_ ФИЗИКОХИМИЯ __ РАСТВОРОВ __

УДК 541.115:546.47

ТЕРМОДИНАМИКА РЕАКЦИЙ КОМПЛЕКСООБРАЗОВАНИЯ ИОНОВ Sm³⁺, Ce³⁺ C L-ЛЕЙЦИНОМ В ВОДНОМ РАСТВОРЕ ПРИ 298.15 К

© 2020 г. А. И. Лыткин^{*a*}, О. Н. Крутова^{*a*}, *, Н. В. Чернявская^{*a*}, П. Д. Крутов^{*a*}, А. А. Голубев^{*a*}

^аИвановский государственный химико-технологический университет, Шереметевский пр-т, 7, Иваново, 153460 Россия *e-mail: kdvkonkpd@yandex.ru Поступила в редакцию 17.07.2019 г.

После доработки 04.09.2019 г. Принята к публикации 27.09.2019 г.

Калориметрическим методом определены энтальпии комплексообразования L-лейцина с ионами Sm³⁺, Ce³⁺ при температуре 298.15 К и ионной силе 0.5 (KNO₃). Рассчитаны термодинамические характеристики реакций образования комплексов аминокислоты с ионами лантаноидов. Потенциометрическим методом определены константы устойчивости комплексов церия, самария с L-лейцинат-ионом при 298.15 К и значении ионной силы 0.5 (KNO₃).

Ключевые слова: константа устойчивости, аминокислота, комплекс, растворы, потенциометрическое титрование, калориметрия

DOI: 10.31857/S0044457X20020105

введение

Исключительная роль аминокислот в практике требует всестороннего изучения термодинамических характеристик растворов этих соединений. Исследование процессов комплексообразования аминокислот с катионами f-элементов дает ценную информацию для решения проблем супрамолекулярной химии, молекулярного распознавания и хиральной чувствительности биологических субстратов [1–10].

Количественная оценка устойчивости комплексов необходима для определения внутренней связи между константами и нахождения корреляций между устойчивостью комплексов и свойствами комплексообразователя, лиганда и системы в целом. Такие корреляционные зависимости позволяют априори рассчитать или, по крайней мере, оценить константы устойчивости новых комплексов, а также глубже понять влияние природы химической связи и свойств системы в целом на образование и устойчивость комплексных соединений.

Процессы комплексообразования церия, самария с L-лейцином (HLeu) исследованы в работах [11–13], результаты приведены в табл. 1. Из анализа литературных данных видно, что значения констант для частицы LnL^{2+} ($Ln^{3+} = Sm^{3+}$, Ce^{3+} ; $L^- = Leu^-$) значительно различаются между собой, а для частицы LnL_2^+ имеются лишь единичные значения. При этом не ясно, учитывали

ли авторы при обработке экспериментальных данных протекание процессов кислотно-основного взаимодействия лигандов, а также процессов гидролиза иона Ln^{3+.} Процессы комплексообразования в выбранных системах не изучались.

Цель работы — прямое калориметрическое определение энтальпий комплексообразования церия и самария с L-лейцинат-ионом при температуре 298.15 К и ионной силе 0.5 (KNO₃) и потенциометрическое определение констант устойчивости комплексов церия и самария с L-лейцинат-ионом в тех же условиях.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В настоящей работе методом потенциометрического титрования исследованы реакции комплексообразования самария, церия с L-лейцином при 298.15 К и значении ионной силы 0.5 моль/л. В работе применяли препарат аминокислоты марки "хроматографически чистый" (Reanal, Венгрия), дополнительной очистке его не подвергали. В качестве "фонового" электролита использовали нитрат калия. Растворы КОН и КNO3 готовили из реактивов квалификации "х. ч.". Концентрацию рабочих растворов устанавливали обычными титриметрическими методами [14]. Для определения равновесной концентрации ионов водорода измеряли ЭДС цепи, состоящей из стеклянного и насышенного хлорсеребряного электродов. Методика выполнения потенциометри-

