__ ФИЗИКОХИМИЯ ____ РАСТВОРОВ ____

УДК 541.8+537.226.2

ИЗЛУЧЕНИЕ ВОДНЫХ РАСТВОРОВ СОЛЕЙ С МНОГОЗАРЯДНЫМИ КАТИОНАМИ И ИХ ДИЭЛЕКТРИЧЕСКИЕ СВОЙСТВА В МИЛЛИМЕТРОВОЙ ОБЛАСТИ СПЕКТРА

© 2020 г. А. К. Лященко^{а,} *, А. Ю. Ефимов^а, В. С. Дуняшев^а, И. М. Каратаева^а

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия

*e-mail: aklyas@mail.ru Поступила в редакцию 02.07.2019 г. После доработки 23.08.2019 г. Принята к публикации 27.09.2019 г.

Радиояркостные характеристики водных растворов солей с многозарядными катионами в миллиметровой области спектра изучены с помощью высокочувствительного радиометра на частоте 61.2 ГГц в лабораторных условиях. Они сопоставлены с расчетными данными из диэлектрических спектров в миллиметровой и сантиметровой областях. Показано, что даже в миллиметровой области необходимо учитывать спектральные вклады как дипольных, так и ионных потерь. На примере растворов хлоридов магния, марганца и алюминия выявлено соответствие экспериментальных и расчетных радиояркостных параметров в начальной области концентраций, где преобладают гидратационные изменения воды в растворах солей. Установлено, что в отличие от растворов со слабогидратирующимися ионами, например растворов хлорида калия, собственное излучение здесь растет при переходе от воды к раствору. Второй вклад в большой степени обусловливает разнознаковые эффекты. Из диэлектрических крайне высоких частотных данных дано обоснование экспериментально наблюдаемым характеристикам собственного излучения растворов.

Ключевые слова: вода, растворы, хлориды, радиометрический сигнал, радиояркостная температура **DOI:** 10.31857/S0044457X20020099

введение

Современное развитие высоких технологий позволяет создавать сверхчувствительные радиометры – приемники сверхслабого электромагнитного излучения на значимых частотах. Радиометрические приемники получили широкое применение [1-4], с их помощью измеряют интенсивность излучения. Зная температуру объекта и его коэффициент излучения, можно определить его радиояркостную температуру T_я. Излучение и радиояркостные характеристики воды и растворов через оптические (квазиоптические) параметры можно определить по их диэлектрическим свойствам в СВЧ- и КВЧ (крайне высокие частоты)- диапазонах. При этом радиояркостная температура T_{g} характеризует интенсивность собственного излучения тела или излучательную способность образца. В работах [3, 5–8] было начато исследование связи диэлектрических СВЧ- и КВЧ-спектров растворов с их квазиоптическими характеристиками в миллиметровой области спектра. Рассматривались коэффициенты отражения и поглощения для многих (водных) систем. Были использованы как экспериментальные данные, так и результаты расчетов, основанных на релаксаци-

онных моделях диэлектрического поглощения в сантиметровом и миллиметровом диапазонах. Такие модели позволяют найти значения комплексной диэлектрической проницаемости є * для частот, на которых проведены измерения излучения системы. Могут быть также сопоставлены экспериментально измеренные значения с величинами, полученными из расчетов по конкретной модели диэлектрического спектра. При анализе суммарных коэффициентов излучения, поглощения и отражения растворов в миллиметровой области спектра было показано наличие разнознаковых изменений параметров по сравнению с водой в растворах с разной гидратацией и подвижностью ионов. Представляло интерес рассмотреть изменения рассматриваемых параметров излучения и их связь с диэлектрическими характеристиками растворов при переходе от 1:1 электролитов к 2:1 и 3:1 электролитам с катионами, образующими устойчивые гидратные комплексы в растворах. В качестве модельных систем были выбраны растворы хлоридов магния, марганца и алюминия. Они были сопоставлены с растворами хлорида калия.

