ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 546.161

КОРРЕЛЯЦИЯ МЕЖДУ ЭНТАЛЬПИЯМИ ПЛАВЛЕНИЯ И ОБРАЗОВАНИЯ АНТИФРЕНКЕЛЕВСКИХ ДЕФЕКТОВ В ГОМОЛОГИЧЕСКОМ РЯДУ ФЛЮОРИТОВЫХ КРИСТАЛЛОВ MF₂

© 2020 г. Н. И. Сорокин*

Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Ленинский пр-т, 59, Москва, 119333 Россия *e-mail: nsorokin1@vandex.ru

> Поступила в редакцию 18.11.2019 г. После доработки 16.12.2019 г. Принята к публикации 30.01.2020 г.

Гомологический ряд кристаллов MF₂ (M = Ca²⁺, Sr²⁺, Ba²⁺, Cd²⁺, Pb²⁺, Sm²⁺, Eu²⁺, Yb²⁺, Ra²⁺, Hg²⁺) со структурой флюорита (CaF₂, пр. гр. *Fm*3*m*, *Z* = 4) занимает важное место во фторидном материаловедении. На основании наиболее надежных экспериментальных данных для CaF₂, SrF₂, BaF₂ и PbF₂ получена корреляция между энтальпиями процессов образования антифренкелевских дефектов (H_f) и плавления (H_m): H_f (кДж/моль) = 8.6 H_m (кДж/моль) или H_f (эВ) = 0.089 H_m (кДж/моль). С помощью экспериментальных значений H_m рассчитаны энтальпии дефектообразования H_f = 2.0 и 2.6 эВ для кристаллов CdF₂ и EuF₂ соответственно. Корреляция имеет прогностический характер для всего гомологического ряда флюоритовых кристаллов MF₂, а также для хлорида SrCl₂.

Ключевые слова: фториды, структура флюорита, дефекты, плавление **DOI:** 10.31857/S0044457X20060227

ВВЕДЕНИЕ

Гомологический ряд дифторидов MF₂, относящихся к структурному типу флюорита (CaF₂), включает десять соединений: CaF₂ (N = 20), SrF₂ (N = 38), CdF₂ (N = 48), BaF₂ (N = 56), SmF₂ (N = 62), EuF₂ (N = 63), YbF₂ (N = 70), HgF₂ (N = 80), PbF₂ (N = 82), RaF₂ (N = 88), где N соответствует атомному номеру металла в Периодической таблице. Флюоритовые кристаллы MF₂ и твердые растворы на их основе занимают важное место во фторидном материаловедении. Они являются перспективными фторидными материалами для фотоники (вакуумный УФ-диапазон, средний ИКдиапазон, лазерные матрицы [1–3]) и ионики твердого тела (высоко- и среднетемпературные твердые электролиты [4, 5]).

Флюоритовые кристаллы MF_2 (пр. гр. $Fm\overline{3}m$, Z=4) имеют ионный тип химической связи. В основе их кристаллической структуры лежит плотнейшая кубическая упаковка катионов. В первой координационной сфере катиона и аниона располагаются восемь анионов (пространственный полиэдр – куб F_8) и четыре катиона (тетраэдр M_4) соответственно. В полиэдрическом представлении структуру флюорита можно изобразить в виде соединенных по ребрам анионных кубов F_8

(сторона куба равна половине параметра решетки a/2), в которых в шахматном порядке располагаются катионы. Пустые кубы F_8 являются междоузельными пустотами.

Несмотря на то, что катионы располагаются в пространстве по закону плотнейшей кубической шаровой упаковки, непосредственно между собой они не соприкасаются (такие структуры, по терминологии О'Киффа [6], называются "эвтактическими"). При образовании флюоритовой структуры анионы "раздвигают" катионную подрешетку, поэтому плотность кристаллической упаковки MF_2 составляет 50–60%. Для сравнения плотность идеальной плотнейшей кубической упаковки шаров равна 74.05%.

Одной из центральных задач фторидного материаловедения является изучение механизмов образования структурных дефектов, в сильной степени влияющих на физические свойства ионных кристаллов. Точечные дефекты во флюоритовых кристаллах MF_2 образуются по механизму Френкеля [7, 8], при этом в анионной подрешетке возникают антифренкелевские дефекты — вакансии фтора и междоузельные ионы фтора. Энтальпия активации образования антифренкелевских дефектов H_f относится к фундаментальным кри-

Рис. 1. Корреляция между энтальпиями H_f и H_m для кристаллов MF₂ (M = Ca, Sr, Ba, Pb) со структурой флюорита.