И	Условия определения (температура, ионная сила, фоновый электролит)	Логарифмы констант устойчивости	
источник		$lg\beta_1$	$lg\beta_2$
Лимайе, Саксена, 1990 [11]	298.15 K; <i>I</i> = 0.2, KNO ₃ Sm ³⁺ с лейцином Ce ³⁺ с лейцином	5.78 5.35	
Филип, Пирзада, Йоши, 1987 [12]	298.15 K; <i>I</i> = 0.2, NaClO ₄ Sm ³⁺ с лейцином Ce ³⁺ с лейцином	5.39 5.03	9.38 8.94
Лимайе, Саксена, 1986 [13]	298.15 K; <i>I</i> = 0.2, NaClO ₄ Sm ³⁺ с лейцином Ce ³⁺ с лейцином	6.18 5.84	

Таблица 1. Литературные данные по логарифмам констант устойчивости комплексов Sm³⁺, Ce³⁺ с L-лейцинатионом в водных растворах

ческих измерений подробно рассмотрена ранее [15]. Пример экспериментальных данных приведен в табл. 2.

Измерения тепловых эффектов проводили в ампульном калориметре с изотермической оболочкой, термисторным датчиком температуры и автоматической записью кривой температуравремя [16]. Работа калориметрической установки была проверена по общепринятым калориметрическим стандартам - теплоте растворения кристаллического хлорида калия в воде. Препарат КСІ очищали двукратной перекристаллизацией реактива марки "х. ч." из бидистиллята. Перед взятием навесок хлорид калия высушивали в сушильном шкафу при 393.15 К до постоянной массы. Согласование экспериментально полученных теплот растворения KCl(к) в воде $\Delta_{sol}H(\infty H_2O) =$ $= -17.25 \pm 0.06$ кДж/моль с наиболее надежными литературными данными [17] свидетельствует об отсутствии заметной систематической погрешности в работе калориметрической установки. Навески взвешивали на весах ВЛР-200 с точностью 2×10^{-4} г.

Экспериментально измеряли энтальпии процессов образования комплексных частиц в системах церия и самария с L-лейцинат-ионом при температуре 298.15 К и значении ионной силы раствора 0.5 (на фоне нитрата калия). В калориметрический стакан помещали раствор Ce(NO₃)₃ или Sm(NO)₃ (исходная концентрация 0.003902 и 0.004122 моль/л) объемом 43.13 мл с заданным значением ионной силы. В ампуле находился раствор KLeu (исходная концентрация 0.4206 моль/кг раствора). Были также измерены теплоты разведения растворов KLeu в растворах фонового электролита. Величину pH контролировали pH-метром 340. Совпадение расчетных и экспериментальных значений pH свидетельствовало о правильности выбора концентрационных условий проведения калориметрического эксперимента.

Расчет энтальпий образования комплексов церия, самария с L-лейцинат-ионом выполняли по программе HEAT, алгоритм которой описан в работе [18].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Определение состава и констант устойчивости образующихся комплексов проводили с помощью расчета кривых титрования по программе PHMETR, предназначенной для обработки данных потенциометрических измерений в системах с произвольным числом реакций по измеренной равновесной концентрации одной из частиц [19].

В основу работы программы положен принцип поиска минимума критериальной функции Fпутем варьирования в каждой итерации подлежащих определению значений $\lg K$ с использованием модифицированного алгоритма Хука—Дживса [20]. Критериальная функция имеет вид:

$$F = S \left(\lg[\mathrm{H}^+]_{i, \ \mathrm{9KC\Pi}} - \lg[\mathrm{H}^+]_{i, \ \mathrm{pacy}} \right)^2 \to \min, \quad (1)$$

где $\lg[H^+]_{i, эксп}$, $\lg[H^+]_{i, расч}$ — логарифмы равновесных концентраций H^+ , измеренные экспериментально и рассчитанные при текущих значениях $\lg K_j$. Расчет равновесных концентраций осуществляли по методу Бринкли [21].

