# \_\_\_\_\_ КООРДИНАЦИОННЫЕ \_\_\_\_ СОЕДИНЕНИЯ

УДК 546.591+547.491+546.162'14+546.185+547.53.024+548.312.2

# ДИЦИАНОДИБРОМОАУРАТЫ АЛКИЛТРИФЕНИЛФОСФОНИЯ $[Ph_3PAlk][Au(CN)_2Br_2], Alk = CH_2C_6H_4(OH)-2,$ $CH_2C_6H_{11}$ -*cyclo*, $CH_2Ph$ , $CH_2C_6H_4CN-4$

© 2020 г. В. В. Шарутин<sup>*a*</sup>, О. К. Шарутина<sup>*a*</sup>, Н. М. Тарасова<sup>*a*</sup>, \*, А. Н. Ефремов<sup>*a*</sup>

<sup>а</sup>Южно-Уральский государственный университет, пр-т им. В.И. Ленина, 76, Челябинск, 454080 Россия

\*e-mail: tarasovanm@susu.ru Поступила в редакцию 09.04.2019 г. После доработки 08.05.2019 г. Принята к публикации 29.09.2019 г.

Из дицианодибромоаурата калия и хлоридов алкилтрифенилфосфония в воде синтезированы кристаллические комплексы желтого цвета [Ph<sub>3</sub>PAlk][Au(CN)<sub>2</sub>Br<sub>2</sub>], где Alk = CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>(OH)-2 (I), CH<sub>2</sub>C<sub>6</sub>H<sub>11</sub>-*cyclo* (II · 1/2PhH), CH<sub>2</sub>Ph (III), CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>CN-4 (IV), строение которых установлено методом рентгеноструктурного анализа. В кристаллах I–IV присутствуют тетраэдрические катионы алкилтрифенилфосфония (CPC 104.8(2)°–114.1(2)°, P–C 1.782(6)–1.825(5) Å). В квадратных анионах [Au(CN)<sub>2</sub>Br<sub>2</sub>]<sup>-</sup> *транс*-углы CAuC и BrAuBr равны 178.8(2)°–180.0(5)° и 178.38(3)°–180.00(3)°, связи Au–C и Au–Br – 2.001(7)–2.205(9) Å и 2.4086(14)–2.4276(18) Å соответственно. В формировании структуры кристаллов участвуют слабые водородные связи N…H–C и прочные связи N…H–O в комплексе I, контакты Br…H–C в кристаллах дицианодибромидов I, III и IV.

*Ключевые слова:* дицианодигалогениды органилтрифенилфосфония, синтез, рентгеноструктурный анализ

DOI: 10.31857/S0044457X20020154

#### **ВВЕДЕНИЕ**

В настоящее время интерес исследователей вызывают комплексы дицианидов металлов в связи с их использованием при получении полупроводниковых и оптически и магнитно-активных материалов, которые приобретают при этом разнообразные свойства [1-7]. Кроме того, некоторые из них являются препаратами-метаболитами лекарств на основе Au(I) [8]. Формирование олигомерных структур из анионов [Au(CN)<sub>2</sub>]<sup>-</sup> приводит к появлению люминесцентных свойств [4, 9-12]. Однако комплексы дицианодигалогенидов с различными катионами, демонстрирующие подобные свойства [13-15], мало исследованы. Известно несколько цианидных комплексов Au(I) [16, 17] и цианодигалогенидных комплексов Au(III) с аммонийными катионами [18–21], однако информация о комплексах  $[Kat]^+[Au(CN)_2Hal_2]^-$  с элементоорганическими катионами в литературе отсутствует.

С целью установления особенностей синтеза и строения дицианодибромоауратных комплексов тетраорганилфосфония в настоящей работе впервые синтезированы и структурно охарактеризованы дицианодибромоаураты алкилтрифенилфосфония  $[Ph_3PAlk][Au(CN)_2Br_2]$ , где  $Alk = CH_2C_6H_4(OH)-2$  (I),

 $CH_2C_6H_{11}$ -cyclo (II · 1/2PhH),  $CH_2Ph$  (III),  $CH_2C_6H_4CN$ -4 (IV).

#### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

K[Au(CN)<sub>2</sub>Br<sub>2</sub>] получали по методике [18], комплексы I–IV – смешением водных растворов хлоридов алкилтрифенилфосфония с раствором дицианодибромида калия [17].

[**Ph<sub>3</sub>PCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>(OH-2)]<sup>+</sup>[Au(CN)<sub>2</sub>Br<sub>2</sub>]<sup>-</sup> (I)** кристаллизовали из 13 мл смеси MeCN с *i*-PrOH (8 : 5). При медленном испарении растворителя наблюдали образование ярко-желтых кристаллов. Выход 95%,  $t_{nn} = 160.1^{\circ}$ С. ИК-спектр (v, см<sup>-1</sup>): 3267 (OH), 3055 (C<sub>Ar</sub>-H); 2931, 2902, 2852, 2179 (CN); 1909, 1822, 1788, 1597, 1585, 1510, 1502, 1483, 1456, 1436 (P-Ph); 1382, 1359 (C<sub>Ar</sub>-OH); 1315 (C<sub>Ar</sub>-OH); 1274, 1247, 1234 (C<sub>Ar</sub>-OH); 1178 (C<sub>Ar</sub>-OH); 1159 (C<sub>Ar</sub>-OH); 1111, 1087, 1043, 1026, 999 (P-Ph); 935, 867, 860, 815, 771, 758, 750, 723, 709, 690, 655, 615, 599, 553, 518, 503, 497, 489, 449, 428.

|                                                                         | С      | Н     |
|-------------------------------------------------------------------------|--------|-------|
| Найдено, %:                                                             | 41.59; | 2.90. |
| Для C <sub>27</sub> H <sub>22</sub> AuBr <sub>2</sub> N <sub>2</sub> OP |        |       |
| вычислено, %:                                                           | 41.67; | 2.86. |

Аналогично синтезировали соединения II–IV (в случае соединения II вместо *i*-PrOH добавляли 5 мл бензола).

[Ph<sub>3</sub>PC<sub>6</sub>H<sub>10</sub>-*cyclo*][Au(CN)<sub>2</sub>Br<sub>2</sub>] (II) · 1/2C<sub>6</sub>H<sub>6</sub>: желтые кристаллы, выход 89%,  $t_{пл} = 188.5^{\circ}$ С. ИКспектр (v, см<sup>-1</sup>): 3086 (C<sub>Ar</sub>-H); 3057 (C<sub>Ar</sub>-H); 3030 (C<sub>Ar</sub>-H); 2935, 2897, 2856, 2210 (CN); 2176 (CN); 1973, 1826, 1587, 1485, 1454 (P-Ph); 1438 (P-Ph); 1340, 1323, 1298, 1271, 1215, 1193, 1176, 1163, 1122, 1109, 1026, 997 (P-Ph); 918, 887, 850, 823, 748, 723, 690, 543, 526, 516, 497, 464, 449, 426.

|                                                                        | С      | Н     |
|------------------------------------------------------------------------|--------|-------|
| Найдено, %:                                                            | 43.80; | 3.72. |
| Для С <sub>29</sub> Н <sub>29</sub> AuBr <sub>2</sub> N <sub>2</sub> P |        |       |
| вычислено, %:                                                          | 43.90; | 3.69. |

**[Ph<sub>3</sub>PCH<sub>2</sub>Ph][Au(CN)<sub>2</sub>Br<sub>2</sub>] (III)**: желтые кристаллы, выход 91%,  $t_{пл} = 166.2^{\circ}$ С. ИК-спектр (v, см<sup>-1</sup>): 3062 (C<sub>Ar</sub>-H); 3039 (C<sub>Ar</sub>-H); 2949, 2912, 2852, 2214 (CN); 2168 (CN); 1982, 1913, 1832, 1600, 1585, 1573, 1496, 1485, 1456 (P-Ph); 1436 (P-Ph); 1400, 1336, 1317, 1232, 1188, 1159, 1134, 1111, 1070, 1028, 997 (P-Ph); 972, 916, 850, 831, 785, 756, 750, 719, 696, 688, 580, 513, 503, 497, 449, 424.

|                                                                        | С      | Н     |
|------------------------------------------------------------------------|--------|-------|
| Найдено, %:                                                            | 42.48; | 2.93. |
| Для C <sub>27</sub> H <sub>22</sub> AuBr <sub>2</sub> N <sub>2</sub> P |        |       |
| вычислено, %:                                                          | 42.54; | 2.92. |

[Ph<sub>3</sub>PCH<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>-CN-4][Au(CN)<sub>2</sub>Br<sub>2</sub>] (IV): желтые кристаллы, выход 93%,  $t_{пл} = 155.3^{\circ}$ С.