РАСЧЕТНЫЕ СООТНОШЕНИЯ

Между оптическими и диэлектрическими свойствами растворов существует тесная связь, позволяющая проводить пересчет одних характеристик в другие. Коэффициент отражения R(v) на частоте v выражается через комплексную диэлектрическую проницаемость $\varepsilon(v)$ раствора с помощью формулы Френеля, которая для случая нормального падения волны на поверхность образца приобретает вид [6, 7]:

$$R(\mathbf{v}) = \left| \frac{\sqrt{\varepsilon(\mathbf{v})} - 1}{\sqrt{\varepsilon(\mathbf{v})} + 1} \right|^2.$$
(1)

В свою очередь, комплексная диэлектрическая проницаемость определяется с помощью экспериментально измеряемых диэлектрической проницаемости $\varepsilon'(v)$ и величины диэлектрических потерь $\varepsilon''(v)$:

$$\varepsilon(\mathbf{v}) = \varepsilon'(\mathbf{v}) - i\varepsilon''(\mathbf{v}), \quad i = \sqrt{-1}.$$
 (2)

Если є' и є" для определенной величины v не известны, их можно получить аппроксимацией диэлектрических данных для других частот. Для описания диэлектрических спектров неэлектролитов принято использовать математические выражения (модели) вида:

$$\varepsilon(\mathbf{v}) = \varepsilon_{\infty} + \sum_{k=1}^{K} \frac{(\Delta \varepsilon)_{k}}{\left(1 + \left(i \times 2\pi \mathbf{v} \tau_{k}\right)^{1-\alpha_{k}}\right)^{\beta_{k}}}.$$
 (3)

Число компонентов диэлектрического спектра *K* и значения параметров ε_{∞} , $\Delta \varepsilon_k$, τ_k , α_k , β_k зависят от состава раствора.

В растворах электролитов, в дополнение к поглощению излучения из-за переориентации дипольных молекул (дипольный вклад в потери), присутствует движение заряженных ионов под действием излучения (ионный вклад в потери). Частотная зависимость ионного вклада имеет вид [9]:

$$\varepsilon''(v)_i = \frac{\sigma}{2\pi\varepsilon_0 v},\tag{4}$$

где ε_0 – диэлектрическая постоянная, σ – электропроводность раствора, См/м. Таким образом, для растворов электролитов полное поглощение будет равно:

$$\varepsilon^{"}(\mathbf{v}) = \varepsilon^{"}(\mathbf{v})_{d} + \varepsilon^{"}(\mathbf{v})_{i}, \qquad (5)$$

где $\varepsilon''(v)_d$ рассчитывается с помощью уравнения (3), а $\varepsilon''(v)_i - из$ уравнения (4). Далее, используя уравнения (2) и (1), находится R(v). Вследствие того, что в работе все расчеты и измерения проводили для одной частоты ($v = 61.2 \Gamma\Gamma \mu$), уточняющее обозначение v далее будет опущено.

Рассчитываемый по уравнению (1) коэффициент отражения связан с измеряемым в эксперименте коэффициентом излучения χ (для термодинамического равновесия) простым соотношением:

$$\chi = 1 - R,$$

радиояркостная температура $T_{\rm s}$ находится из выражения (в настоящей работе термодинамическая температура T = 298 K):

$$T_{g} = (1 - R)T = \chi T.$$

Были проведены также расчеты, в которых учитывался только дипольный вклад в комплексную диэлектрическую проницаемость (далее выделены индексом *d*). Результаты расчетов приведены в табл. 1.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали высокочувствительный модуляционный радиометр с фиксированной рабочей частотой 61.2 ГГц ($\lambda = 4.9$ мм) производства НПО "Исток" (ИРЭ РАН, Фрязино) [17. 18]. Его устройство и методика измерений приведены в [19]. Показания прибора оцифровываются с частотой 2 Гц и сохраняются в виде зависимостей радиофизического отклика U (напряжение на выходе радиометра, вольт) от времени. Участок подобной зависимости приведен на рис. 1 для совместных измерений образцов чистой воды (1) и 1.98 m раствора MnCl₂ (2). Как правило, в начале каждого измерения наблюдался участок релаксации показаний к приблизительно постоянной величине, который исключали из рассмотрения. Оставшийся участок длительностью не менее 3-5 мин с дрейфом напряжения не более 0.1 мВ/мин использовали для определения статистически усредненного значения U. Последовательно проводя измерения для воды и раствора соли, можно найти величину $\Delta U = U_{\text{раствора}} - U_{\text{воды}}$. Для повышения точности и достоверности результатов, а также для сведения к минимуму влияния возможного изменения состояния прибора в течение эксперимента подобные парные измерения проводили несколько раз (рис. 1). Затем из полученных наборов инкрементов $\Delta U_1, \ \Delta U_2, \ ..., \ U_n$ находили средние значения ΔU (табл. 2). Градуировка шкалы прибора описана ранее при определении данных шкалы для медной пластины, воды и растворов КСІ [8]. Для пересчета величин ΔU в коэффициенты излучения χ растворов вначале была построена градуировочная прямая по излучению растворов KCl, для которых были использованы коэффициенты отражения *R*, рассчитанные из диэлектрических данных.