В изучаемой системе возможно протекание следующих реакций:

$$Ln^{3+} + L^{-} = LnL^{2+}, (2)$$

$$Ln^{3+} + 2L^{-} = LnL_{2}^{+}, \qquad (3)$$

$$Ln^{3+} + H_2O = LnOH^{2+} + H^+,$$
 (4)

$$L^{-} + H^{+} = HL^{\pm},$$
 (5)

w(KOII) - L			ъЦ	<i>C</i> (Sm)	C(Leu)	<i>C</i> (H)	ъЦ
<i>т</i> (кон), г	<i>V</i> (КОН), МЛ	эдс	рп _{эксп}	моль/л		- Ртрасч	
10.5533	0	202.4	2.752	0.01000	0.02998	0.03698	2.752
10.3447	0.2085	198.8	2.814	0.009897	0.02967	0.03453	2.814
10.2011	0.3522	196.1	2.861	0.009827	0.02946	0.03287	2.860
10.0648	0.4885	193.5	2.906	0.009761	0.02926	0.03132	2.905
9.9590	0.5943	191.0	2.949	0.009711	0.02911	0.03013	2.948
9.8188	0.7345	187.6	3.006	0.009645	0.02891	0.02857	3.006
9.5785	0.9748	181.1	3.119	0.009535	0.02858	0.02595	3.118
9.3961	1.1572	175.0	3.218	0.009452	0.02833	0.02400	3.222
9.2530	1.3003	169.6	3.315	0.009389	0.02814	0.02249	3.315
9.1097	1.4436	163.0	3.427	0.009326	0.02795	0.02100	3.428
9.0107	1.5426	157.3	3.529	0.009283	0.02783	0.01998	3.526
8.9412	1.6121	152.3	3.614	0.009253	0.02774	0.01927	3.612
8.8701	1.6832	146.4	3.715	0.009223	0.02765	0.01855	3.714
8.8148	1.7384	140.5	3.817	0.009199	0.02757	0.01800	3.815
8.7730	1.7802	135.1	3.908	0.009182	0.02752	0.01758	3.908
8.7313	1.8220	128.3	4.026	0.009164	0.02747	0.01716	4.024
8.7059	1.8474	123.3	4.112	0.009153	0.02744	0.01691	4.110
8.6785	1.8748	114.9	4.233	0.009142	0.02740	0.01664	4.255
8.6648	1.8885	112.0	4.306	0.009136	0.02739	0.01650	4.304
8.6517	1.9016	107.1	4.390	0.009131	0.02737	0.01637	4.389
8.6377	1.9156	100.6	4.502	0.009125	0.02735	0.01623	4.500
8.6237	1.9296	92.7	4.636	0.009119	0.02733	0.01609	4.636
8.6108	1.9424	82.4	4.814	0.009114	0.02732	0.01597	4.813
8.5983	1.9550	67.0	5.079	0.009108	0.02730	0.01584	5.077
8.5855	1.9678	45.2	5.452	0.009103	0.02729	0.01572	5.452
8.5721	1.9812	22.6	5.840	0.009097	0.02727	0.01559	5.840
8.5580	1.9953	10.2	6.054	0.009092	0.02725	0.01545	6.053
8.5450	2.0083	3.9	6.162	0.009086	0.02724	0.01532	6.161
8.5301	2.0232	0.4	6.223	0.009080	0.02722	0.01510	6.221
8.5035	2.0498	-4.9	6.313	0.009069	0.02718	0.01492	6.312
8.4453	2.1080	-7.4	6.356	0.009045	0.02711	0.01435	6.355
8.3837	2.1696	-10.0	6.400	0.009020	0.02704	0.01375	6.400
8.3039	2.2494	-13.3	6.457	0.008988	0.02694	0.01298	6.457
8.1983	2.3550	-23.3	6.629	0.008945	0.02681	0.01198	6.628
8.1174	2.4358	-27.7	6.704	0.008913	0.02672	0.01121	6.704
7.9693	2.5840	-42.8	6.964	0.008854	0.02654	0.00982	6.963
7.8536	2.6996	-55.3	7.180	0.008809	0.02641	0.00875	7.178

(6)

Таблица 2. Экспериментальные данные потенциометрического титрования в системе Sm³⁺–L-лейцин, I = 0.5 (KNO₃), T = 298.15 K

 $L^{-} + 2H^{+} = H_{2}L^{+},$

$$H^+ + OH^- = H_2O.$$
 (7)

Наиболее вероятные значения констант диссоциации лейцина учитывали согласно [22, 23] при T = 298.15 К и I = 0.1 (KNO₃). Значения констант гидролиза лантаноидов приведены в [24].