ИК-спектр (v, см<sup>-1</sup>): 3088 (C<sub>Ar</sub>-H); 3062 (C<sub>Ar</sub>-H); 3039 (C<sub>Ar</sub>-H); 2951, 2910, 2852, 2239 (Ph-CN); 2227 (Ph-CN); 2166 (CN); 1606, 1587, 1506, 1483, 1436 (P-Ph); 1406, 1340, 1321, 1236, 1188, 1163, 1141, 1111, 1024, 997, 850, 839, 829, 771, 746, 736, 719, 688, 563, 528, 503, 493, 466, 449, 422.

|                                                                        | С      | Н     |
|------------------------------------------------------------------------|--------|-------|
| Найдено, %:                                                            | 42.58; | 2.76. |
| Для C <sub>28</sub> H <sub>21</sub> AuBr <sub>2</sub> N <sub>3</sub> P |        |       |
| вычислено, %:                                                          | 42.72; | 2.69. |

Дифференциальную сканирующую калориметрию (ДСК) соединений I–IV проводили на комплексе синхронного термического анализа Netzsch 449C Jupiter.

**ИК-спектры** (400–4000 см<sup>-1</sup>) комплексов I–IV регистрировали на ИК-фурье-спектрометре Shimadzu IR Affinity-1S (таблетирование с KBr).

**PCA** (дифрактометр Bruker D8 QUEST, Mo $K_{\alpha}$ излучение,  $\lambda = 0.71073$  Å, графитовый монохроматор) кристаллов I–IV (CCDC 1899748 (I), 1899750 (II · 1/2PhH), 1899752 (III), 1899758 (IV); deposit@ccdc.cam.ac.uk; http://www.ccdc.cam.ac.uk) проводили при 296(2) К с использованием для обработки данных программ SMART и SAINT-Plus [22], SHELXL/PC [23], OLEX2 [24].

#### РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Комплексы соединений I—IV моментально образовывались при смешении водных растворов соответствующих солей:



После удаления воды и кристаллизации вещества из смеси MeCN с *i*-PrOH (8:5) или бензолом (для комплекса II  $\cdot$  1/2PhH) (8:5) получали прозрачные кристаллы желтого цвета. Выделенные кристаллы устойчивы на воздухе, хорошо растворяются в хлороформе, дихлорметане и ацетонитриле, не растворяются в воде и спиртах при комнатной температуре. Из данных ДСК следует, что все соединения стабильны до 150°С. На кривых ДСК соединений I, III, IV присутствуют эндотермические пики плавления комплексов при

160.1, 166.2 и 155.3°С соответственно. Для комплекса II · 1/2PhH наблюдается эндотермический пик при 103.8°С, соответствующий разложению сольвата II · 1/2PhH с потерей массы ~4%, а также эндотермический пик плавления при 188.5°С без уменьшения массы.

Известно, что полосы поглощения цианогрупп органических и неорганических соединений вследствие отсутствия значительного влияния окружения на колебания этих связей находятся в достаточно узком интервале: 2200–2000 см<sup>-1</sup> [25]



Рис. 1. Общий вид комплекса I (атомы водорода не показаны).

