ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ

УДК 539.149

ВЛИЯНИЕ РАСТЯЖЕНИЯ И СЖАТИЯ НА ЗОННУЮ СТРУКТУРУ УГЛЕРОДНЫХ НАНОТРУБОК ПО ДАННЫМ МЕТОДА ЦИЛИНДРИЧЕСКИХ ВОЛН

© 2021 г. Е. П. Дьячков^а, П. Н. Дьячков^{а, *}

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия *e-mail: p_dyachkov@rambler.ru Поступила в редакцию 12.04.2021 г. После доработки 11.05.2021 г. Принята к публикации 14.05.2021 г.

Методом линеаризованных присоединенных цилиндрических волн рассчитано влияние одноосной деформации на зонную структуру четырех хиральных ((8,7), (9,6), (10,5), (12,1)) и четырех нехиральных ((7,7), (13,0), (12,0), (13,0)) нанотрубок диаметром ~10 Å с разной геометрией. Результаты сопоставлены с влиянием скручивания нанотрубок на электронные свойства этих соединений. Установлено, что возмущения зонной структуры под действием этих двух типов механических деформаций могут резко различаться. В трубке (7,7) типа "кресло" и трубке (8,7), которую иногда называют трубкой "почти кресло" из-за близости индексов $n_1 = 8$ и $n_2 = 7$, зонная структура резко меняется при скручивании трубки, но почти не возмущается одноосным растяжением и сжатием. Напротив, в полупроводниковых нанотрубках (13,0), (11,0) типа "зигзаг" и (12,1) "почти зигзаг" влияние скручивания трубок очень слабое, а растяжение сопровождается сильными изменениями дисперсионных кривых в области уровня Ферми вплоть до изменения чередования граничных зон. В квазиметаллических нанотрубках (12,0) и (9,6) все типы деформации – растяжение, сжатие и скручивание – индуцируют резкое уширение запрещенной зоны с образованием полупроводников. В полупроводников. В полупроводников. В полупроводников. В изменениями зонной структуры.

Ключевые слова: моделирование, зонная структура, электромеханические свойства, аксиальные деформации

DOI: 10.31857/S0044457X21110040

введение

Однослойные нанотрубки - это цилиндрические молекулы, поверхность которых выстроена углеродными шестиугольниками [1, 2], а геометрия определяется диаметром d и ориентацией шестиугольников относительно оси цилиндра или длиной связи C-C 1.42 Å и двумя положительными целыми числами (n_1, n_2) , где $n_1 \ge n_2 \ge 0$. В зависимости от геометрии нанотрубки обладают различными электрическими свойствами, что находит применение в электронных устройствах нанометрового масштаба. Углеродные нанотрубки являются жесткими и прочными пружинами, но при скручивании нанотрубки вокруг ее оси z, растяжении или сжатии (рис. 1) ее электронные свойства меняются. При этом могут открываться запрещенные зоны в металлических нанотрубках и варьироваться ширина запрещенных зон в полупроводниковых трубках [3–7]. Электронный отклик на деформацию нанотрубок используется в наноэлектромеханических системах, которые представляют собой устройства, сочетающие электрические и механические степени свободы материалов [8–14].

Цель настоящей работы — получение количественной информации об изменении электронной структуры при растяжении и сжатии нанотрубок с помощью неэмпирического метода линеаризованных присоединенных цилиндрических волн (ЛПЦВ). В предыдущей работе этим же методом изучен отклик зонной структуры хиральных и нехиральных нанотрубок на крутильные моды [15]. Ранее влияние отклика зонной структуры трубок изучалось с помощью приближенных аналитических расчетов в рамках π -электронной теории и расширенным методом Хюккеля [16–23].

МЕТОД РАСЧЕТА

Качественно в методе ЛПЦВ зонная структура нанотрубки определяется свободным движением

Рис. 1. Скручивание (а) и растяжение (б) нанотрубки.

электронов в моноатомном углеродном цилиндрическом слое и рассеянием электронов на атомных потенциалах. При этом учитываются винтовая и вращательная симметрия нанотрубок, за счет чего истинная элементарная ячейка любой нанотрубки сводится к двум валентно-связанным атомам С. Полностью геометрическая структура нанотрубки определяется повторяющимися поворотами пары атомов С-С на углы ω вокруг оси *z* с одновременными смещениями на расстояния h_z вдоль этой оси, а также поворотами n вокруг оси *z* на угол π/n , где n – наибольший общий делитель индексов n_1 и n_2 . Строгое обоснование метода и явные формулы для базисных функций и секулярных уравнений приведены в предыдущих публикациях [24-26]. Собственные функции $\Psi_{\lambda}(\mathbf{r}|k,L)$ и собственные энергии $E_{\lambda}(k,L)$ электронного гамильтониана зависят от волнового вектора k из первой зоны Бриллюэна $0 \le k \le \pi/h_z$ и от вращательного квантового числа L = 0, 1, ..., n - 1,которое нумерует стоячие электронные волны в направлении вокруг трубки. В качестве входных данных в соответствующей компьютерной программе используются структурные параметры h_z и ω нанотрубки, которые зависят от индексов *n*₁ *u n*₂, а в качестве характеристики аксиальной деформации – величина Δh_z , выраженная в процентах.

РЕЗУЛЬТАТЫ РАСЧЕТОВ

Рассмотрим влияние аксиальных деформаций на зонную структуру четырех хиральных ((8,7), (9,6), (10,5), (12,1)) и четырех нехиральных ((7,7), (13,0), (12,0), (13,0)) нанотрубок с диаметрами ~10 Å, но с разной геометрией. Ограничимся амплитудами кручения $|\Delta h_z| \leq 5\%$, так как цилиндрическая геометрия нанотрубок сохраняется в этих пределах, а далее она подвергается необратимым искажениям [19–23]. Влияние крутильных мод в диапазоне $|\Delta \omega| \leq 2$ град/Å на эти трубки описано в [15].

