СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 546.76

СОЕДИНЕНИЯ ХРОМА(III) С НЕКОТОРЫМИ ОРГАНИЧЕСКИМИ ЛИГАНДАМИ¹

© 2020 г. Н. А. Скорик^{а,} *, Р. Р. Алимова^b

^аТомский государственный университет, пр-т Ленина, 36, Томск, 634050 Россия ^bAO "Сибиар", Новосибирск, 630096 Россия *e-mail: Skorikninaa@mail.ru Поступила в редакцию 26.06.2019 г. После доработки 19.08.2019 г. Принята к публикации 27.08.2019 г.

При различных условиях установлено время достижения равновесия в системе хром(III)—органический лиганд. Выделены соединения хрома(III) с пиколиновой $Cr(C_6H_4NO_2)_3 \cdot H_2O$, никотиновой $CrOH(C_6H_4NO_2)_2 \cdot 2H_2O$ и лимонной $CrC_6H_5O_7 \cdot 3H_2O$ кислотами, проведен их гравиметрический и термогравиметрический анализ, получены ИК-спектры. В растворе методом изомолярных серий установлен состав (1 : 1) доминирующих комплексов хрома(III) с анионами указанных кислот, методом рН-потенциометрии определены их константы устойчивости. Проведен анализ электронных спектров поглощения изученных систем. Для пиколината хрома разработана фотометрическая методика определения соли в растворе, определено значение константы растворимости K_S (lg $K_S = -21.52 \pm 0.29$), проведен квантово-химический расчет для газообразной молекулы, рассчитаны энергетические и геометрические и ческие параметры.

Ключевые слова: равновесие, устойчивость, комплексы, синтез, квантово-химический расчет **DOI:** 10.31857/S0044457X2001016X

ВВЕДЕНИЕ

Изучение систем, содержащих соли хрома(III) и биологически активные органические соединения, представляет не только научный, но и практический интерес. Ион этого металла играет роль в ряде биологических процессов, и многие соединения хрома(III) с органическими кислотами (алифатические и ароматические кислоты, оксикислоты, аминокислоты) находят широкое применение в медицине и пищевой промышленности. Хром занимает центральное место в метаболизме сахара и незаменим при лечении инсулиннезависимого диабета типа II. Биологическая роль пиколината хрома(III) состоит в том, что он участвует в утилизации глюкозы инсулином, предупреждает депрессию. В отличие от хрома(VI), большинство комплексов хрома(III) не являются цитотоксическими и мутагенными, по-видимому, из-за низкой клеточной проницаемости, связанной с их октаэдрической геометрией и кинетической инертностью.

Важным является исследование систем хром(III)—органическая кислота, где протекание процесса комплексообразования иона Cr³⁺

осложнено реакциями гидролиза, полимеризации, замещения лигандов во внутренней сфере.

Основным свойством комплексов хрома(III) является их кинетическая устойчивость к реакциям замешения в водных растворах, именно поэтому так много комплексов хрома(III) удалось выделить. Многие реакции иона хрома(III) протекают в водных растворах при комнатной температуре медленно. Практически доказана инертность комплексов хрома(III) и выявлен механизм обмена лигандами. Авторы работы [1] указывают, что экспериментально определяемая скорость реакции замещения лигандов во внутренней сфере кинетически инертного аквакомплекса [Сг(H₂O)₆]³⁺ (период полуобмена молекулами воды для него составляет 1-3 сут [2]) является скоростью превращения внешнесферного комплекса $[Cr(H_2O)_6]H_{n-i}L$ (заряды опущены), который быстро образуется в виде ионной пары ($H_{n-i}L$ – любая форма лиганда), во внутрисферный:

$$\left[\operatorname{Cr}(\operatorname{H}_{2}\operatorname{O})_{6}\right]\operatorname{H}_{n-i}\operatorname{L}\rightarrow\left[\operatorname{Cr}(\operatorname{H}_{2}\operatorname{O})_{6-q}\operatorname{H}_{n-i}\operatorname{L}\right]+q\operatorname{H}_{2}\operatorname{O}.$$

Раствор при этом подкисляется, отрыв протона может происходить как от лиганда, так и от молекулы воды аквакомплекса хрома(III).

¹ Дополнительная информация для этой статьи доступна по doi 10.1134/S0044457X2001016X

В литературе имеются данные по синтезу солей хрома(III) с органическими лиганлами. Описано получение соли $Na_3[Cr(C_6H_5O_7)_2] \cdot 8.5H_2O$, содержащей комплексный анион, из нитрата хрома(III), моногидрата лимонной кислоты (H₃Cit · H₂O) в мольном соотношении 1 : 3 и раствора NaOH при рН 5.5 [3]. Отмечается, что полученное вещество имеет фиолетовую окраску. Патент [4] содержит описание способа получения пиколината хрома(III) из водного раствора CrCl₃ · 6H₂O и пиколиновой кислоты C₆H₅NO₂ (HPic): смесь реагентов кипятили в течение 15 мин, охлаждали, проводили кристаллизацию, фильтрацию, перекристаллизацию и получали темно-розовые кристаллы. Подобный состав MPic₃ · H₂O имеют желтые кристаллы пиколинатов родия(III) и иридия(III), полученные из растворов хлоридов металлов и пиколиновой кислоты при нагревании смеси в течение 4 ч [5]. Кристаллические структуры обоих комплексов определены методом рентгеновской дифракции. В комплексах пиколинатные лиганды координированы с центром в виде бидентатных N,O-доноров, образующих пятичленные циклы. Молекула воды связана с карбоксилатными фрагментами двух соседних молекул МРіс, и действует как мост между отдельными сложными молекулами. В [6] описан синтез димерного пиколината $Cr_2(\mu$ -OH)₂(Pic)₄ · 5H₂O и его ЯМРспектр в диметилсульфоксиде.