и легко обнаруживаются в ИК-спектрах. Также отмечается, что для дицианопроизводных Au(III) наблюдается значительное снижение интенсивности данных полос поглощения по сравнению с дицианопроизводными Au(I) [26, 27]. Так, для соединений I-III полосы валентных колебаний CN-групп имеют низкую интенсивность и располагаются при 2179, 2210; 2176, 2214 и 2168 см<sup>-1</sup> соответственно. Для комплекса IV наблюдается полоса средней интенсивности при 2239 см<sup>-1</sup>, относящаяся, очевидно, к цианогруппе ароматического кольца катиона, а также слабые полосы цианогрупп аниона при 2227 и 2166 см<sup>-1</sup>. Колебаниям связей  $P-C_{Ar}$  в спектрах соединений I, II · 1/2PhH, III, IV соответствуют полосы при 1436, 1438, 1436, 1436 см<sup>-1</sup>, попадающие в область 1450-1435 см<sup>-1</sup>, охарактеризованную ранее для подобных производных [25]. Кроме того, в спектре I наблюдается полоса поглощения при 3267 см<sup>-1</sup>, связанная с валентными колебаниями ОН-группы, и ряд полос, отвечающих колебаниям связи С-ОН, наиболее интенсивными из которых являются полосы при 1234, 1315 и 1359 см<sup>-1</sup> [25].

Несмотря на похожее строение молекул и общую для всех комплексов I–IV триклинную сингонию (табл. 1), имеются существенные отличия в их кристаллической структуре. Для соединения I характерны два типа кристаллографически независимых катионов [Ph<sub>3</sub>PR]<sup>+</sup> и мономерных дицианодибромоауратных анионов, а для соединений II  $\cdot$  1/2PhH–IV – катионы алкилтрифенилфосфония и по два типа центросимметричных кристаллографически независимых анионов. Анионы первого типа участвуют в образовании

решеток кристаллов, располагаясь на ребрах и по центру граней кристаллических ячеек соединений II · 1/2PhH и III соответственно и образуя водородные связи с катионами. Анионы второго типа удалены от других частиц в решетке и не образуют с ними контактов, располагаясь в узлах (I) и на гранях (III) кристаллической ячейки. Кроме того, дибромдицианопроизводное II · 1/2PhH содержит сольватные молекулы бензола, не участвующие в формировании кристаллической структуры (рис. 1–4).

Геометрия атомов фосфора в катионах несколько искажена и отличается от тетраэдрической: углы СРС испытывают отклонения от теоретического значения составляют И 104.8(2)°-114.1(2)°, 105.2(2)°-113.0(2)° (D).  $106.0(3)^{\circ} - 110.8(3)^{\circ}$ (II 1/2PhH). 106.8(3)°-110.8(3)° (III), 107.44(17)°-111.44(18)° (IV); длины связей  $P-C_{Ph}$ (1.791(5) - 1.800(5),1.790(4)-1.796(5) Å (I), 1.791(6)-1.799(6) Å (II · · 1/2PhH). 1.782(6) - 1.811(7)Å (III). 1.792(4)-1.797(4) Å (IV)) близки межлу собой, как и расстояния P-C<sub>Alk</sub> (1.825(5), 1.825(4) Å (I), 1.806(7) Å (II · 1/2PhH), 1.799(7) Å (III), 1.818(4) Å (IV)). Связи золото-углерод в анионах  $[Au(CN)_2Br_2]^-$  отклоняются от линейной конфигурации, углы CAuC равны 179.0(2)°, 178.8(2)° (I), 180.0(5)°, 180.0(5)° (II · 1/2PhH), 180.0(5)°,  $179.999(1)^{\circ}$  (III),  $180.0(4)^{\circ}$ ,  $179.999(1)^{\circ}$  (IV). Pacстояния Au-C в анионах I отличаются друг от друга существенно: 2.009(6), 2.205(9) Å и 2.015(7), 2.001(7) Å. В центросимметричных анионах длины связей Аи-С (2.070(8), 2.070(8) и 2.142(8), 2.142(8) в II · 1/2PhH, 2.065(8), 2.065(8) и