сталлофизическим характеристикам кристаллов MF₂.

Экспериментальные данные по энтальпиям H_f кристаллов MF₂ являются неполными и противоречивыми. Представляет интерес поиск корреляций между энтальпиями активации образования дефектов H_f и физическими свойствами кристаллов в гомологическом ряду флюоритовых MF₂. В [9–16] показано, что процессы плавления и образования дефектов в ионных кристаллах взаимосвязаны. Это находит отражение в высокой "чувствительности" к изменениям величины энтальпии образования дефектов в ионных кристаллах таких теплофизических характеристик, как температура плавления T_m [9], энтальпия плавления H_m [13] и температура размытого перехода во флюоритовых структурах T_c [10, 11, 17–19].

Целью работы является изучение взаимосвязи между энтальпиями плавления H_m и образования дефектов H_f в гомологическом ряду дифторидов металлов со структурой флюорита.

КОРРЕЛЯЦИЯ МЕЖДУ ЭНТАЛЬПИЯМИ ПЛАВЛЕНИЯ И ОБРАЗОВАНИЯ ДЕФЕКТОВ ВО ФЛЮОРИТОВЫХ КРИСТАЛЛАХ MF₂

Экспериментальные данные по температурам плавления T_m и "размытого" перехода T_c , энталь-

пиям плавления H_m и образования дефектов H_f для фторидных кристаллов со структурой флюорита приведены в табл. 1. В зависимости от химического состава кристаллов MF₂ наблюдается сильное изменение температуры плавления. Величина T_m уменьшается от 1464°C (SrF₂) до 645°C (HgF₂), это обусловлено нарастающим влиянием ковалентного вклада в химическую связь флюоритовых кристаллов. Изменение энтальпии плавления в ряду кристаллов MF₂ не столь значительно. Сравнение дифторидов со структурами флюорита (CaF₂) и рутила (TiO₂) показывает, что энтальпия плавления последнего значительно выше ($H_m = 58.2 \pm \pm 1.0$ кДж/моль для MgF₂ [21]).

Наиболее надежные экспериментальные данные по энтальпиям H_f и H_m получены для кристаллов MF₂ (M = Ca, Sr, Ba, Pb), они приведены в табл. 2. Для этих данных зависимость энтальпии образования дефектов Френкеля H_f от энтальпии плавления H_m показана на рис. 1. Видно, что между величинами H_f и H_m наблюдается прямопропорциональная зависимость (коэффициент корреляции 0.995):

$$H_f(\Im B) = 0.089 H_m (кДж/моль),$$

 $H_f (кДж/моль) = 8.6 H_m (кДж/моль).$ (1)

Из экспериментальных значений H_m по уравнению (1) нами рассчитаны энтальпии дефектообразования $H_f = 2.0$ и 2.6 эВ для кристаллов CdF₂ и EuF₂ соответственно и оценена величина $H_f = 1.4-1.7$ эВ для флюоритового хлорида стронция SrCl₂.

Ранее были предложены корреляции между энтальпией H_f и температурой плавления T_m (соотношение Барра–Лидьярда) [9]:

$$H_f = 2.14 \times 10^{-3} T_m \tag{2}$$

и между энтальпией H_f и температурой "размытого" фазового перехода T_c (для флюоритовых кристаллов MF₂) [10, 11]:

$$H_f/kT_c \approx 20. \tag{3}$$

Рассчитанные по уравнениям (2) и (3) значения H_f для кристаллов MF₂ приведены в табл. 2. Видно, что они значительно хуже согласуются с экспериментальными данными, чем расчет по уравнению (1). Следует отметить, что экспериментальные значения T_c , используемые в расчетах по уравнению (2), определены не точно и имеют большой разброс.