Наиболее вероятные значения логарифмов констант реакций комплексообразования были вычислены в результате определения средневзве-

Комплекс	Соотношение Ln^{3+} : L ⁻	$\lg \beta$
SmLeu ²⁺	1:3	4.06 ± 0.05
	1:8	3.84 ± 0.07
Средневзвешенное значение	3.95 ±	0.06
SmLeu ₂ ⁺	1:3	7.48 ± 0.04
	1:8	7.56 ± 0.06
Средневзвешенное значение	7.52 ±	0.05
CeLeu ²⁺	1:4	4.06 ± 0.07
	1:8	3.77 ± 0.09
Средневзвешенное значение	3.92 ±	± 0.08
CeLeu ₂ ⁺	1:4	6.65 ± 0.03
	1:8	6.72 ± 0.06
Средневзвешенное значение	6.68 ±	0.04

Таблица 3. Логарифмы констант устойчивости лантаноидов с L-лейцинат-ионами при 298.15 К и ионной силе 0.5 (KNO₃)

шенных величин lg *K* трех-шести опытов и представлены в табл. 3. Из таблицы видно, что значения логарифмов констант устойчивости, полученные из различных соотношений, удовлетворительно согласуются между собой, что свидетельствует о надежности полученных данных и правильно выбранной схеме расчета. Устойчивость билигандного комплекса в два раза выше, чем монолигандного, что говорит о сохранении хелатного способа координации лиганда.

Найденные значения констант устойчивости позволяют выполнить строгие термодинамические расчеты равновесий этих аминокислот в солевых растворах. Полученные данные, в частности, могут быть использованы для надежной интерпретации результатов калориметрических исследований процессов комплексообразования лантаноидов с участием исследованных аминокислот.

Чтобы подобрать условия для проведения калориметрического опыта, провели предварительный расчет по программе RRSU [18] с учетом всех протекающих процессов в системе (уравнения (2)-(7)). На основании результатов расчета построили зависимости равновесной концентрации частиц в растворе от значений рН при различных соотношениях [металл] : [лиганд]. Невозможно выделить такую область рН, где протекал бы только один из процессов (2), (3). Независимое определение теплот комплексообразования в изучаемых системах провести сложно. Поэтому измеряли суммарный тепловой эффект комплексообразования. причем подбор условий при проведении эксперимента осуществляли таким образом, чтобы в калориметрическом сосуде при смешении растворов в каждой из серий термохимических измерений доминировал один из процессов (2), (3). Во всех сериях опытов частично протекал процесс (4). Вклад процесса (4) в суммарный тепловой эффект не превышал 8%.

Экспериментально измеряли суммарные тепловые эффекты процессов образования комплексных частиц в исследуемых системах. На основании полученного массива данных рассчитывали теплоты реакций комплексообразования, удовлетворяющие минимуму функции:

$$F = \sum_{i=1}^{n} \left(\Delta_r H_i^{\text{эксп}} - \Delta_r H_i^{\text{pacq}} \right) \omega_i^2 \to \min, \qquad (8)$$

где $\Delta_r H_i^{\text{эксп}}$ – экспериментально измеренные энтальпии, $\Delta_r H_i^{\text{расч}}$ – энтальпии, рассчитанные по уравнению:

$$\Delta_r H_i^{\text{pacy}} = (\Delta[\text{HL}^{\pm}]\Delta_r H_5 + \Delta[\text{LaL}^{2+}]\Delta_r H_2 + (9) + \Delta[\text{LaL}_2^+]\Delta_r H_3 + \Delta[\text{LaOH}^{2+}]\Delta_r H_4 + \Delta[\text{OH}^-]\Delta_r H_w),$$

где $\Delta[\text{LaL}^{2+}], \Delta[\text{LaL}_2^+], \Delta[\text{LaOH}^{2+}] \text{ и } \Delta[\text{HL}^{\pm}] - \text{раз-ность конечных и начальных равновесных кон-центраций соответствующих частиц; $\Delta_r H_2, \Delta_r H_3, \Delta_r H_4 - 3$ нтальпии (кДж/моль) процессов образо-
вания частиц $\text{LaL}^{2+}, \text{LaL}_2^+$ и LnOH²⁺ соответствен-
но; $\Delta_r H_5 - 3$ нтальпия (кДж/моль) протонирования
анионной частицы аминокислоты [25]; $n -$ число
опытов; $\omega_i -$ весовой множитель, определяемый
по соотношению:$

$$\omega_i = A / \sigma_i^2, \qquad (10)$$

где A — произвольное число, позволяющее выбрать удобное для расчета значение ω_i ; σ_i^2 — дисперсия.

