СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 536.63

СИНТЕЗ И ИССЛЕДОВАНИЕ ВЫСОКОТЕМПЕРАТУРНОЙ ТЕПЛОЕМКОСТИ EuBiGeO₅

© 2020 г. Л. Т. Денисова^{*a*}, *, Ю. Ф. Каргин^{*b*}, Н. А. Галиахметова^{*a*}, Н. В. Белоусова^{*a*}, В. М. Денисов^{*a*}

^аСибирский федеральный университет, Институт цветных металлов и материаловедения, Свободный пр-т, 79, Красноярск, 660041 Россия

^bИнститут металлургии и материаловедения им. А.А. Байкова РАН, Ленинский пр-т, 49, Москва, 119991 Россия

*e-mail: antluba@mail.ru

Поступила в редакцию 05.05.2019 г. После доработки 06.06.2019 г. Принята к публикации 27.08.2019 г.

Последовательным ступенчатым обжигом стехиометрических смесей исходных оксидов Eu_2O_3 , Bi_2O_3 и GeO₂ в интервале температур 1003–1223 К проведен твердофазный синтез $EuBiGeO_5$. Методом дифференциальной сканирующей калориметрии измерена молярная теплоемкость поликристаллических образцов германата висмута-европия в интервале температур 350-1000 К. Установлено, что экспериментальная зависимость теплоемкости от температуры $C_p = f(T)$ не имеет аномалий и может быть описана уравнением Майера–Келли. Рассчитаны основные термодинамические функции германата висмута-европия (изменения энтальпии, энтропии и энергии Гиббса).

Ключевые слова: германат висмута-европия, твердофазный синтез, высокотемпературная теплоем-кость, термодинамические свойства

DOI: 10.31857/S0044457X20010067

ВВЕДЕНИЕ

Для германатов сложных оксидных соединений общей формулы $R_x Bi_{2-x} GeO_5$ (R – редкоземельные элементы) сведения весьма ограничены, имеются лишь данные о структуре [1-3], фотолюминесценции [2, 3] и оптических свойствах [3, 4]. Для подобных соединений при x = 2 образуются германаты R_2 GeO₅, а при x = 0 – германат висмута Bi_2GeO_5 . Образование соединений $R_xBi_{2-x}GeO_5$ происходит из стабильных соединений R₂GeO₅ и метастабильного соединения Bi₂GeO₅, которого нет на равновесной диаграмме состояния Bi_2O_3 -GeO₂ [5, 6]. Кроме того, для оксоортогерманатов РЗЭ состава 1:1 наблюдаются две структурные подгруппы с пограничным элементом тербием [7, 8]. Следует отметить, что сведения о фазовых равновесиях в системах R₂GeO₅-Bi₂GeO₅ отсутствуют. Для термодинамического моделирования синтеза различных сложных оксидных соединений необходимо наличие баз термодинамических данных, которые для соединений R₂Bi_{2 - 2}GeO₅ практически отсутствуют. Имеются сведения только для YBiGeO₅ [9], GdBiGeO₅ [9, 10], SmBiGeO₅ [11] и TbBiGeO₅, DyBiGeO₅ [12], $Y_{0.65}Pr_{0.35}BiGeO_5, Y_{0.65}Nd_{0.35}BiGeO_5$ [13].

В настоящей работе впервые исследована высокотемпературная теплоемкость EuBiGeO₅ и по этим данным определены термодинамические функции оксидного соединения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Германат EuBiGeO₅ получали методом твердофазного синтеза. Исходные компоненты – оксиды Eu₂O₃ (х. ч.), GeO₂ (99.999%, ФГУП "Германий") и Bi₂O₃ (ос. ч. 13-3) – предварительно прокаливали на воздухе при 1173 и 873 К соответственно. Стехиометрические смеси компонентов механически гомогенизировали в агатовой ступке, прессовали в таблетки и обжигали на воздухе последовательно при температурах 1003, 1073, 1173 К (длительность изотермической выдержки при каждой температуре 50 ч) и 1223 К (длительность 100 ч). Отличие условий синтеза EuBiGeO₅ от таковых [1-3] для других соединений R_xBi_{2 - x}GeO₅ заключалось в обжиге при температуре 1003 К (только после этого были получены однофазные образцы). При этой температуре происходит переход α -Bi₂O₃ \rightarrow δ -Bi₂O₃ [6]. Известно, что скорость твердофазного взаимодействия компонентов при подобных превращениях увеличивается (эффект Хэдвала) [14]. Для дости-

Рис. 1. Рентгенограмма EuBiGeO₅ при комнатной температуре: *1* – экспериментальный, *2* – расчетный, *3* – разностный профили рентгенограмм; штрихи указывают расчетные положение рефлексов.