Результаты, полученные методом радиометрии для растворов $MgCl_2$, $MnCl_2$, $AlCl_3$, вместе с данными для растворов хлорида калия представлены в табл. 2.

Соль	Литература	<i>m</i> , моль/кг H ₂ O	$\chi(d)$	χ	$T_{\mathfrak{g}}(d), \mathbf{K}$	<i>Т</i> _я , К
H ₂ O	[9-14]*	_	0.506	0.506	151	151
MgCl ₂	[9]	0.096	0.511	0.507	152	151
	[9]	0.300	0.525	0.513	157	153
	[7]	0.300	0.519	0.507	155	151
	[9]	0.596	0.541	0.519	161	155
	[7]	0.600	0.534	0.514	159	153
	[9]	1.000	0.565	0.531	169	158
	[7]	1.200	0.566	0.530	169	158
	[9]	1.464	0.580	0.534	173	159
	[7]	1.500	0.579	0.541	173	161
	[9]	3.926	0.667	0.612	199	183
	[7]	4.700	0.670	0.625	200	186
AlCl ₃	[15]	0.250	0.523	0.510	156	152
		0.500	0.538	0.517	160	154
		0.750	0.560	0.531	167	158
		1.000	0.567	0.538	169	160
		1.500	0.584	0.557	174	166
		2.000	0.600	0.578	179	172
MnCl ₂	[16]	0.500	0.528	0.527	158	157
		1.000	0.549	0.521	164	155
		1.500	0.565	0.531	168	158
		2.000	0.572	0.539	170	161
		2.500	0.599	0.552	179	165

Таблица 1. Радиояркостные температуры (*T*_я) и коэффициенты излучения (χ) растворов солей, рассчитанные из диэлектрических данных на частоте 61.2 ГГц

*Приводится среднее значение.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Как видно из полученных экспериментальных и теоретических данных, излучение растворов хлоридов магния, марганца и алюминия отличается от излучения хлорида калия по отношению к воде. При увеличении концентрации раствора радиояркостная температура раствора хлорида калия уменьшается, а растворов хлоридов магния, марганца и алюминия увеличивается.

В качестве исходного варианта рассмотрим растворы $MgCl_2$, для которых получены как экспериментальные данные радиометра на частоте 61.2 ГГц, так и данные отражения растворов на частотах 80–120 ГГц [6, 7]. Величина *R* уменьшается при переходе от воды к раствору, что делает эти растворы сходными с раствору, что делает эти растворы сходными с растворами LiCl, где значения *R* также падают, и отличает их от растворов KCl и CsCl, где значения *R* растут с увеличением концентрации соли [6, 7]. Следовательно, на указанных частотах излучение должно расти в начальной области концентраций. В работах [18, 19] характеристики излучения растворов были получены на частоте 61.2 ГГц для ряда модельных растворов широкой области концентраций. Было показано наличие разнознаковых концентрационных изменений в случае растворов хлоридов щелочных металлов. Однако расчет изменений коэффициентов излучения и радиояркостных температур не проводился (без соответствующих градуировок это сделать нельзя).

Наличие полных диэлектрических спектров растворов MgCl₂ в сантиметровом и миллиметровом диапазонах [6, 7] позволяет выбрать релаксационную модель и оценить величину ε^* на частоте 61.2 ГГц, а также рассчитать коэффициенты отражения, связанные с дипольными значениями *R* на этой частоте. В случае растворов хлорида магния была выбрана модель Коула–Коула. Включение величин $\varepsilon_i^"$, рассчитанных из электропроводности, позволяет получить суммарные значения ε^* и сопоставить их с коэффициентами отражения и излучения, полученными экспериментально на радиометре. Это сопоставление приведено на рис. 2.