Корреляцию между энтальпиями активации образования точечных дефектов и плавления во флюоритовых кристаллах можно объяснить следующим образом. При плавлении ионные кристаллы переходят в предельно разупорядоченное состояние

СОРОКИН

Таблица 1	. Температуры	плавления T_m и	"размытого"	'перехода 7	<i>Г_с</i> , энтальпии	плавления Н _т	и образования де-
фектов H_f	для кристалло	в MF ₂ со структу	рой флюорит	га			

Кристалл	T_m , K	<i>T_c</i> , K	H_m , кДж/моль	<i>Н_f</i> , эВ
CaF ₂	1691 ± 5 [20-22]	1410 ± 15 [23]	29.7 [21]	2.7 [25, 26]
		1423 [24]	30.1 ± 0.7 [20]	2.43 ± 0.03 [27]
		1430 [25]	30.8 ± 1.0 [23]	2.6 [28]
				2.8 ± 0.2 [29]
SrF ₂	1737 ± 5 [20]	1400 [25]	29.7 ± 0.7 [20, 30]	2.05 [31]
	1746 [22]	1450 ± 10 [30]		2.12 [32]
	1750 ± 2 [30]			2.2 [28]
				2.3 [25]
				2.38 ± 0.01 [33]
				2.7 [34]
BaF ₂	1627 ± 5 [20, 22]	1200 [35]	20.9 ± 0.6 [30]	1.85 ± 0.03 [37]
	1641 ± 2 [30]	1240 ± 10 [30]	22 ± 1 [20]	1.9 ± 0.1 [25, 38]
		1275 [25, 36]		1.91 ± 0.03 [39]
CdF ₂	1348 ± 5 [20]	983 [40]	22.6 ± 1.3 [20]	2.1 [41]
				2.19 [42]
				2.3 [43]
β-PbF ₂	1098 ± 5 [20]	705 [41, 44]	12.5 [46]	0.88 [47]
		712 [25, 36]		0.89 [48]
		718 ± 1 [45]		0.94 [49]
				1.07 ± 0.03 [50]
				1.1 [25, 43, 51]
SmF ₂	1690 [20]	_	—	_
EuF ₂	1670 ± 5 [20, 52]	_	29.2 ± 2.6 [52]	—
	1676 ± 5 [53]			
	1680 ± 38 [54]			
YbF ₂	1680 [20]	_	_	-
SrCl ₂	1147 ± 2 [25, 30, 36]	1000 [25]	16.1 ± 0.6 [30]	1.7 [25]
		990 ± 10 [30]	19.0 [36]	1.97 ± 0.05 [55]
		1001 [36]		2.5 [43]
				2.67 [36]

Таблица 2. Экспериментальные и рассчитанные энтальпии плавления *H_m* и образования дефектов *H_f* для кристаллов со структурой флюорита

	<i>H_m</i> , кДж/моль	H_{f} , эВ				
MF ₂	эксперимент	эксперимент	расчет по (1)	расчет по (2)	расчет по (3)	
CaF ₂	30.1	2.71	2.68	3.62	2.45	
SrF ₂	29.7	2.7	2.64	3.72	2.46	
BaF ₂	22	1.9	1.96	3.48	2.14	
CdF_2	22.6	2.1-2.3	2.0	2.88	1.69	
β -PbF ₂	12.5	1.09	1.11	2.35	1.22	
EuF ₂	29.2	—	2.6	3.57	—	
SrCl ₂	16—19	1.7-2.7	1.4-1.7	2.45	1.72	

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 65 № 6 2020

826

конденсированной среды (расплав). Энтальпия активации плавления зависит от степени структурного разупорядочения кристаллической решетки (концентрации точечных дефектов), достигнутой кристаллом при "подходе" к температуре плавления. Концентрация точечных дефектов, вызванная разупорядочением кристаллической структуры, прямо определяется величиной энтальпии образования дефектов. Чем меньше энтальпия образования дефектов во флюоритовых кристаллах, тем выше их структурное разупорядочение при $T \rightarrow T_m$ или, соответственно, меньше энтальпия плавления.

Корреляция (1) аналогична линейной корреляции между энтальпией плавления и энтальпией образования дефектов, полученной для большой совокупности ионных кристаллов разных химических классов [13, 56]:

$$H_f = \beta H_m, \tag{4}$$

где коэффициент $\beta = 9.2$. Согласно теоретическим представлениям [14–16], при плавлении ионного кристалла происходит скачкообразное возрастание мольной доли точечных дефектов до критического значения $c_{\rm L} = 1/\beta = 0.12 \pm 0.02$ с последующей структурной релаксацией вокруг дефектов. Постоянство концентрации $c_{\rm L} = 0.12 \pm 0.02$ для разных веществ, согласно [14–16], является характерной особенностью жидкого состояния.

