e_2 ($CuInS_2$)_{0.320}($FeIn_2S_4$)_{0.680}.

Рпта, Z = 2. Близость значений параметров элементарной ячейки соединения CuFeIn₃S₆ рентгенографическим параметрам минерала крупкаита CuPbBi₃S₆ [21] позволяет предположить, что дан-

Рис. 2. Порошковые рентгенограммы сплавов системы $CuInS_2$ -FeIn₂S₄: $1 - CuInS_2$, 2 - 40% CuInS₂, $3 - CuFeIn_3S_6$, 4 - 80% FeIn₂S₄, $5 - FeIn_2S_4$.

ное соединение кристаллизуется в структурном типе крупкаита.

С увеличением содержания второго компонента замечено присутствие новой фазы CuFeIn₃S₆ и эвтектик. Эвтектики образуются при 31 и 68 мол. % FeIn₂S₄ и температурах 1285 и 1315 K соответственно (рис. 3в).

При изучении микротвердости сплавов получены три ряда значений микротвердости: светлая фаза – 2800–2900 МПа, α (CuInS₂), серая фаза – 3095–3100 МПа, A (CuFeIn₃S₆), темная фаза – 3250–3300 МПа, θ (FeIn₂S₄).

Значения рентгенографической плотности в системе $CuInS_2$ —FeIn₂S₄ лежат в пределах 4.75—4.54 г/см³, а значения пикнометрический плотности — в интервале 4.78—4.58 г/см³ (табл. 1).

По данным микроструктурного анализа, сплавы, содержащие 0–3, 50 и 88–100 мол. % CuInS₂, однофазные, а составы 50–88 и 3–50 мол. % CuInS₂ – двухфазные (рис. 3а, 3б). Твердые растворы на основе CuInS₂ кристаллизуются в тетрагональной сингонии, а на основе FeIn₂S₄ – в кубической сингонии (табл. 2).

Однофазность твердых растворов определяли рентгенографическим методом. Проведенные исследования показали, что на дифрактограммах твердых растворов на основе $FeIn_2S_4$ присутствуют рефлексы, характерные для кубической структуры шпинели. В твердых растворах на основе

Рис. 3. Микроструктура сплавов системы $CuInS_2$ —FeIn₂S₄: а – 5 мол. % FeIn₂S₄, 500 × 500; б – 50 мол. % FeIn₂S₄, 500 × 500; в – 68 мол. % FeIn₂S₄, 1200 × 1450.

CuInS₂ присутствуют рефлексы, характерные для тетрагональной структуры. С увеличением содержания FeIn₂S₄ параметр тетрагональный решетки увеличивается: a = 5.5228-5.5791, c = 11.1220-11.1921 Å.

На основании данных физико-химического анализа построена фазовая диаграмма системы $CuInS_2$ —FeIn₂S₄ (рис. 4), из которой видно, что разрез является квазибинарным сечением квазитройной системы Cu_2S —In₂S₃—FeS.

Ликвидус системы $CuInS_2$ — $FeIn_2S_4$ состоит из ветвей первичной кристаллизации $CuInS_2$, $CuFeIn_3S_6$ и $FeIn_2S_4$.

Соединение CuInS₂ имеет полиморфные переходы при 1250 и 1325 К. Установлено что, переход γ -твердого раствора в β -твердый раствор (γ -CuInS₂ $\leftrightarrow \beta$ -CuInS₂) и β -твердого раствора в α твердый раствор (β -CuInS₂ $\leftrightarrow \alpha$ -CuInS₂) происходит эвтектоидно; под влиянием FeIn₂S₄ температура перехода снижается от 1325 до 1275 К и от 1250 до 1175 К соответственно (рис. 16).

Таблица 2. Параметры кристаллической решетки твердых растворов в системе $CuInS_2-FeIn_2S_4$

CuInS ₂ , мол. %	Сингония	Пр. гр.	Параметры решетки, Å
100	Тетрагональная	I42d	a = 5.5228, c = 11.1220
97	Тетрагональная	I42d	a = 5.5311, c = 11.1311
94	Тетрагональная	I42d	a = 5.5421, c = 11.1502
91	Тетрагональная	I42d	a = 5.5541, c = 11.1514
89	Тетрагональная	I42d	a = 5.5701, c = 11.1601
88	Тетрагональная	I42d	<i>a</i> = 5.5791, <i>c</i> = 11.1921
3	Кубическая	Fd3m	a = 10.52
2	Кубическая	$Fd\overline{3}m$	a = 10.55
1	Кубическая	$Fd\overline{3}m$	a = 10.58
0	Кубическая	$Fd\overline{3}m$	a = 10.61

Разработана методика и выбраны технологические условия выращивания монокристаллов в области твердых растворов (CuInS₂)_{1-x}-(FeIn₂S₄)_x (x == 0.01, 0.03, 0.05). Монокристаллы твердых растворов на основе CuInS₂ выращивали из расплава методом Бриджмена-Стокбаргера. Исходными материалами лля вырашивания монокристаллов служили поликристаллические слитки. Слитки измельчали и загружали в ампулу с суженным концом. После вакуумирования ампулу помещали в двухтемпературную печь с заранее установленной разницей температур. Температуру в печи повышали со скоростью ~100 град/ч до 1360 К и для гомогенизации расплава ампулу выдерживали при этой температуре в течение ~6 ч. После указанного времени выдержки проводили направленную кристаллизацию расплава, понижая температуру печи со скоростью ~4 град/ч до полного затвердевания расплава. С помощью разработанного режима выращены качественные монокристаллы. С использованием сканирующей электронной микроскопии получена фотография монокристалла на установке JEOL JSM 6610-LV (рис. 5). В таблице приведены условия получения монокристаллов, установленные на основания многочисленных опыт (табл. 3).