Расчет энтальпий реакций образования выполняли по программе "HEAT" [18]. По экспериментальным данным были рассчитаны среднеарифметические значения тепловых эффектов по результатам трех-четырех опытов. Для расчета

ЛЫТКИН и др.

Процесс	lgβ	$-\Delta_{\text{компл}}G$, кДж/моль	$-\Delta_{\text{компл}}H$, кДж/моль	$\Delta_{\text{компл}}S$, Дж/(моль К)		
$Sm^{3+} + Leu^{-} = SmLeu^{2+}$	3.95 ± 0.06	22.55 ± 0.46	1.96 ± 0.22	69 ± 1.8		
$\mathrm{Sm}^{3+} + 2\mathrm{Leu}^{-} = \mathrm{Sm}\mathrm{Leu}_{2}^{+}$	7.52 ± 0.05	42.92 ± 0.56	5.91 ± 0.30	124 ± 2.3		
$Ce^{3+} + Leu^- = CeLeu_2^+$	3.92 ± 0.08	22.38 ± 0.45	0.59 ± 0.25	73 ± 1.9		
$Ce^{3+} + 2Leu^- = CeLeu_2^+$	6.68 ± 0.04	38.13 ± 0.40	5.22 ± 0.28	110 ± 1.7		

Таблица 4. Термодинамические характеристики процессов образования комплексов состава SmLeu²⁺, SmLeu²₂, CeLeu²⁺, CeLeu²⁺ при 298.15 K и ионной силе 0.5 (нитрат калия)

доверительного интервала среднего значения ΔH критерий Стьюдента $t_{\alpha} = 3.18$ был взят при доверительной вероятности 0.95.

Термодинамические характеристики процессов комплексообразования церия, самария с L-лейцинат-ионом в водном растворе были найдены при совместном использовании результатов термохимических измерений и данных по константам комплексообразования (табл. 4).

При комплексообразовании поведение *f*-элементов аналогично поведению *d*-элементов, т.е. ион лантаноида при взаимодействии с аминокислотой способен вытеснить протон аминогруппы с образованием хелатного цикла [26, 27]. Сравнение стандартных термодинамических характеристик реакций образования комплексов церия, самария с L-лейцинат-ионом показало, что процесс диссоциации протона аминогруппы аминокислоты существенно зависит от прочности связи металламинокислота: чем прочнее связь металл-лиганд, тем легче отщепляется водород. Если за критерий прочности связи металл-лиганд брать константы устойчивости комплексов (табл. 3), то можно заметить, что в паре церия, самария последний образует более устойчивое соединение с лигандом, следовательно, в этом случае аминогруппа L-лейцина должна легче отдавать протон.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в НИИ Термодинамики и кинетики химических процессов Ивановского государственного химико-технологического университета в рамках Государственного задания (базовая часть, проект № 4.7104.2017/89) с использованием оборудования Центра коллективного пользования ИГХТУ.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

1. *Torres J., Kremer C., Kremer E. et al.* // Inorg. Chim. Acta. 2003. № 355. P. 175. https://doi.org/10.1016/S0020-1693(01)00812-X