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структур I–IV

| Параметр                                                                  | Значение                                                         |                                                                 |                                                                  |                                                                  |
|---------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|
| параметр                                                                  | Ι                                                                | II · 1/2PhH                                                     | III                                                              | IV                                                               |
| М                                                                         | 778.21                                                           | 793.30                                                          | 762.22                                                           | 787.23                                                           |
| Сингония                                                                  | Триклинная                                                       | Триклинная                                                      | Триклинная                                                       | Триклинная                                                       |
| Пр. гр.                                                                   | $P\overline{1}$                                                  | $P\overline{1}$                                                 | $P\overline{1}$                                                  | $P\overline{1}$                                                  |
| a, Å                                                                      | 12.672(9)                                                        | 7.834(7)                                                        | 9.726(8)                                                         | 10.452(5)                                                        |
| b, Å                                                                      | 12.729(7)                                                        | 9.857(9)                                                        | 11.636(9)                                                        | 10.699(8)                                                        |
| <i>c</i> , Å                                                              | 18.303(9)                                                        | 20.990(15)                                                      | 13.549(10)                                                       | 13.798(7)                                                        |
| α, град                                                                   | 105.14(2)                                                        | 94.58(3)                                                        | 67.30(3)                                                         | 69.05(3)                                                         |
| β, град                                                                   | 102.34(3)                                                        | 97.06(3)                                                        | 71.11(3)                                                         | 74.741(19)                                                       |
| ү, град                                                                   | 104.72(3)                                                        | 110.96(4)                                                       | 70.08(3)                                                         | 78.23(3)                                                         |
| V, Å <sup>3</sup>                                                         | 2629(3)                                                          | 1489(2)                                                         | 1296.9(17)                                                       | 1379.8(14)                                                       |
| Ζ                                                                         | 2                                                                | 2                                                               | 2                                                                | 2                                                                |
| $ρ_{\rm выч},  г/cm^3$                                                    | 1.966                                                            | 1.770                                                           | 1.952                                                            | 1.895                                                            |
| μ, мм <sup>-1</sup>                                                       | 8.718                                                            | 7.699                                                           | 8.833                                                            | 8.306                                                            |
| <i>F</i> (000)                                                            | 1480.0                                                           | 762.0                                                           | 724.0                                                            | 748.0                                                            |
| Размер кристалла, мм                                                      | $0.24 \times 0.16 \times 0.08$                                   | 0.2 	imes 0.15 	imes 0.08                                       | 0.44 	imes 0.14 	imes 0.1                                        | $0.13\times0.13\times0.1$                                        |
| Область сбора данных по 20, град                                          | 5.86-61.14                                                       | 5.76-54.72                                                      | 6.24-56.84                                                       | 5.98-64.24                                                       |
| Интервалы индексов<br>отражений                                           | $-18 \le h \le 18,$<br>$-18 \le k \le 18,$<br>$-26 \le l \le 26$ | $-9 \le h \le 10,$<br>$-12 \le k \le 12,$<br>$-26 \le l \le 26$ | $-13 \le h \le 12,$<br>$-15 \le k \le 15,$<br>$-18 \le l \le 18$ | $-15 \le h \le 15,$<br>$-15 \le k \le 15,$<br>$-20 \le l \le 20$ |
| Измерено отражений                                                        | 160074                                                           | 31522                                                           | 36900                                                            | 89930                                                            |
| Независимых отражений                                                     | 16036<br>( $R_{\rm int} = 0.0790$ )                              | 6627<br>( $R_{\rm int} = 0.0515$ )                              | 6469<br>( $R_{\rm int} = 0.0448$ )                               | 9619<br>( $R_{\rm int} = 0.0848$ )                               |
| Отражений с <i>I</i> > 2σ( <i>I</i> )                                     | 10766                                                            | 4665                                                            | 4808                                                             | 5517                                                             |
| Переменных уточнения                                                      | 615                                                              | 319                                                             | 301                                                              | 319                                                              |
| GOOF                                                                      | 1.023                                                            | 1.071                                                           | 1.116                                                            | 1.012                                                            |
| $R$ -факторы по $F^2 > 2\sigma(F^2)$                                      | $R_1 = 0.0415,$<br>$wR_2 = 0.0728$                               | $R_1 = 0.0385,$<br>$wR_2 = 0.0836$                              | $R_1 = 0.0440,$<br>$wR_2 = 0.1056$                               | $R_1 = 0.0454,$<br>$wR_2 = 0.0657$                               |
| <i>R</i> -факторы по всем отражениям                                      | $R_1 = 0.0849,$<br>$wR_2 = 0.0860$                               | $R_1 = 0.0686,$<br>$wR_2 = 0.0933$                              | $R_1 = 0.0687,$<br>$wR_2 = 0.1166$                               | $R_1 = 0.1178,$<br>$wR_2 = 0.0795$                               |
| Остаточная электронная плот-<br>ность (max/min), <i>e</i> /Å <sup>3</sup> | 2.89/-2.04                                                       | 0.87/-1.42                                                      | 2.58/-1.26                                                       | 0.67/-0.92                                                       |



**Рис. 2.** Общий вид комплекса II · 1/2PhH.



Рис. 3. Общий вид комплекса III.