ЗАКЛЮЧЕНИЕ

Проведенный анализ показал, что наиболее надежные экспериментальные данные по энтальпиям образования антифренкелевских дефектов получены для флюоритовых кристаллов MF₂ (M = Ca, Sr, Ba, Pb). Для этих кристаллов обнаружена корреляция между энтальпиями процессов образования антифренкелевских дефектов H_f и плавления H_m : $H_f(\kappa Д ж/моль) = 8.6 H_m (к Д ж/моль)$ или H_f (эВ) = 0.089 $H_m (\kappa Д ж/моль)$. Корреляция может иметь прогностический характер для всего ряда флюоритовых фторидов.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Karimov D.N., Krivandina E.A., Zhmurova Z.I. et al.* // Crystallogr. Rep. 2006. V. 51. № 6. P. 1009. https://doi.org/10.1134/S1063774506060125
- Воронкова Е.М., Гречушников Б.Н., Дистлер Г.И., Петров И.П. Оптические материалы для инфракрасной техники. М.: Наука, 1965. 336 с.

- 3. *Каминский А.А.* Лазерные кристаллы. М.: Наука, 1975. 256 с.
- 4. *Sobolev B.P., Sorokin N.I., Bolotina N.B.* // Progress in Fluorine Science / Eds Tressaud A., Poeppelmeier K. Amsterdam: Elsevier, 2016. V. 1. P. 465.
- Sorokin N.I., Sobolev B.P. // Crystallogr. Rep. 2007. V. 52. № 5. P. 842. https://doi.org/10.1134/S1063774507050148
- 6. *Вест А*. Химия твердого тела / Пер. с англ. под ред. Кауля А.Р., Куценка И.Б. М.: Мир, 1988. 558 с.
- 7. *Lidiard A.B.* Crystals with the fluorite structure / Ed. Hayes W. Oxford: Clarendon Press, 1974. P. 101.
- Catlow C.R.A., Norgett M.J. // J. Phys. C. 1973. V. 6. № 8. P. 1325.
- 9. *Barr L.W., Lidiard A.B.* Physical Chemistry: an advanced treatise / Ed. Eyring H., Henderson D., Jost W. N.-Y.: Academic Press, 1970. V. 10. P. 151.
- March N.H., Richardson D.D., Tosi M.P. // Solid State Commun. 1980. V. 35. P. 903.
- March N.M., Tosi M.P. // J. Phys. Chem. Solids. 1981. V. 42. № 9. P. 809.
- Bollmann W. // Phys. Status Solidi (A). 1980. V. 61. P. 395.
- 13. Uvarov N.F., Hairetdinov E.F., Boldyrev V.V. // Solid State Chem. 1984. V. 51. P. 59.
- 14. Uvarov N.F., Hairetdinov E.F., Bollmann W. // Cryst. Res. Technol. 1989. V. 24. № 4. P. 413.
- 15. *Bollmann W., Uvarov N.F., Hairetdinov E.F.* // Cryst. Res. Technol. 1989. V. 24. № 4. P. 421.
- Uvarov N.F., Bollmann W., Hairetdinov E.F. // Cryst. Res. Technol. 1989. V. 24. № 5. P. 543.
- Fedorov P.P. // Russ. J. Phys. Chem. 1996. V. 70. № 2. P. 336.
- Eapen J., Annamareddy A. // Ionics. 2017. V. 23. P. 1043.
- Cazorla C., Sagorta A.K., King M., Errandonea D. // J. Phys. Chem. C. 2018. V. 122. P. 1267.
- 20. *Sobolev B.P.* The Rare Earth Trifluorides. Part 1. The Rare Earth Trifluorides. Institute of Crystallography, Moscow and Institut d'Estudis Catalans, Barcelona, Spain, 2000. 520 p.
- 21. Naylor B.F. // J. Am. Chem. Soc. 1945. V. 67. P. 150.
- 22. Воронин Б.М., Присяжный В.Д. // Электрохимия. 1980. Т. 16. № 2. С. 131.
- 23. Arseev I.V., Lyusternik V.E., Peletskii V.E. et al. // Russ. J. Phys. Chem. A. 2004. V. 78. № 3. P. 331.
- Dworkin A.S., Bredig J. // J. Phys. Chem. 1968. V. 72. № 4. P. 1227.
- 25. Chadwick A.V. // Solid State Ionics. 1983. V. 8. P. 209.
- Jacobs P.W.M., Ong S.H. // J. de Physique (Fr.) 1976. T. 37. P. C7-331.
- 27. Bollmann W., Reimann R. // Phys. Status Solidi (A). 1973. V. 16. P. 187.
- 28. Fielder W.L. // NASA TN D-3816. 1967.
- 29. Ure R.W. // J. Chem. Phys. 1957. V. 26. № 6. P. 1363.
- 30. *Ефремова Р.И., Матизен Э.В.* // Изв-во СО АН СССР. Сер. хим. наук. 1970. № 1. С. 3.
- Bollmann W. // Kristall und Technik. 1980. B. 15. № 2. S. 197.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 65 № 6 2020