Анализ литературных данных по получению никотината хрома(III) указывает на большую зависимость состава соли от условий синтеза. При взаимодействии никотиновой кислоты (HNic), гексагидрата перхлората хрома и перхлората натрия в водном растворе получен хрома(III) трехъядерный комплекс $Na[Cr_3O(HNic)_6(H_2O)_3](ClO_4)_8 \cdot HNic \cdot 6H_2O, co$ став которого был установлен на основании аналитических данных и результатов монокристаллического рентгеноструктурного анализа [7]. Никотиновая кислота связывается с хромом только через карбоксильный атом кислорода. Авторы [8] синтезировали оранжевые кристаллы mpahc[Cr(1,3-pn)₂(Nic)₂]Cl · 4H₂O (1,3-pn - 1,3пропандиамин). Дейтерий ЯМР-спектроскопия указала, что два *транс*-Nic⁻-аниона координированы через карбоксильные группы. В работе [9] описаны полученные никотинаты состава $Cr_2Nic_3(OH)_3 \cdot 4H_2O$ и $Cr_2(HNic)_3Cl_6 \cdot 6H_2O$, а также новые тройные комплексы хром(III)-никотиновая кислота-аминокислота с гистидином $Cr(L-his)(HNic)Cl_3 \cdot 5H_2O$ и анионом цистеина Cr(L-cis-)(HNic)Cl₂ · 4H₂O (конечный pH 3.0). С помощью физических измерений найдены их характеристики, во всех случаях никотиновая кислота связана с атомом хрома(III) через карбоксильную группу.

Авторы [10] синтезировали желтое кристаллическое вещество $CrNic_2 \cdot 4H_2O$ и синее твердое вещество $CrNic_2OH \cdot 3H_2O$. Сообщается, что никотиновая кислота в комплексе хрома(II) связана только через пиридиновый азот, в комплексе хрома(III) – через карбоксилат. Соединение со связью Cr-N имеет желтый, красный цвет, а со связью Cr-O – зеленый, синий. Хром(III) прочно связывается с OH-группами и молекулами H_2O в водном растворе, в результате чего образуются полимерные комплексы, комплексы хрома(III) с никотинат-ионом в целом могут быть олатами.

Авторы работы [11] исследовали структуры CrPic₃ и трех препаратов с никотинат-ионом (CrPic₂Nic, CrPicNic₂, CrNic₃) при помощи жидкофазного ЯМР и твердофазного метода Фурье. Ни один препарат с никотинат-ионом не является кристаллическим, каждый исследуемый продукт имеет свой цвет. Олатная структура согласуется с наблюдением, что CrPicNic₂ и CrNic₃ относительно мало растворимы в Н₂О и ДМСО, и может объяснить наблюдаемый синий и зеленый цвет. Проведен расчет абсолютной энергии различных молекулярных конформаций синтезированных соединений (вычисления сделаны для комнатной температуры, газовой фазы). Сравнение относительной стабильности четырех конформаций указывает на бо́льшую стабильность молекулярной конформации CrPic₃. Данных по изучению комплексообразования хрома(III) с органическими лигандами в растворах в литературе не так много, имеются также сведения о смешанном комплексообразовании. В [12] приведена константа устойчивости комплекса хрома(III) с пиколиновой кислотой состава $[CrPic_2]^+$ ($lg\beta_2 = 10.22$, I = 0.5). В [13] изучено гетеролигандное комплексообразование хрома(III) в системе $Cr^{3+}-H_{\mu}L-H_{2}Sal$, где $H_{\mu}L$ - моноаминные карбоксиметильные комплексоны (метилиминодиуксусная, β-гидроксиэтилиминодиуксусная, нитрилотриуксусная кислоты), H₂Sal – салициловая кислота, определены константы устойчивости комплексов состава 1:1:1. С использованием спектрофотометрических данных и методов математического моделирования установлен состав и определены константы устойчивости моно- и билигандных комплексов хрома(III) с комплексонами ряда карбоксиметиленаминов и гидроксикарбоновыми кислотами алифатического (лимонная, винная) и ароматического рядов [1].

В настоящее время продолжается изучение физико-химических и биологических свойств пиколината хрома(III). Все больше споров вызывает использование пиколината хрома(III) в качестве пищевой добавки. Для сравнения с пиколинатом хрома(III) были синтезированы и охарактеризованы семь новых производных состава Cr(R–Pic)₃ (R = H, Br, CF₃, Cl, COOH, CH₃, 5-OH, 3-OH) [14]. Эти комплексы хрома(III) не оказывают значительного влияния на глюкозу крови, сывороточный инсулин, общий холестерин и др. у мышей с диабетом. Указанные группы заместителей не способны явно улучшить биологическую активность CrPic₃, поэтому обоснованность применения пиколината хрома(III) в качестве пищевой добавки вызывает сомнения.

В работах [15, 16] изучено электрохимическое восстановление $CrPic_3$ в присутствии доноров протонов, таких как аскорбиновая, бензойная и уксусная кислоты, исследуется процесс обмена внутрисферных молекул воды комплексного иона [$CrPic(H_2O)_4$]²⁺ с внешнесферными молекулами H_2O .