2.065(10), 2.065(10) в III, 2.065(8), 2.065(8) и 2.065(10), 2.065(10) Å в IV) близки к сумме ковалентных радиусов атомов (2.05 Å [28]). Длины связей Au-Br в дицианодибромоауратных анионах равны 2.4086(14)-2.4259(16) Å (I), 2.412(2)-2.4276(18) Å (II 1/2PhH), 2.412(2)-2.4228(18) Å (III), 2.4138(13)-2.4254(12) Å (IV).

Ассоциация анионов за счет контактов Au…Au и Au…Br…Au [13, 14] в кристаллах отсутствует, что, вероятно, объясняется большим объемом

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 65 № 2 2020



Рис. 4. Общий вид комплекса IV.



**Рис. 5.** Вид кристаллической упаковки комплекса I вдоль оси c (а), комплексов II (б) и III (в) вдоль оси a, комплекса IV вдоль оси b (г).

фосфорорганических катионов, исключающим возможность сближения анионов и образования из них полимерных цепей. Слабые взаимолействия N…H-С между катионами и анионами (2.00–2.65 Å (I), 2.53 Å (II · 1/2PhH), 2.69 Å (III), 2.54–2.85 Å (IV)) и Br. H–C (2.80–3.20 Å (I), 2.93-3.03 Å (III), 2.85 Å (IV)) структурируют их в единое целое. Кроме того, за формирование структуры комплекса I отвечают контакты Br…C<sub>Ar</sub> (3.41 Å) и прочные водородные связи аниона с гидроксильной группой катиона N…H–O (2.05 Å, 77% от суммы ван-дер-ваальсовых радиусов) [29] (рис. 5а–5г). Наименьшее число контактов наблюдается в кристалле комплекса II · · 1/2PhH, решетка которого характеризуется наименее плотной упаковкой:  $\rho_{\rm выч} = 1.770 \, \text{г/см}^3$ . Анионы данного комплекса, в отличие от остальных, не образуют контактов Br. H-C. Более плотная упаковка наблюдается у дицианодибромидов I и III:  $\rho_{\text{выч}} = 1.966$  и 1.952 г/см<sup>3</sup> соответственно. Плотность кристаллической упаковки соединения IV составляет  $\rho_{\text{выч}} = 1.895 \text{ г/см}^3$ .

# ЗАКЛЮЧЕНИЕ

В кристаллах дицианодибромоауратных комплексов алкилтрифенилфосфония, синтезированных из [Ph<sub>3</sub>PAlk]Cl и K[Au(CN)<sub>2</sub>Br<sub>2</sub>] в воде, дицианодибромоаурат-анионы мономерны. Структура кристаллов сформирована за счет водородных связей катионов с анионами.

# ФИНАНСИРОВАНИЕ РАБОТЫ

Южно-Уральский государственный университет благодарит за финансовую поддержку Министерство науки и высшего образования Российской Федерации (грант № 4.6151.2017/8.9).

#### КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

# СПИСОК ЛИТЕРАТУРЫ

- 1. *Xiaobo L., Patterson H.* // Materials. 2013. V. 6. P. 2595. https://doi.org/10.3390/ma6072595
- Dechambenoit P., Ferlay S., Kyritsakas N. et al. // Cryst. Eng. Comm. 2011. V. 13. P. 1922. https://doi.org/10.1039/C0CE00607F
- Hill J.A., Thompson A.L., Goodwin A.L. // J. Am. Chem. Soc. 2018. V. 138. P. 5886. https://doi.org/10.1021/jacs.5b13446
- Assefaa Z., Haireb R.G., Sykorac R.E. // J. Solid State Chem. 2008. V. 181. P. 382. https://doi.org/10.1016/j.jssc.2007.11.036