жения полноты протекания твердофазного взаимодействия реагентов через каждые 10 ч проводили перетирание образцов с последующим прессованием. Контроль состава полученных образцов осуществляли методом рентгенофазового анализа на дифрактометре X'Pert Pro MPD PANalytical (Нидерланды) в СоКа-излучении. Регистрацию проводили с помощью высокоскоростного детектора PIXcel в интервале углов $2\theta = 12^{\circ} - 118^{\circ}$ с шагом 0.013°. Полученные результаты показаны на рис. 1. Параметры элементарной ячейки синтезированного однофазного EuBiGeO₅ (данные рентгенографического исследования свидетельствуют о том, что в синтезированном образце присутствует только основная фаза) определены путем полнопрофильного уточнения методом минимизации производной разности [15].

Молярную теплоемкость EuBiGeO₅ измеряли на приборе STA 449 C Jupiter (NETZSCH, Германия). Методика экспериментов подобна описанной в [16]. Полученные результаты обрабатывали с помощью пакета программ NETZSCH Proteus Thermal Analysis и лицензионного программного инструмента Systat Sigma Plot 12 (Systat Software Inc, США). Ошибка измерений стандартного вещества (корунда) не превышала 2%.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Полученные нами параметры элементарной ячейки EuBiGeO₅ в сравнении с результатами [3] приведены в табл. 1. Там же приведены данные для соединений Eu₂GeO₅ и Bi₂GeO₅. Видно, что полученные нами значения незначительно (различие составляет <1% и может быть обусловлено разным содержанием примесей в исходных оксидах) превышают данные [3] ($\Delta a = 0.0390$ Å (0.73%), $\Delta b = 0.0244$ Å (0.16%), $\Delta c = 0.0156$ Å (0.14%), $\Delta V = 4.31$ Å³ (0.47%)). Кроме того, можно отметить, что образование EuBiGeO₅ из Eu₂GeO₅ и Bi₂GeO₅ сопровождается изменением структуры. Подобное наблюдалось и для соединений YBiGeO₅ [12].

Авторами работы [10] установлена корреляция между параметрами элементарной ячейки соединений $R_x \text{Bi}_{2-x} \text{GeO}_5$ и ионными радиусами редкоземельных элементов R^{3+} . Эти данные можно представить в виде следующих уравнений:

 $a = (4.0895 \pm 0.0624) + (1.258 \pm 0.0641) R^{3+}, \quad (1)$

 $b = (14.0454 \pm 0.1561) + (1.2125 \pm 0.1605) R^{3+}, (2)$

 $c = (7.6695 \pm 0.1623) + (3.5357 \pm 0.1669) R^{3+},$ (3)

$$V = (339.94 \pm 31.64) + (579.98 \pm 32.53) R^{3+}.$$
 (4)

Параметр	Eu ₂ GeO ₅	EuBiGeO ₅		Bi ₂ GeO ₅	
<i>a</i> , Å	9.977(7)	5.3652(4)	5.4042(1)	15.69(7)	15.6979(5)
b, Å	7.136(4)	15.262(1)	15.2865(2)	5.492(8)	5.4969(1)
<i>c</i> , Å	6.854(4)	11.2263(9)	11.2420(1)	5.383(6)	5.3848(1)
β, град	115.78(6)				
<i>V</i> , Å ³		924.4(1)	928.72(2)		464.66(2)
Пр. гр.	$P2_{1}/c$	Pbca	Pbca	$Cmc2_1$	$Cmc2_1$
Источник	[17]	[3]	Наст. работа	[18]	[11]

Таблица 1. Параметры элементарных ячеек Eu₂GeO₅, EuBiGeO₅ и Bi₂GeO₅

Коэффициенты корреляции для уравнений (1)–(4) равны соответственно 0.9915, 0.9438, 0.9923 и 0.9892. Нами установлено, что рассчитанные по уравнениям (1)–(4) параметры a, b, c и V для EuBiGeO₅ хорошо согласуются с экспериментальными значениями. Значения R^{3+} взяты из [19]. Согласно [1], для соединений Y(Yb)BiGeO₅ КЧ Y и Yb равно 7. По-видимому, и для других соединений RBiGeO₅ наблюдается аналогичная картина (для Eu³⁺ ионный радиус равен 1.01 Å).

Зависимость молярной теплоемкости EuBiGeO₅ от температуры иллюстрирует рис. 2. Видно, что в интервале температур 350–1000 К значения C_p закономерно увеличиваются, при этом на графике зависимости $C_p = f(T)$ каких-либо аномалий не наблюдается. Характер зависимости $C_p = f(T)$ позволяет говорить о том, что в этом интервале температур EuBiGeO₅ не испытывает полиморфных превращений. Таким образом, полученные экспериментальные данные могут быть с хорошей точностью описаны уравнением Майера–Келли:

Рис. 2. Температурная зависимость молярной теплоемкости EuBiGeO₅, точки – экспериментальные данные, линия – расчет по уравнению (5).

$$C_p = (184.0 \pm 0.56) + (35.96 \pm 0.60) \times 10^{-3}T - (7.79 \pm 0.60) \times 10^{5}T^{-2}.$$
 (5)

Коэффициент корреляции для уравнения (5) равен 0.9993, а максимальное отклонение экспериментальных точек от сглаживающей кривой составляет 0.7%.