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры растворов изучаемых систем снимали на спектрофотометре Leki SS2107UV, оптическую плотность измеряли на фотоколориметре КФК-2-УХЛ 4.2 при толщине поглощающего слоя l = 10 мм; pH растворов определяли на pHметре 673 со стеклянным электродом, откалиброванным по растворам соляной кислоты с известным значением pH и определенной ионной силой. Термограммы синтезированных солей снимали на приборе Netzsch STA 449 F1 при следующих условиях: материал тигля – Al₂O₃, скорость нагрева – 10 град/мин, атмосфера – воздух (80 мл/мин); ИК-спектры регистрировали на спектрометре Agilent Cary 630 FTIR в частотном диапазоне 400–4000 см⁻¹.

Учитывая высокую инертность хрома(III), при проведении синтеза его соединений с органическими лигандами, изучении комплексообразования в растворах необходимо знать время, требуемое для достижения равновесия в системе. Влияние времени на скорость образования хелатов хрома(III) изучено на примере системы $Cr(NO_3)_3-H_3Cit$ ($C_{Cr} = C_{Cit} = 0.0125$ моль/л; рH⁰ 3.5; $V_{общ} = 15$ мл) по изменению во времени значения рН раствора (рис. 1).

Как видно из рис. 1, равновесие в системе $Cr(NO_3)_3-H_3Cit$ при комнатной температуре достигается через 2–3 сут. При нагревании раствора на водяной бане ($V_{o6iii} \approx const$) равновесие в данной системе устанавливается через 3–3.5 ч (рН изменяется от 3.5 до 2.5 за счет увеличивающегося гидролиза иона Cr^{3+} при нагревании). На основании электронных спектров поглощения (ЭСП) указанной системы, снятых при различном времени кипячения раствора (объем раствора поддерживали постоянным), сделан вывод о том, что равновесия комплексообразования, гидролиза (сравнение с ЭСП системы $Cr(NO_3)_3-H_2O$ в тех

Рис. 1. Зависимость изменения pH от времени в системе $Cr(NO_3)_3$ -H₃Cit при комнатной температуре.

же условиях) устанавливаются через 20 мин (pH изменяется от 3.5 до 2.1). Во всех случаях отмечено изменение окраски растворов от сине-фиолетовой, принадлежащей гексаакваионам $[Cr(H_2O)_6]^{3+}$, до темно-синей, что доказывает протекание процесса комплексообразования с органическим лигандом. С учетом литературных и установленных нами условий достижения равновесия в системах, содержащих хром(III) и органический лиганд, выбраны методики получения солей и условия изучения комплексообразования хрома(III) с лимонной, пиколиновой и никотиновой кислотами.

Синтез цитрата хрома(III) проводили по реакции взаимодействия девятиводного нитрата хрома(III) и лимонной кислоты (мольное соотношение компонентов 1 : 1):

$$\operatorname{Cr}(\operatorname{NO}_3)_3 + \operatorname{H}_3\operatorname{Cit} = \operatorname{Cr}\operatorname{Cit} + 3\operatorname{HNO}_3.$$

Для этого к 5 мл раствора, содержащего 3.32 г $Cr(NO_3)_3 \cdot 9H_2O$, приливали 5 мл раствора лимонной кислоты (1.74 г $H_3Cit \cdot H_2O$). В полученном прозрачном растворе сине-фиолетового цвета (р $H_{смеси}$ 1.36) создавали рН ~3.7–4.0 концентрированным раствором NaOH. Смесь нагревали на водяной бане в течение 3 ч, охлаждали и выдерживали сутки (рН 2.3), высаливали цитрат хрома(III) ацетоном. Образовавшуюся массу промывали ацетоном, затем сушили на воздухе.

Синтез пиколината хрома(III) осуществляли по реакции взаимодействия девятиводного нитрата хрома(III) с пиколиновой кислотой в мольном соотношении 1 : 3 (*V*_{смеси} ~30 мл):

$$Cr(NO_3)_3 + 3HPic = CrPic_3\downarrow + 3HNO_3.$$

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 65 № 1 2020

Состав соли	H ₂ O, %		$L^{m-}, \%$		Cr ₂ O ₃ , %	
(рН водного раствора)	найдено	вычислено	найдено	вычислено	найдено	вычислено
$\overline{\text{CrOH}(\text{C}_6\text{H}_4\text{NO}_2)_2 \cdot 2\text{H}_2\text{O}, \text{CrOHNic}_2 \cdot 2\text{H}_2\text{O}}(3.2)$	12.0	10.31	67.7	69.93	21.4	21.76
$Cr(C_6H_4NO_2)_3 \cdot H_2O, CrPic_3 \cdot H_2O (3.4; 1.9)$	4.2	4.13	78.3	83.95	17.8	17.42
$CrC_6H_5O_7 \cdot 3H_2O$, $CrCit \cdot 3H_2O$ (2.3)	16.7	18.30	60.2	64.08	26.0	25.75

Таблица 1. Данные термического и термогравиметрического методов анализа синтезированных солей хрома(III)

В полученном прозрачном растворе 2.5 М раствором NaOH создавали pH 3.40. При стоянии раствора (2 сут) выпадал темно-розовый осадок, который промывали водой и сушили на воздухе. Пиколинат хрома также получали нагреванием смеси исходных компонентов на бане (2 ч) при pH 1.9–3.5. Состав солей, полученных в этом интервале pH, был идентичным.

При синтезе никотината хрома(III) (соотношение исходных компонентов 1 : 3) к 15 мл раствора, содержащего 2.86 г Сг(NO₃)₃ · 9H₂O, приливали 15 мл слегка нагретого раствора 2.77 г никотиновой кислоты и 4.30 мл 2.5 М раствора NaOH. Полученный прозрачный раствор серозеленого цвета выдерживали на водяной бане в течение 3 ч, охлаждали и оставляли на сутки. Раствор с осадком приобретал серую окраску, его еще раз выдерживали на водяной бане, после охлаждения раствора (pH 3.20) выпавший осадок отфильтровывали, промывали холодной водой и высушивали на воздухе.