ЗАКЛЮЧЕНИЕ

Построена диаграмма состояния квазибинарного разреза $CuInS_2$ —FeIn₂S₄ в широком интервале концентраций. В системе CuInS₂—FeIn₂S₄ при соотношении исходных компонентов 1 : 1 образуется

Таблица 3. Оптимальный режим выращивания монокристаллов твердых растворов на основе CuInS₂ $(T_1 - T_2 = 1150 - 1350 \text{ K})$

Состав	Масса монокристаллов, г
$(CuInS_2)_{0.999} - (FeIn_2S_4)_{0.001}$	6.5
$(CuInS_2)_{0.997} - (FeIn_2S_4)_{0.003}$	6.6
$(CuInS_2)_{0.995} - (FeIn_2S_4)_{0.005}$	6.7

Рис. 4. Фазовая диаграмма системы CuInS₂-FeIn₂S₄.

Рис. 5. Электронная микрофотография монокристаллов состава $(CuInS_2)_{0.995}$ (FeIn₂S₄)_{0.05}.

конгруэнтно плавящееся соединение CuFeIn₃S₆, кристаллизующееся в ромбической сингонии с параметрами решетки: a = 11.236, b = 11.457 c = 4.015 Å, пр. гр. *Pnma*.

При температуре 300 К выявлены области твердых растворов на основе $CuInS_2-12$ мол. % FeIn₂S₄ и на основе FeIn₂S₄-3 мол. % CuInS₂, а при температуре 1000 К растворимость достигает 15 мол. % FeIn₂S₄ и 5 мол. % CuInS₂.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Yunxia Qi, Qiangchun Liu, Kaibin Tang* // J. Phys. Chem. (C). 2009. V. 113. № 10. P. 3939. https://doi.org/10.1021/jp807987t
- Боднарь И.В., Рудь В.Ю., Рудь Ю.В. и др. // ФТП. 2011. Т. 45. № 5. С. 617.

- Бабанлы М.Б., Юсибов Ю.А., Абишев В.Т. Трехкомпонентные халькогениды на основе меди и серебра. Баку: Изд-во БГУ, 1993. 342 с.
- Amara A., Rezaiki W., Ferdi A. et al. // Solar Energy Materials Solar Cells. 2007. V. 91. P. 1916. https://doi.org/10.1016/j.solmat.2007.07.007h
- 5. Хабибуллин И.Х., Матухин В.Л., Ермаков В.Л. и др. // ФТП. 2009. Т. 43. № 1. С. 3.
- 6. *Машадиева Л.Ф., Гасанова З.Т., Юсибов Ю.А. и др. //* Журн. неорган. химии. 2017. Т. 62. № 5. С. 599. https://doi.org/10.7868/S0044457X17050166
- Булярский С.В., Вострецова Л.Н., Гаврилов С.А. // ФТП. 2016. Т. 50. № 1. С. 106.
- Mere A., Kijatkina O., Rebane H. et al. // J. Phys. Chem Solids. 2003. V. 64. P. 2025. https://doi.org/10.1016/S0022-3697(03)00124-0
- Wakita K., Nishi K., Ohta Y. et al. // J. Phys. Chem. Solids. 2003. V. 64. P. 1973. https://doi.org/10.1016/S0022-3697(03)00251-8
- Alice D.P., Leach and Janet E. Macdonald // J. Phys. Chem. Lett. 2016. V. 7. P. 572. https://doi.org/10.1021/acs.jpclett.5b02211
- Shabaev A., Mehl M.J., Efros Al.L. // Phys. Rev. B. 2015. V. 92. P. 5431. https://doi.org/10.1103/PhysRevB.92.035431

- Torres T., Sagredo V., Chalbaund L.M. et al. // Physica B. 2006. V. 384. P. 100. https://doi.org/10.1016/j.physb.2006.05.162
- Нифтиев Н.Н., Тагиев О.Б., Мурадов М.Б., Мамедов Ф.М. // ЖТФ. 2012. Т. 82. № 4. С. 147. https://doi.org/10.1134/S1063784212040202
- Мамедов Ф.М., Нифтиев Н.Н. // ФТП. 2016. Т. 50. № 9. С. 1225.
- 15. *Sagredo V., Moron M.C., Betancourt L. et al.* // J. Magn. Mater. 2007. V. 312. № 2. P. 294. https://doi.org/10.1016/j.jmmm.2006.10.609
- 16. *Нифтиев Н.Н., Тагиев О.Б., Мамедов Ф.М. и др. //* Письма ЖТФ. 2009. Т. 35. № 22. С. 79.
- 17. *Рустамов П.Г., Бабаева Б.К., Аллазов М.Р. //* Журн. неорган. химии. 1979. Т. 24. № 8. С. 2208.
- Kanomata T., Ido H., Kaneko T. // J. Phys. Soc. Jpn. 1973. V. 34. № 2. P. 554. https://doi.org/10.1143/JPSJ.34.554
- Binsma J.J.M., Giling L.J., Bloem J. // J. Cryst. Growth. 1980. V. 50. P. 429. https://doi.org/10.1016/0022-0248(80)90090-1
- Kozer V.R., Parasyuk O.V. // Chem. Met. Alloys. 2009. V. 2. P. 102.
- Topa D., Petricek V., Michal D. et al. // Can. Mineral. V. 46. P. 525. https://doi.org/10.3749/canmin.46.2.525