Рис. 1. Излучение чистой воды на частоте 61.2 ГГц (*1*) и 1.98 m раствора MnCl₂ (*2*).

Для рассматриваемых растворов MnCl₂ и AlCl₃ экспериментальные данные в миллиметровом диапазоне отсутствуют. Однако релаксационная модель может быть построена по данным $\varepsilon_{d}^{"}$ в сантиметровой области, описывающим максимум дисперсии воды и растворов, вместе со значениями ε_{∞} , принимаемыми близкими к $\varepsilon_{\infty} = 5$ в чистой воде. Как ранее было показано, эта величина не сильно меняется при переходе от воды к растворам солей [7]. Таким образом, с использованием уравнения Коула–Коула можно найти ε^* для частоты 61.2 ГГц. Для этой же частоты из данных электропроводности можно рассчитать величины

 $\varepsilon_i^"$. С использованием тех и других данных были рассчитаны коэффициенты отражения и излучения растворов. Видно согласие величин в начальной области концентраций. Как и в случае растворов MgCl₂, в растворах AlCl₃ и MnCl₂ излучение в рассматриваемой миллиметровой области растет при переходе от воды к раствору.

Были также рассчитаны величины $\chi(d)$, связанные только с дипольными диэлектрическими потерями $\left(\varepsilon_{d}^{"}\right)$. Как видно из рис. 2, в этом случае не наблюдается соответствия экспериментальных и рассчитанных величин.

Наиболее четкие различия по сравнению с водой дают изменения радиояркостных температур растворов. Это хорошо видно на рис. 3, где для сравнения приведена разность радиояркостных температур растворов KCl и воды.

Таким образом, на миллиметровых волнах надо учитывать вклады как от дипольных, так и от ионных потерь. В таких случаях квазиоптические

Рис. 2. Зависимости коэффициентов излучения от концентрации растворов $MnCl_2$ (a), $MgCl_2$ (б), $AlCl_3$ (в) по радиометрическим и диэлектрическим данным: 1 - расчет без учета ионных потерь, 2 - радиометрические данные, 3 - расчет с учетом дипольных и ионных потерь.

коэффициенты обосновываются и рассчитываются из сверхвысокочастотных диэлектрических параметров растворов. В отличие от растворов со слабой гидратацией ионов, в случае сильно гидратирующихся ионов, образующих устойчивые

Соль	m , моль/кг H_2O	χ	<i>Т</i> _я , К
H ₂ O	—	0.506	151
MgCl ₂	0.990	0.539	160
	1.600	0.551	164
	2.760	0.576	171
	3.920	0.615	183
	4.750	0.643	191
AlCl ₃	0.770	0.541	161
	1.030	0.549	164
	1.560	0.567	169
	2.170	0.587	175
	2.770	0.600	179
MnCl ₂	0.610	0.527	157
	0.980	0.532	158
	1.353	0.537	160
	1.480	0.542	161
	1.730	0.550	164
	1.980	0.550	164
	2.440	0.566	169
KC1	0.890	0.495	148
	1.020	0.494	147
	1.950	0.483	144
	3.220	0.478	142
	3.970	0.473	141

Таблица 2. Радиояркостные температуры ($T_{\rm s}$) и коэффициенты излучения (χ) растворов солей, измеренные на частоте 61.2 ГГц

гидратные комплексы, коэффициенты излучения и радиояркостные температуры растут при переходе к растворам солей. Радияркостные контрасты отличаются даже по знаку изменений. Таким образом, сигналы радиометра в миллиметровой области спектра оказываются информативными для определения изменений гидратации и динамики ионов. Такая информация может быть полезной в технологической практике и для описания биологических объектов, в которых разные эффекты проявляются не в чистой воде, а в водных средах, где радиояркостные контрасты и связанные с ними изменения энергии могут возрастать.