Синтезированные соли хрома(III) проанализированы на содержание воды и оксида хрома гравиметрическим методом. Для этого соли выдерживали при температуре 130°С (2 ч) для удаления воды, затем при 900°С в течение 2-3 ч до образования оксида Cr₂O₃. Содержание воды, органического лиганда и оксида хрома в солях было определено также с помощью термогравиметрии. Удовлетворительное совпадение результатов определения кристаллизационной воды в цитрате и пиколинате хрома(III) методами термогравиметрии $(t_{\text{max}} = 110 \text{ и } 118^{\circ}\text{C}$ соответственно) и гравиметрии при 130°С позволило провести их усреднение. Наблюдалась хорошая сходимость гравиметрических и термогравиметрических данных при определении содержания оксида хрома(III) во всех солях. Усредненные результаты гравиметрического и термогравиметрического анализа солей приведены в табл. 1. Наблюдается удовлетворительная сходимость рассчитанных и экспериментально полученных значений содержания в солях воды, лиганда и оксида хрома. Термический распад цитрата хрома(III) CrCit \cdot 3H₂O на воздухе, по данным термограммы, протекает в несколько стадий, на что указывает изменение массы соли: эндотермический процесс дегидратации происходит в интервале температур 70–240°С ($t_{\text{max}} = 110$ °С); экзотермический эффект при 240–440°С ($t_{\text{max}} = 410$ °С) соответствует полной термической деструкции цитратиона с дальнейшим образованием оксида Cr₂O₃:

 $\operatorname{CrCit} \cdot 3H_2O \xrightarrow{(70-240)^{\circ}C (-3H_2O)} \rightarrow \operatorname{CrCit} \xrightarrow{(240-440)^{\circ}C (-Cit^{3-})} \operatorname{Cr}_2O_3.$

На термограмме гидроксоникотината хрома(III) CrOHNic₂ · 2H₂O группа эндотермических эффектов при 70–340°С ($t_{max} = 225$ °С) соответствует дегидратации и частичной сублимации никотиновой кислоты. С экзотермическим эффектом в интервале температур 340–520°С ($t_{max} =$ = 446°С) происходит полное выгорание никотинат-иона на воздухе и образование оксида хрома(III). Потеря воды пиколинатом хрома(III) CrPic₃ · H₂O протекает с эндотермическим эффектом в интервале 70–210°С ($t_{max} = 118$ °С). В интервале температур 320–570°С ($t_{max} = 370$, 518°С) наблюдается деструкция аниона и начало образования оксида хрома(III).

Для синтезированного пиколината хрома CrPic₃ · H₂O была определена константа растворимости $K_S = [Cr^{3+}] \cdot [Pic^{-}]^3$. Поскольку соль плохо растворима, для определения ее растворимости взяты исходные растворы с достаточно высокой концентрацией соляной кислоты (0.3–1 моль/л), pH 0.52–0 и ионной силой I=1. Как видно из рис. 2, выход комплекса CrPic²⁺ в растворах в указанном интервале pH составляет всего ~(8–2)%. Поэтому, пренебрегая комплексообразованием в кислых растворах, для насыщенного раствора пиколината хрома учитывали следующие равновесия и соответствующие им константы:

$$CrPic_{3(r)} \leftrightarrow CrPic_{3(p)} \leftrightarrow Cr_{(p)}^{3+} + 3Pic_{(p)}^{-},$$

$$K_{S} = \left[Cr^{3+}\right] \cdot \left[Pic^{-}\right]^{3},$$
(1)

 $\mathrm{H}^{+} + \mathrm{Pic}^{-} \leftrightarrow \mathrm{HPic}, \quad B_{\mathrm{I}} = [\mathrm{HPic}]/[\mathrm{H}^{+}] \cdot [\mathrm{Pic}^{-}], \quad (2)$

$$Cr^{3+} + H_2O \leftrightarrow [CrOH]^{2+} + H^+,$$

$$K_{h1} = ([CrOH]^{2+} \cdot [H^+]) / [Cr^{3+}].$$
(3)

Из равновесия (1) видно, что в насыщенном растворе $C_{\rm Cr} = C_{\rm соли}$ ($C_{\rm соли}$ – растворимость соли,

Рис. 2. Диаграмма выхода частиц $Cr^{3+}(\alpha_0)$ и $CrPic^{2+}(\alpha_1)$ в зависимости от рН ($C_L = 0.01$ моль/л, $lgB_1 = 5.15$, $lg\beta_1 = 5.58$; программа "Выход комплекса" [17]).