- Knowles J.T., Mahendroo P.P. // Phys. Letters. A. 1970.
 V. 31. P. 385.
- Jacobs P.W.M., Ong S.H. // J. Solid State Chem. 1980.
 V. 32. № 2. P. 193.
- Schoonman J., den Hartog H.W. // Solid State Ionics. 1982. V. 7. P. 9.
- Ngoepe P.E., Comins J.D. // Cryst. Latt. Def. and Amorph. 1987. V. 15. P. 317.
- Schroter W., Nolting J. // J. de Phys. (Fr.) 1980. T. 41. P. C6-20.
- Jacobs P.W.M., Ong S.H. // Cryst. Lattice Defects. 1980. T. 8. № 4. P. 177.
- Barsis E., Taylor A. // J. Chem. Phys. 1968. V. 48. P. 4357.
- Figueroa D.R., Chadwick A.V., Strange J.H. // J. Phys. C. 1978. V. 11. P. 55.
- Manasreh M.O., Pederson D.O. // Phys. Rev. B. 1985.
 V. 31. № 12. P. 8153.
- Cyris M., Muller P., Teltow J. // J. de Phys. (Fr.) 1973. T. 34. P. C9-63.
- 42. *Tau Y.T., Kramp D.* // J. Chem. Phys. 1970. V. 53. P. 3691.
- Oberschmidt J.M., Lazarus D. // Phys. Rev. B. 1980. V. 21. P. 2952.

- 44. Derrington C.E., Navrotsky A., O'Keeffe M. // Solid State Commun. 1976. V. 18. P. 47.
- 45. Volodkovich L.H., Petrov G.S., Vecher R.A., Vecher A.A. // Thermochim. Acta. 1985. V. 88. P. 497.
- 46. *Федоров П.П.* // Дис. д. х. н. М.: МИТХТ, 1991. 608 с.
- 47. *Мурин И.В., Глумов А.В., Глумов О.В.* // Электрохимия. 1979. Т. 15. № 8.
- 48. Bonne R.W., Schoonman J. // J. Electrochem. Soc. 1977. V. 124. P. 28.
- 49. Samara G.A. // J. Phys. Chem. Solids. 1979. V. 40. P. 509.
- 50. Azimi A., Carr V.M., Chadwick A.V. et al. // J. Phys. Chem. Solids. 1984. V. 45. № 1. P. 23.
- Goff J.P., Hayes W., Hull S., Hutchings M.T. // J. Phys.: Condens. Matter. 1991. V. 3. P. 3677.
- 52. Petzel T. // Less-Common Met. 1985. V. 108. P. 241.
- Petzel T., Greis O. // Z. Anorg. Allg. Chem. 1972. V. 388. P. 137.
- 54. Федоров П.П., Соболев Б.П. // Кристаллография. 1992. Т. 37. № 5. С. 1210.
- Chadwick A.V., Kirkwood F.G., Saghafian R. // J. de Phys. (Fr.) 1980. T. 41. P. C6-216.
- 56. Uvarov N.F. // Russ. Chem. Rev. 2007. V. 76. № 5. P. 415. https://doi.org/10.1070/RC2007v076n05ABEH003687