БЛАГОДАРНОСТЬ

Авторы благодарят О.В. Бецкого за помощь в работе.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 65 № 2 2020

 $T_{\mathfrak{g}}(p-pa) - T_{\mathfrak{g}}(H_2O), K$

Рис. 3. Разность радиояркостных температур раствор-вода по радиометрическим данным на частоте 61.2 ГГц. Растворы: $1 - AlCl_3$, $2 - MgCl_2$, $3 - MnCl_2$, 4 - KCl.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований и при частичной поддержке РФФИ (грант № 19-03-00033а).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бецкий О.В., Кислов В.В., Лебедева Н.Н. Миллиметровые волны и живые системы. М.: Сайнс-Пресс, 2004. 271 с.
- 2. Тамбиев А.Х., Киркоров Н.Н., Бецкий О.В. Миллиметровые волны и фотосинтезирующие организмы. М.: Радиотехника, 2003. 175 с.
- Лященко А.К. // Биомедицинская радиоэлектроника. 2007. № 8-9. С. 62.
- 4. Шутко А.М. СВЧ-радиометрия водной поверхности. М.: Наука, 1986. 188 с.
- 5. Lyashchenko A.K., Dunyashev V.S. // Russ. J. Inorg. Chem. 2018. V. 63. № 12. Р. 1656. [Лященко А.К., Дуняшев В.С. // Журн. неорган. химии. 2018. Т. 63. № 12. С. 1635.] https://doi.org/10.1134/S0036023618120136
- Lyashchenko A.K., Zasetsky A.Yu. // J. Mol. Liq. 1998.
 V. 77. № 1-3. P. 61. https://doi.org/10.1016/S0167-7322(98)00068-3

- 7. Засецкий А.Ю., Лященко А.К. Квазиоптический метод измерения комплексной диэлектрической проницаемости водных растворов электролитов в миллиметровом диапазоне длин волн и релаксационные характеристики растворов. Деп. ВИНИТИ 06.07.99. № 2181-В99. 62 с.
- Lyashchenko A.K., Karataeva I.M., Dunyashev V.S. // Russ. J. Phys. Chem. A. 2019. V. 93. № 4. Р. 682. [Лященко А.К., Каратаева И.М., Дуняшев В.С. // Журн. физ. химии. 2019. Т. 93. № 4. С. 552.] https://doi.org/10.1134/S0036024419040204
- 9. *Barthel J., Buchner R., Munsterer M.* Electrolyte data collection. Part 2: Dielectric properties of water and aqueous electrolyte solutions. DECHEMA Chemistry Data Series, 1995. V. 12.
- Buchner R., Capewell S.G., Hefter G., May P.M. // J. Phys. Chem. B. 1999. V. 103. № 7. P. 1185. https://doi.org/10.1021/jp983706c
- 11. Buchner R., Chen T., Hefter G. // J. Phys. Chem. B. 2004. V. 108. № 7. P. 2365. https://doi.org/10.1021/jp034870p
- Chen T., Hefter G., Buchner R. // J. Solution Chem. 2005. V. 34. № 9. P. 1045. https://doi.org/10.1007/s10953-005-6993-5

- 13. *Kaatze U.* // J. Chem. Eng. Data. 1989. V. 34. № 4. P. 371. https://doi.org/10.1021/je00058a001
- 14. *Schrödle S., Rudolph W.W., Hefter G., Buchner R.* // Geochim. Cosmochim. Acta. 2007. V. 71. № 22. P. 5287. https://doi.org/10.1016/j.gca.2007.08.026
- Lyashchenko A.K., Balakaeva I.V., Shebalkova A.Y., Balmaev B.G. // Russ. J. Inorg. Chem. 2018. V. 63. № 8. Р. 1107. [Лященко А.К., Балакаева И.В., Шебалкова А.Ю., Балмаев Б.Г. // Журн. неорган. химии. 2018. Т. 63. № 8. С. 1073.] https://doi.org/10.1134/s0036023618080144
- Балакаева И.В., Станиславская Ю.С., Лященко А.К. // Успехи в химии и химической технологии. 2015. Т. 29. № 1. С. 19.
- 17. *Криворучко В.И.* // Изв. вузов. Радиофизика. 2003. Т. 46. № 8–9. С. 782.
- Козьмин А.С. Низкоинтенсивное электромагнитное излучение миллиметрового диапазона воды и водных растворов. Дис. ... канд. физ.-мат. наук. Волгоград, 2011. 180 с.
- Lyashchenko A.K., Karataeva I.M., Kozmin A.S., Betskii O.V. // Dokl. Phys. Chem. 2015. V. 462. № 2. P. 127. [Лященко А.К., Каратаева И.М., Козьмин А.С., Бецкий О.В. // Докл. АН. 2015. Т. 462. № 5. С. 561.] https://doi.org/10.1134/S0012501615060032