моль/л), тогда уравнение материального баланса по иону металла имеет вид:

$$C_{\rm Cr} = C_{\rm conu} = \left[{\rm Cr}^{3+} \right] + \left[{\rm CrOH} \right]^{2+} =$$

= $\left[{\rm Cr}^{3+} \right] (1 + K_{h1}/h) = \left[{\rm Cr}^{3+} \right] \cdot \omega$ (4)

Из выражения (3) для K_{h1} найдена величина $[CrOH]^{2+} = K_{h1} [Cr^{3+}]/h (h - равновесная концен$ $трация ионов водорода [H⁺]); функция гидролиза <math>\omega = 1 + K_{h1}/h$, K_{h1} – константа гидролиза иона Cr^{3+} , взятая равной 7.1 × 10⁻⁵ [1]. Из уравнения (4) получаем: $[Cr^{3+}] = C_{coли}/\omega$. Из уравнения (5) материального баланса по лиганду с учетом равновесия (1)

$$C_{\text{Pic}} = [\text{HPic}] + [\text{Pic}^{-}] =$$

$$= B_{1}h[\text{Pic}^{-}] + [\text{Pic}^{-}] = [\text{Pic}^{-}]f = 3C_{\text{соли}},$$
(5)

где $f = 1 + B_1 h (B_1 - константа протонизации ани$ она пиколиновой кислоты), находим: [Pic⁻] = $<math>= C_{\text{Pic}}/f = 3C_{\text{соли}}/f$. При расчете функции f концентрация ионов водорода h приравнивалась к начальной концентрации раствора HCl (I = 1), так как растворимость соли CrPic₃ · H₂O (порядка 10^{-3} моль/л) намного меньше начальной концентрации HCl (0.3-1 моль/л). Подставив в выражение $K_S = [\text{Cr}^{3+}] \cdot [\text{Pic}^{-}]^3$ значения $[\text{Cr}^{3+}] = C_{\text{соли}}/\omega$ и [Pic⁻] = $3C_{\text{соли}}/f$, имеем:

$$K_{S} = (C_{\text{соли}}/\omega) \cdot (3C_{\text{соли}}/f)^{3} = 27C_{\text{соли}}^{4}/\omega f^{3}.$$

Рис. 3. Градуировочная характеристика для растворов CrPic₃ ($C_{\text{HCl}} = 0.5 \text{ моль/л}, I = 1; \lambda = 440 \text{ нм}; l = 10 \text{ мм}; R^2 = 0.996$).

Определение содержания соли в насыщенных растворах пиколината хрома(III) (C_{HCI}^0 = 0.3-1 моль/л) проводили фотометрически при $\lambda_{ab} = 440$ или 540 нм, используя для приготовления калибровочных растворов ($C_{\rm HCl} = 0.5$ моль/л, рH 0.30; I = 1) стандартный раствор соли CrPic₃ · H₂O с концентрацией 2.36 × 10⁻³ моль/л. Градуировочные характеристики для растворов CrPic₃ при 440 (рис. 3) и 540 нм имеют хорошие коэффициенты корреляции (0.996 и 0.995 соответственно). Для определения растворимости соли к аликвоте ее насыщенного раствора прибавляли необходимые объемы 1 М раствора HCl, 2 М раствора NaCl $(V_{\rm obil} = 6 \text{ мл})$, чтобы $C_{\rm HCl} = 0.5 \text{ моль/л}, I = 1$, как и в калибровочных растворах. В соответствии с выходом частиц Cr³⁺ и CrPic²⁺ (рис. 2) в 0.5 М растворах HCl (pH 0.30) присутствует ~95% акваионов хрома(III), которые и обусловливают поглощение раствора.

В табл. 2 приведены данные по определению растворимости пиколината хрома(III) в растворах с $C_{\rm HCl}^0 = 0.3 - 1$ моль/л и результаты расчета константы растворимости соли CrPic₃ · H₂O (*I* = 1).

Комплексообразование в системах $Cr^{3+}-H_nL$ ($H_nL = HPic$, HNic, H_3Cit) изучено методом изомолярных серий и pH-потенциометрически при ионной силе I = 0.3, создаваемой раствором NaNO₃ (фоновый электролит имеет общий

	· 1				
N⁰	$C_{\rm HCl1}^0 = h$, моль/л	f	ω	<i>С</i> (CrPic ₃ · H ₂ O), моль/л	$-\lg K_S$ CrPic ₃ · H ₂ O
1	0.300	4.74×10^{4}	1.00024	7.53×10^{-3}	21.09
2	0.336	5.31×10^{4}	1.00021	7.99×10^{-3}	21.13
3	0.446	7.05×10^{4}	1.00016	8.45×10^{-3}	21.41
4	0.520	8.22×10^{4}	1.00014	9.56×10^{-3}	21.39
5	0.600	9.48×10^{4}	1.00012	9.74×10^{-3}	21.54
6	0.678	1.07×10^{5}	1.00010	9.79×10^{-3}	21.69
7	0.758	1.20×10^{5}	1.00009	1.05×10^{-2}	21.72
8	0.918	1.45×10^{5}	1.00008	1.14×10^{-2}	21.83
9	1.000	1.58×10^{5}	1.00007	1.17×10^{-2}	21.89

Таблица 2. Результаты расчета константы растворимости K_S соли CrPic₃ · H₂O по данным ее растворимости $(K_{h1} (Cr^{3+}) = 7.1 \times 10^{-5}; B_1 = 1.62 \times 10^5; I = 1; \lambda = 440 \text{ нм}), \lg K_S = -21.52 \pm 0.29$

ион с компонентом растворов $Cr(NO_3)_3)$. Фотометрически методом изомолярных серий было установлено, что во всех системах доминирует комплекс состава 1 : 1. На рис. 4 для примера приведена изомолярная серия системы Cr^{3+} –HNic.

Учитывая, что данные фотометрии указывают на доминирование в изучаемых системах комплекса состава 1 : 1, при pH-потенциометрическом определении устойчивости комплексов соотношение металл : лиганд задавалось равным 1 : 1. В смесь раствора соли Cr(NO₃)₃ со свободной кислотностью $C_{\rm H} = 1 \times 10^{-3}$ моль/л (HNO₃) и раствора соответствующей органической кислоты вно-

Рис. 4. Зависимость *D*, $D_{\rm M}$ и ΔD от мольной доли лиганда в изомолярных растворах системы Cr(NO₃)₃– HNic–NaNO₃ ($C_{\rm Cr}^0 = C_{\rm Nic}^0 = 0.05$ моль/л; $V_{\rm oбщ} = 10$ мл; pH ~3.1; I = 0.3; $\lambda = 400$ нм).