С помощью уравнения (5) рассчитаны величины термодинамических функций EuBiGeO₅ в области 350–1000 К. Результаты расчетов изменения энтальпии, энтропии и энергии Гиббса германата висмута-европия приведены в табл. 2.

Поскольку измерения теплоемкости EuBiGeO5 ранее не проводились, сравнить полученные нами результаты с данными других авторов не представляется возможным. Можно отметить, что значения C_p для EuBiGeO₅ достаточно близки к соответствующим величинам для TmBiGeO₅ и YbBiGeO₅ [20]. Кроме того, рассчитать C_p можно с использованием различных модельных представлений [21-24]. Выполненные нами оценки показывают, что из всех методов расчета С_n для EuBiGeO₅ при 298 К наиболее близкие к экспериментальному значению (рассчитанному по уравнению (5)) результаты дают метод Неймана-Коппа (-4.4%) и инкрементный метод Кумока (-5.3%). Учитывая сложность состава анализируемого соединения, такое совпадение следует признать удовлетворительным. Необходимые для расчетов значения C_p для Eu_2O_3 , Bi_2O_3 и GeO_2 брали из [25, 26], а инкрементов ионов – из [24].

ЗАКЛЮЧЕНИЕ

Германат EuBiGeO₅ синтезирован твердофазным методом в интервале температур 1003–1223 К с использованием в качестве исходных компонентов оксидов Eu₂O₃, Bi₂O₃ и GeO₂. Методом дифференциальной сканирующей калориметрии измерена высокотемпературная теплоемкость поликристаллических образцов германата висмутаевропия в области 350–1000 К. Установлено, что экспериментальная зависимость $C_p = f(T)$ не име-

Т, К	<i>С_р,</i> Дж/(моль К)	<i>H</i> °(<i>T</i>) − <i>H</i> °(350 K), кДж/моль	<i>S</i> °(<i>T</i>) − <i>S</i> °(350 K), Дж/(моль K)	Ф°(<i>T</i>) – Ф°(350 К), Дж/(моль К)
350	190.2	_	_	—
400	193.5	9.59	25.62	1.63
450	196.3	19.34	48.58	5.60
500	198.8	29.22	69.39	10.95
550	201.2	39.22	88.46	17.14
600	203.4	49.34	106.1	23.83
650	205.5	59.56	122.4	30.79
700	207.6	69.89	137.7	37.88
750	209.6	80.32	152.1	45.03
800	211.5	90.84	165.7	52.15
850	213.5	101.5	178.6	59.21
900	215.4	112.2	190.8	66.19
950	217.3	123.0	202.5	73.06
1000	219.2	133.9	213.7	79.81

Таблица 2. Термодинамические свойства EuBiGeO₅

ет аномалий и с достаточно хорошей точностью может быть описана уравнением Майера—Келли. По экспериментальным значениям C_p рассчитаны термодинамические свойства (изменения энтальпии, энтропии и энергии Гиббса) германата висмута-европия.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа профинансирована в рамках государственного задания Министерства науки и высшего образования Российской Федерации Сибирскому федеральному университету на 2017–2019 гг. (проект 4.8083.2017/8.9 "Формирование банка данных термодинамических характеристик сложнооксидных полифункциональных материалов, содержащих редкие и рассеянные элементы").

конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Cascales C., Campa J.A., Puebla E.G. et al. // J. Mater. Chem. 2002. V. 12. P. 3626. https://doi.org/10.1039/b207638c
- Cascales C., Zaldo C. // J. Solid State Chem. 2003. V. 171. P. 262. https://doi.org/10.1016/S0022-4596(02)00173-1
- Cascales C., Zaldo C. // Chem. Mater. 2006. V. 18. P. 3742. https://doi.org/10.1021/cm060785t
- Baran E.J., Vascales C. // J. Raman Spectrosc. 2002. V. 33. P. 838. https://doi.org/10.1002./jrs.925