- Brown M.L., Ovens J.S., Leznoff D.B. // Dalton Trans. 2017. V. 46. P. 7169. https://doi.org/10.1039/C7DT00942A
- Chorazy S., Wyczesany M., Sieklucka B. // Molecules. 2017. V. 22. P. 1902. https://doi.org/10.3390/molecules22111902
- 7. *Shaw C.F.* // Chem. Rev. 1999. V. 99. № 9. P. 2589. https://doi.org/10.1021/cr9804310
- Rawashdeh-Omary M.A., Omary M.A., Patterson H.H. // J. Am. Chem. Soc. 2000. V. 122. № 42. P. 10371. https://doi.org/10.1021/ja001545w
- 9. *Rawashdeh-Omary M.A., Omary M.A., Shankle G.E. et al.* // J. Phys. Chem. B. 2000. V. 104. № 26. P. 6143. https://doi.org/10.1021/jp000563x
- Colis J.C.F., Larochelle C., Ferna'ndez E.J. et al. // J. Phys. Chem. B. 2005. V. 109. № 10. P. 4317. https://doi.org/10.1021/jp045868g
- Assefaa Z., Kalachnikova K., Hairec R.G. et al. // J. Solid State Chem. 2007. V. 180. P. 3121. https://doi.org/10.1016/j.jssc.2007.08.032
- Roberts R.J., Le D., Leznoff D.B. // Inorg. Chem. 2017. V. 56. № 14. P. 7948. https://doi.org/10.1021/acs.inorgchem.7b00735
- Ovens J.S., Leznoff D.B. // Dalton Trans. 2011. V. 40. P. 4140. https://doi.org/10.1039/c0dt01772h
- Ovens J.S., Truong K.N., Leznof D.B. // Dalton Trans. 2012. V. 41. P. 1345. https://doi.org/10.1039/c1dt11741f
- Ovens J.S., Leznoff D.B. // Chem. Mater. 2015. V. 27. N
   5. 1465. https://doi.org/10.1021/cm502998w
- 16. Cambridge Crystallographic Data Center. 2018. deposit@ccdc.cam.ac.uk; http://www.ccdc.cam.ac.uk
- 17. Sharutin V.V., Popkova M.A., Tarasova N.M. // Bulletin of the South Ural State University. Ser. Chemistry. 2018. V. 10. № 1. Р. 55. [Шарутин В.В., Попкова М.А., Тарасова Н.М. // Вестник Южно-Уральского гос. ун-та. Сер. "Химия". Т. 10. № 1. С. 55.] https://doi.org/10.14529/chem180107
- Ovens J.S., Geisheimer A.R., Bokov A.A. et al. // Inorg. Chem. 2010. V. 49. P. 9609. https://doi.org/10.1021/ic101357y
- Pitteri B., Bortoluzzi M., Bertolasi V. // Trans. Met. Chem. 2008. V. 33. P. 649. https://doi.org/10.1007/s11243-008-9092-9
- 20. *Marangoni G., Pitteri B., Bertolasi V. et al.* // J. Chem. Soc., Dalton Trans. 1987. № 1. P. 2235. https://doi.org/10.1039/DT9870002235
- Ovens J.S., Truong K.N., Leznoff D.B. // Inorg. Chim. Acta. 2013. V. 403. P. 127. https://doi.org/10.1016/j.ica.2013.02.011
- 22. Bruker (1998). SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 65 № 2 2020

- 23. Bruker (1998). SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- 25. *Преч Э., Бюльманн Ф., Аффольтер К.* Определение строения органических соединений. М.: Мир, 2006. 440 с.
- 26. *Jones L.* // Inorg. Chem. 1964. V. 3. № 11. P. 1581. https://doi.org/10.1021/ic50021a024
- 27. Shorrock C.J., Jong H., Batchelor R.J. et al. // Inorg. Chem. 2003. V. 42. P. 3917. https://doi.org/10.1021/ic034144
- Cordero B., G'omez V., Platero-Prats A.E. et al. // Dalton Trans. 2008. P. 2832. https://doi.org/10.1039/b801115j
- Mantina M., Chamberlin A.C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113. P. 5806. https://doi.org/10.1021/jp8111556

178