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 65 № 1

сили различные объемы NaOH и выдерживали растворы 3 сут для достижения равновесия. В табл. 3 для примера приведены данные по приготовлению растворов, измерению в них величины pH и расчету по программе Бьеррум 1 [17] логарифма константы устойчивости комплекса [CrPic]²⁺ (lg β_1 = 5.58 ± 0.26). Для комплексных ионов [CrNic]²⁺ и [CrCit], по данным pH-потенциометрии, lg β_1 равен соответственно 4.14 ± 0.26 и 7.15 ± 0.11.

Для систем Cr(NO₃)₃-H₂O, Cr(NO₃)₃-HPic и Cr(NO₃)₃-HNic ($C_{Cr} = C_L = 0.025$ моль/л; $V_{oбщ} =$ = 10 мл; I = 0.3 (NaNO₃)) в видимой области спектра сняты ЭСП. Во всех растворах pH создавали растворами HNO₃ или NaOH, растворы оставляли на 3 сут для достижения равновесия (pH 2.9–3.1). На рис. 5 приведены спектры поглощения нитрата хрома(III), смеси соли металла и пиколиновой кислоты. Спектры поглощения систем Cr(NO₃)₃-HNic и Cr(NO₃)₃-H₃Cit похожи на спектр системы Cr(NO₃)₃-HPic.

Квантово-химический расчет структуры пиколината хрома(III) проведен с помощью программы Gaussian 09 [18] при использовании метода функционала плотности (DFT) с функционалом ВЗLYР и базисным набором 6-31G (d). При помощи полной оптимизации молекулы находили стационарные точки на поверхности потенциальной энергии. В результате проведены расчеты предполагаемой структуры пиколината хрома(III) в газовой фазе (расположение в пространстве центрального атома и лигандов, длины связей, валентные углы), полной и относительной энергии газообразной молекулы, а также ИК-спектра пиколината хрома с целью сравнения его с экспериментально полученным. Рассчитанная структура исследуемой молекулы показана на рис. 6.

Результаты квантово-химического расчета полной и относительной (разность значений полной энергии молекулы $E_{\text{полн}}$ и энергии нулевых

2020

колебаний E_{ZPE}) энергий пиколината хрома(III) приведены в табл. 4.

В соответствии с рис. 6 проведены расчеты геометрических параметров структуры — длин связей, валентных углов плоских пятичленных циклов в молекуле хрома(III) с пиколиновой кислотой (табл. S1, S2). Сравнение рассчитанных и экспериментально полученных частот колебаний ИК-спектра молекулы пиколината хрома(III) представлено в табл. S3.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

При внесении в раствор соли хрома(III) лиганда наблюдается изменение кислотности. повышение оптической плотности, небольшое смешение максимумов полос поглощения комплексов хрома(III) по сравнению с гидратированным ионом металла, отличие молярных коэффициентов поглощения от значений молярных коэффициентов поглощения исходных веществ. Максимумы полос поглошения, соответствующие им значения оптической плотности, а также разность этих величин в системах Cr(NO₃)₃-H₂O, Cr(NO₃)₃-HNic(HPic)-H₂O с одинаковой концентрацией компонентов и близким значением рН представлены в табл. 5 (для величин $\Delta\lambda$ гипсохромное смешение обозначено знаком минус). Невысокие коэффициенты молярного поглощения растворов, содержащих акваионы хрома(III) и его комплексы, при длинах волн 411–399, 575– 544 нм (17.24–26.76, 14.08–20.40 соответственно) указывают на то, что полосы при этих длинах волн принадлежат *d*-*d*-переходам электронов иона Cr^{3+} (d^{3}). В спектрах изученных систем наблюдаются две полосы поглощения, которые можно отнести к электронным *d*-*d*-переходам иона Сг³⁺ (*d*³): ⁴A_{2g} \rightarrow ⁴T_{1g} (в диапазоне 399–411 нм) и ⁴A_{2g} \rightarrow ⁴T_{2g} (в диапазоне 544–575 нм), что под-тверждается данными работ [9, 19]. Из табл. 5 видно, что в системах с лигандами наблюдается гипсохромный сдвиг максимумов полос поглощения (λ_{max}) акваионов хрома(III), который указывает на увеличение энергии расщепления атомных *d*-орбиталей хрома(III) кристаллическим полем лигандов по сравнению с расщеплением в случае акваиона хрома(III). Это расщепление больше в случае пиколинат-иона, образующего более устойчивый хелатный комплекс с ионом Cr^{3+} , чем никотинат-ион.