- 5. *Жереб В.П.* Метастабильные состояния в оксидных висмутсодержащих системах. М.: МАКС Пресс, 2003. 163 с.
- 6. Каргин Ю.Ф., Бурков В.И., Марьин А.А. и др. Кристаллы $Bi_{12}M_xO_{20\pm\delta}$ со структурой силленита. Синтез, строение, свойства. М.: ИОНХ, 2004. 316 с.
- Бондарь И.А., Виноградова Н.В., Демьянец Л.Н. и др. Соединения редкоземельных элементов. Силикаты, германаты, фосфаты, арсенаты, ванадаты. М.: Наука, 1983. 288 с.
- Демьянец Л.Н., Лобачев А.Н., Емельченко Г.А. Германаты редкоземельных элементов / Отв. ред. Белов Н.В. М.: Наука, 1980. 152 с.
- Denisova L.T., Belousova N.V., Galiakhmetova N.A. et al. // Phys. Solid State. 2017. V. 59. № 5. Р. 1047. [Денисова Л.Т., Белоусова Н.В., Галиахметова Н.А. и др. // Физика тв. тела. 2017. Т. 59. № 5. С. 1019.] https://doi.org/10.1134/S1063783417050080
- Denisova L.T., Izotov A.D., Kargin Yu.F. et al. // Dokl. Phys. Chem. 2017. V. 473. № 2. P. 58. [Денисова Л.Т., Изотов А.Д., Каргин Ю.Ф. и др. // ДАН. 2017. Т. 473. № 4. С. 449.] https://doi.org/10.1134/S0012501617040029
- Denisova L.T., Belousova N.V., Galiakhmetova N.A. et al. // Phys. Solid State. 2017. V. 59. № 8. Р. 1683. [Денисова Л.Т., Белоусова Н.В., Галиахметова Н.А. и др. // ФИЗИКА ТВ. тела. 2017. Т. 59. № 8. С. 1659.] https://doi.org/10.1134/S106378341708008X
- 12. Denisova L. T., Kargin Yu. F, Belousova N. V. et al. // Inorg. Mater. 2017. V. 53. № 10. Р. 1086. [Денисова Л. Т., Каргин Ю.Ф., Белоусова Н.В. и др. // Неорган. материалы. 2017. Т. 53. № 10. С. 54.] https://doi.org/10.1134/S0020168517100041
- Denisova L.T., Izotov A.D., Kargin Yu.F. et al. // Dokl. Phys. Chem. 2018. V. 483. № 2. Р. 145. [Денисова Л.Т., Изотов А.Д., Каргин Ю.Ф. и др. // ДАН. 2018. Т. 483. № 5. С. 514.] https://doi.org/10.1134/S0012501618120011

- 14. *Третьяков Ю.Д.* Твердофазные реакции. М.: Химия, 1978. 360 с.
- Solovyov L.A. // J. Appl. Crystallogr. 2004. V. 37. P. 743. https://doi.org/10.1107/S0021889804015638
- Denisov V.M., Denisova L.T., Irtyugo L.A. et al. // Phys. Solid State. 2010. V. 52. № 7. Р. 1362. [Денисов В.М., Денисова Л.Т., Иртюго Л.А. и др. // Физика тв. тела. 2010. Т. 52. № 7. С. 1274.]
- Kato K., Serita M., Kimura S. // Acta Crystallogr. 1979.
 V. 35B. P. 2201.
- Aurivillius B., Lindblom C.-I., Stenson P. // Acta Chem. Scand. 1964. V. 18. № 6. P. 1555.
- Shannon R.D. // Acta Crystallogr. Sect. A. 1976. V. 32. P. 751.
- 20. Denisova L.T., Belousova N.V., Galiakhmetova N.A. et al. // Phys. Solid State. 2018. V. 60. № 2. Р. 267. [Денисова Л.Т., Белоусова Н.В., Галиахметова Н.А. и др. // Физика тв. тела. 2018. Т. 60. № 2. С. 262. https://doi.org/10.21883/FTT.2018.02.45378.248] https://doi.org/10.1134/S1063783418020099

- 21. Кубашевский О., Олкокк С.Б. Металлургическая термохимия. М.: Металлургия, 1982. 392 с.
- 22. Моисеев Г.К., Ватолин Н.А., Мапшук Л.А. и др. Температурные зависимости приведенной энергии Гиббса некоторых неорганических веществ (альтернативный банк данных ACTPA. OWN). Екатеринбург: УрО РАН, 1997. 230 с.
- 23. *Морачевский А.Г., Сладков И.Б., Фирсова Е.Г.* Термодинамические расчеты в химии и металлургии. СПб.: Лань, 2018. 208 с.
- 24. *Кумок В.Н.* // Прямые и обратные задачи химической термодинамики. Новосибирск: Наука, 1987. С. 108.
- 25. Laitner J., Chuchvalec P., Sedmidubský D. et al. // Thermochim. Acta. 2003. V. 395. P. 27.
- 26. Гордиенко С.П., Феночка Б.В., Виксман Г.Ш. Термодинамика соединений лантаноидов. Киев: Наук. думка, 1979. 376 с.