- 2. *Torres J., Kremer C., Kremer E. et al.* // J. Chem. Soc., Dalton Trans. 2002. № 21. P. 4035. https://doi.org/10.1039/b204095f
- 3. *Lytkin A.I., Chernikov V.V., Krutova O.N. et al.* // J. Therm. Anal. Calorim. 2017. V. 130. № 1. P. 457. https://doi.org/10.1007/s10973-017-6134
- Badelin V.G., Smirnov V.I. // Russ. J. Phys. Chem. A. 2017. V. 91. № 1. Р. 84. [Баделин В.Г., Смирнов В.И. // Журн. физ. химии. 2017. Т. 91. № 1. С. 83.] https://doi.org/10.1134/S0036024416120037
- Solov'ev V.P., Tsivadze A.Yu., Varnekb A.A. // Macroheterocycles. 2012. № 5. P. 404. https://doi.org/10.6060 /mhc2012.121104s
- 6. *Smirnov V.I., Badelin V.G.* // J. Mol. Liq. 2017. № 229. P. 198. https://doi.org/10.1016/j.molliq.2016.12.025
- Smirnov V.I., Badelin V.G. // Thermochim. Acta. 2017. № 653. P. 27. https://doi.org/10.1016/j.tca.2017.03.022
- Krivonogikh T.S., Pyreu D.F., Kozlovskii E.V. et al. // Russ. J. Inorg. Chem. 2012. V. 57. № 4. Р. 634. [Кривоногих Т.С., Пырэу Д.Ф., Козловский Е.В. и др. // Журн. неорган. химии. 2012. Т. 57. № 4. С. 699.]
- 9. *Gridchin S.N., Gorboletova G.G., Pyreu D.F.* // J. Therm. Anal. Calorim. 2007. V. 90. № 2. P. 607. https://doi.org/10.1007/s10973-006-7929-z
- Ovchinnikov V.V. // Am. J. Phys. Chem. 2013. V. 2. P. 8. https://doi.org/10.11648/jajpc.20130201
- Limaye S., Saxena M. // J. Indian Chem. Soc. 1990.
 V. 67. № 1. P. 162.
- 12. *Phlip M., Peerzada M., Joshi J.* // J. Indian Chem. Soc. 1987. V. 64. № 7. P. 436.
- Limaye S., Saxena M. // Can. J. Chem. 1986. V. 64. № 5. P. 865.
- Коростелев П.П. Приготовление растворов для химико-аналитических работ. М.: Изд-во АН СССР, 1962. 398 с.
- Бычкова С.А., Чернявская Н.В., Корнилова М.С. // Изв. вузов. Химия и хим. технология. 2014. Т. 57. № 10. С. 39.
- 16. Лыткин А.И., Черников В.В., Крутова О.Н. // Журн. физ. химии. 2018. Т. 92. № 1. С. 81. https://doi.org/10.7868/S0044453718010144
- Archer D.G. // J. Phys. Chem. Ref. Data. 1999. V. 28. № 1. P. 1. https://doi.org/10.1063/1.556034

229

- Васильев В.П., Бородин В.А., Козловский Е.В. Применение ЭВМ в химико-аналитических расчетах. М.: Высшая школа, 1993. 112 с.
- 19. Бородин В.А., Козловский Е.В., Васильев В.П. // Журн. неорган. химии. 1986. Т. 31. № 1. С. 10.
- 20. *Химмельблау Д*. Прикладное нелинейное программирование. М.: Мир, 1975. 417 с.
- 21. *Бугаевский А.А., Дунай Б.А.* // Журн. аналит. химии. 1971. Т. 26. № 2. С. 205.
- Zhang X.D., Liu Y., Sun J.Y. // Acta Chim. Sinica. 2000. V. 58. № 7. P. 662.
- 23. Vilarino T., Fiol S., Sastre de Vicente M. // J. Chem. Soc., Faraday Trans. 1997. V. 93. № 3. P. 413.

- 24. *Назаренко В.А., Антонович В.П., Невская Е.М.* Гидролиз ионов металлов в разбавленных растворах. М.: Атомиздат, 1979. 192 с.
- Kochergina L.A., Lytkin A.I., Krutova O.N., Damrina K.V.// Russ. J. Inorg. Chem. 2015. V. 60. № 5. Р. 647. [Кочергина Л.А., Лыткин А.И., Крутова О.Н., Дамрина К.В. // Журн. неорган. химии. 2015. Т. 60. № 5. С. 719.] https://doi.org/10.1134/s0036023615050113
- 26. *Martelli F., Abadie S., Pierren J. et al.* // Pure Appl. Chem. 2013. V. 85. № 1. P. 237. https://doi.org/10.1351/PAC-CON-12-02-08
- 27. Angelo D., Zitolo A., Migliorati V. et al. // Inorg. Chem. 2011. V. 50. № 10. P. 4572.