В табл. 6 приведены данные по константам устойчивости комплексов хрома(III) с анионами лимонной, пиколиновой и никотиновой кислот, определенные в настоящей работе, и для сравнения представлены литературные данные по устойчивости комплексов железа(III) с этими же лигандами. Близость ионных радиусов трехвалентных хрома и железа обусловливает близость констант устойчивости их комплексов. Несколько бо́льшую устойчивость комплексов иона Fe³⁺

Таблица 3. Данные определения константы устойчивости комплекса [CrPic]²⁺ pH-потенциометрическим методом ($C_{\rm L}^0 = 5 \times 10^{-3}$ моль/л, $C_{\rm Cr}^0 = 5 \times 10^{-3}$ моль/л с $C_{\rm H} = 1 \times 10^{-3}$ моль/л, $C_{\rm шел}^0 = 1.07 \times 10^{-2}$ моль/л, I = 0.3, lg $B_1 = 5.15$ (пересчет с I = 0.1)), lg $\beta_1 = 5.58 \pm 0.26$

N⁰	<i>V</i> _{Cr} , мл	V _{HPic} , мл	V _{NaOH} , мл	pН	$lg\beta_1$
1	5.0	5.0	0.22	2.74	5.71
2	5.0	5.0	0.44	2.90	5.20
3	5.0	5.0	0.66	2.89	5.55
4	5.0	5.0	0.88	3.01	5.35
5	5.0	5.0	1.10	3.12	5.27
6	5.0	5.0	1.32	3.14	5.53
7	5.0	5.0	1.54	3.18	5.77

Таблица 4. Рассчитанные значения полной и относительной энергий молекулы пиколината хрома(III)

Молекула	Полная энергия $E_{\text{полн}}$ (с учетом энергии нулевых колебаний), E_h^*	Относительная энергия $E_{\text{отн}}, E_h$
CrPic ₃	-2353.34324674	-0.28290874

* 1 Хартри, *E_h* = 2625.5 кДж/моль.

 (d^5) по сравнению с ионом $Cr^{3+}(d^3)$ с кислород- и азотсодержащими лигандами можно объяснить большей электростатичностью иона железа(III) и бо́льшим его сродством к донорным атомам кислорода и азота. Увеличение устойчивости комплексов хрома(III) в ряду [CrNic]²⁺, [CrPic]²⁺, [CrCit] находится в соответствии с зарядами ани-

Рис. 5. ЭСП систем: $1 - Cr(NO_3)_3 - H_2O$ ($C_{Cr} = 0.025 \text{ моль/л}$); $2 - Cr(NO_3)_3 - HPic$ ($C_{Cr} = C_L = 0.025 \text{ моль/л}$).

Рис. 6. Рассчитанная структура пиколината хрома(III): а – общий вид молекулы CrPic₃; б – ориентация молекулы CrPic₃ относительно декартовой системы координат.

онов и основностью кислот (lg B_1 4.81, 5.15, 5.49 соответственно).

Из данных квантово-химических расчетов для газообразной молекулы пиколината хрома(III) можно сделать вывод, что частица CrPic₃, как и ожидалось, располагается в пространстве в форме октаэдра. Центральный ион хрома(III) образует три плоских пятичленных цикла посредством донорных атомов кислорода и азота бидентатных лигандов пиколиновой кислоты. Полученная большая отрицательная величина энергии молекулы пиколината хрома(III) (табл. 4) свидетельствует о высокой устойчивости данного соединения. Предположительно, это можно объяснить образованием прочной связи центрального атома хрома(III) с донорными атомами кислорода и азота пиридин-2-карбоновой кислоты в пятичленных циклах.

Сумма валентных углов плоского пятиугольника составляет 540.0°, сумма рассчитанных валентных углов пятичленных циклов 1, 2, 3 в молекуле пиколината хрома(III), по данным табл. S2, составляет 543.4°, 539.9° и 539.7° соответственно, что говорит о плоском расположении их в пространстве с учетом погрешности. Малая величина валентных углов O₂Cr₁N₁, O₄Cr₁N₂, N₃Cr₁O₆ (78°-83°), отличающаяся от 108° (валентный угол в плоском пятиугольнике), объясняется тем, что при октаэдрической координации при образовании пятичленных циклов ионом хрома(III) происходит вытягивание связей Cr-O, Cr-N и вследствие этого уменьшение валентного угла. Значения этих длин связей в табл. S1 выделены полужирным шрифтом. В работе [21] методом рентгеновской кристаллографии найдены структурные характеристики CrPic₃ · H₂O (длины связей, валентные углы), близкие полученным квантовохимическим методом в данной работе (табл. 7). Расхождение значений длин связей в молекуле пиколината хрома(III) между теоретическим расчетом в программе Gaussian 09 и данными, полученными методом рентгеновской кристаллографии [21], составляет: 0.01-0.06 Å для связей Cr_i-N_n и 0.04-0.07 Å для связей Cr_i-O_n, что можно считать

Таблица 5. Результаты исследования систем $Cr(NO_3)_3$ -H₂O, $Cr(NO_3)_3$ -HNic(HPic)-H₂O ($C_{Cr} = C_L = 0.025$ моль/л; $\tau = 3$ сут)

Система	p[H]°	p[H] _τ	λ_{max} , нм	D _{max}	Δλ, нм	ɛ, л/(см моль)	ΔD
Cr(NO ₃) ₃ –H ₂ O	3.5	2.9	412;	0.431;	—	17.24;	_
			575	0.352	_	14.08	
Cr(NO ₃) ₃ –HNic	3.6	3.1	411	0.465	-1	25.80;	0.034
			574	0.467	-1	18.68	0.115
Cr(NO ₃) ₃ –HPic	3.7	2.9	399	0.669	-13	26.76;	0.238
			544	0.510	-31	20.40	0.158

Cr^{3+} ($r_{\mu} = 0.061$ нм)		Fe^{3+} ($r_{\rm H} = 0.064$ HM)			
комплекс	$\lg \beta_1$	комплекс	$lg\beta_l$	литература	
[CrCit]	7.15 ± 0.11	—	-	—	
[CrPic] ²⁺	5.58 ± 0.26	[FePic] ²⁺	5.88	[20]	
[CrNic] ²⁺	4.14 ± 0.26	[FeNic] ²⁺	4.60	[20]	

Таблица 6. Данные по устойчивости комплексов хрома(III) и железа(III)

Таблица 7. Длины связей (Å) в молекуле пиколината хрома(III), полученные квантово-химическим расчетом и методом рентгеновской кристаллографии

Квантово-химический расчет в программе Gaussian 09		Рентгеновская кристаллография [21]		
$Cr_i - O_n$	$Cr_i - N_n$	$Cr_i - O_n$	$Cr_i - N_n$	
1.877	2.054	1.945	2.045	
1.902	2.089	1.946	2.055	
1.900	2.122	1.955	2.063	

удовлетворительным. Авторы работы указывают, что в кристалле пиколината атом хрома координирует три атома азота, три атома кислорода и имеет искаженную октаэдрическую геометрию. Каждая молекула воды играет роль мостика водородной связи и соединяет два соседних комплекса. В работе [5] структура пиколинатов родия(III) и иридия(III) определена методом рентгеновской кристаллографии, структурные характеристики близки к таковым в настоящей работе. Например, величина угла $N_2Cr_1O_4$ (рис. 6, табл. S2) составляет 82.8°, а в работах [5] и [21] — 81.75° (пиколинат родия(III)), 80.72° (пиколинат иридия(III)) и 80.5° (пиколинат хрома(III)).

Удовлетворительное совпадение рассчитанного в программе Gaussian 09 и экспериментально полученного ИК-спектров (табл. S3) свидетельствует о том, что в пиколинате хрома(III) CrPic₃ · H₂O центральный атом хрома имеет октаэдрическое окружение, а кристаллизационная молекула воды располагается вне этого окружения.

ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ

Таблица S1. Рассчитанные значения длин связей в молекуле пиколината хрома(III).

Таблица S2. Рассчитанные значения валентных углов плоских пятичленных циклов в молекуле пиколината хрома(III).

Таблица S3. Сравнение экспериментально полученных и рассчитанных частот ИК-спектра пиколината хрома(III).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Корнев В.И., Микрюкова Г.А.* // Вестник Удмуртского университета. Химия. 2006. № 8. С. 163.
- 2. Лаврухина А.К., Юкина Л.В. Аналитическая химия хрома. М.: Наука, 1979. 222 с.
- Gabriel C., Raptopoulou C.P., Drouza C. et al. // Polyhedron. 2009. V. 28. P. 3209. https://doi.org/10.1016/j.poly.2009.05.077
- 4. Boynton Herb, Evans Gary W. et al. Pat. US 5087623A. Publicated: The February of 11, 1992.
- Semanti Basu, Peng Shie-Ming, Lee Gene-Hsiang, Bhattacharya Samaresh // Polyhedron. 2005. V. 24. № 1. P. 157. https://doi.org/10.1016/j.poly.2004.10.015
- 6. *Chakov N.E., Collins R.A., Vincent J.B.* // Polyhedron. 1999. V. 18. Issue 22. P. 2891.
- https://doi.org/10.1016/S0277-5387(99)00208-9 7. *Gonazler-Vergara E., Hegenauer J., Saltman P. et al. //* Inorg. Chim. Acta. 1982. V. 66. P. 115. https://doi.org/10.1016/S0020-1693(00)85799-0
- Green C.A., Bianchini R.J., Legg J.I. // Inorg. Chem. 1984. V. 23. P. 2713.
- https://doi.org/10.1021/ic00185a032 9. Vicens M., Fiol J.J., Terrbn A. // Inorg. Chim. Acta.
- 1992. V. 192. P. 139. https://doi.org/10.1016/S0020-1693(00)83183-7
- Cooper J.A., Anderson B.F., Buckley P.D., Blackwell L.F. // Inorg. Chim. Acta. 1984. V. 91. P. 1. https://doi.org/10.1016/S0020-1693(00)84211-5
- 11. Broadhurst C.L., Schmidt W.F., Reeves III J.B. et al. // J. Inorg. Biochem. 1997. V. 66. № 2. P. 119.
- Sillen L.G., Martell A.E. Stability constants of metalion complexes. London: Chemical society. 1964. Part 3 (1). P. 435. https://lib.ugent.be/catalog/rug01:000022724
- 13. Корнев В.И., Микрюкова Г.А. // Химическая физика и мезоскопия. 2005. Т. 7. № 1. С. 71.
- 14. Jie Chai, Yanfei Liu, Jinglong Dong et al. // Inorg. Chim. Acta. 2017. V. 466. P. 151. https://doi.org/10.1016/j.ica.2017.05.041
- 15. Uddin K.M., Alrawashdeh A.I., Debnath T. et al. // J. Mol. Struct. 2019. V. 1189. P. 28. https://doi.org/10.1016/j.molstruc.2019.04.015
- Rodríguez Cordero M.I., Piscitelli V., Borras C. et al. // J. Mol. Liquids. 2015. V. 211. P. 401. https://doi.org/10.1016/j.molliq.2015.07.019
- Скорик Н.А., Чернов Е.Б. Расчеты с использованием персональных компьютеров в курсе химии комплексных соединений. Томск: Изд. ТГУ, 2009. 92 с.
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09, Revision A.01. Gaussian, Inc., Wallingford CT, 2009.
- 19. *Мезенцев К.В., Михайленко Ю.А.* // Вестник КузГ-ТУ. 2010. № 6. С. 121.
- Пальчевский В.В., Хорунжий В.В., Щербакова В.И. // Коорд. химия. 1984. Т. 10. № 8. С. 1076.
- 21. *Mohammad Hakimi* // J. Korean Chem. Society. 2013. V. 57. № 6. P. 721.

24