Напомним, что, согласно простой π -электронной модели, электронные свойства недеформированных нанотрубок можно грубо охарактеризовать индексом p, который определяется как остаток от деления разности $n_1 - n_2$ на три. Если p = 0, нанотрубки обладают металлическими свойствами, а при p = 1 или -1 они полупроводниковые. Таким образом, в рассматриваемой серии трубок имеются нехиральные типа "кресло" (n, n) и "зигзаг" (n, 0) и хиральные, полупроводниковые и металлические трубки со всеми индексами p.

Хиральные нанотрубки

Рис. 2 и табл. 1 иллюстрируют результаты расчетов зонной структуры и ее изменения при растяжении и сжатии хиральной (8,7) нанотрубки. Приведены энергии пиков валентной зоны и минимумов зоны проводимости в точках А, ..., Н зоны Бриллюэна и вариации минимального оптического перехода в зависимости от величины и направления одноосной деформации. Уровень Ферми четко разделяет валентную зону и зону проводимости. Нанотрубка является полупроводником с прямым переходом в запрещенной зоне $E_g(A) = E_c(A) - E_v(A) = 0.76$ эВ, который возрастает до 0.9 эВ при растяжении и уменьшается до 0.66 эВ при сжатии. Слабые вариации электронной структуры этой трубки при одноосных деформациях резко контрастируют с эффектами ее скручивания, которое в зависимости от направления и амплитуды деформации может привести к удвоению щели или ее быстрому уменьшению вплоть до металлизации трубки за счет перекрывания состояний валентной зоны и зоны проводимости.

Рис. 3 и табл. 2 демонстрируют влияние одноосных деформаций на зонную структуру хиральной (10,5) нанотрубки. При $\Delta h_z = 0$ минимальная щель с энергией $E_g(G) = 0.66$ эВ расположена в точке G с L = 2, а вторая щель с энергией $E_g(D) =$ = 1.6 эВ – в точке D с L = 4. При растяжении в диапазоне $|\Delta h_z| \le 5\%$ энергия $E_g(G)$ падает до 0.26 эВ, а при сжатии она почти удваивается. Как показывает рис. 3, вблизи $\Delta h_z = -5\%$ зависимости $E_g(G)$ и $E_g(D)$ от Δh_z пересекаются, и далее значения $E_g(G)$. В отличие от скручивания, когда нанотрубка может приобретать металлические свойства, перекрывания состояний валентной зоны и зоны прово-

Рис. 2. Зонная структура и изменение энергии минимальной оптической щели при растяжении ($\Delta h_z > 0$) и сжатии ($\Delta h_z < 0$) нанотрубки (8,7).

Рис. 3. Зонная структура и изменение энергии двух минимальных оптических щелей при растяжении и сжатии нанотрубки (10,5).

димости при растяжении и сжатии не наблюдается, т.е. нанотрубка сохраняет полупроводниковые свойства, но шириной запрещенной зоны можно эффективно управлять с помощью одноосной нагрузки, поскольку зависимости щелей $E_g(G)$ и $E_g(D)$ от Δh_z почти линейные. Зависимости смещения уровней зонной структуры полупроводниковых нанотрубок (12,1) от линейных деформаций Δh_z в основном аналогичны (10,5). Они определяются разнонаправленным смещением и конкуренцией двух минимальных щелей, а также кратными изменениями их

Δh_z	Зона	А	В	С	D	E	F	G	Н
0	с	0.39	0.68	1.04	1.15	1.11	1.09	0.92	0.95
	V	-0.39	-0.74	-1.43	-1.73	-2.24	-2.33	-2.48	-2.57
2	с	0.39	0.67	1.05	1.15	1.12	1.07	0.9	0.91
	V	-0.39	-0.74	-1.43	-1.71	-2.24	-2.34	-2.5	-2.57
5	С	0.45	0.68	1.06	1.14	1.10	1.01	0.88	0.4
	V	-0.45	-0.7	-1.46	-1.71	-2.21	-2.33	-2.56	-2.51
-2	С	0.41	0.7	1.04	1.16	1.12	1.12	0.95	1.0
	V	-0.41	-0.77	-1.41	-1.74	-2.1	-2.32	-2.45	-2.58
-5	С	0.33	0.74	1.04	1.22	1.15	1.22	0.9	1.01
	V	-0.33	-0.81	-1.35	-1.73	-2.04	-2.27	-2.36	-2.47

Таблица 1. Энергии (эВ) максимумов валентной зоны (v) и минимумов зоны проводимости (c) нанотрубки (8,7) в различных точках зоны Бриллюэна в зависимости от величины растяжения и сжатия (Δh_z , %)

	4								
Δh_z	Зона	А	В	С	D	E	F	G	Н
0	с	1.05	1.16	1.01	0.64	1.26	0.77	0.33	1.14
	V	-1.63	-2.47	-2.23	-0.76	-2.22	-2.51	-0.33	-1.43
2	с	1.09	1.09	1.04	0.71	1.19	0.79	0.25	1.1
	V	-1.75	-2.42	-2.33	-0.84	-2.16	-2.62	-0.25	-1.37
5	С	1.14	0.97	1.06	0.8	1.1	0.8	0.13	1.
	V	-1.86	-2.36	-2.45	-0.97	-2.08	-2.76	-0.13	-1.3
-2	С	1.0	1.25	0.99	0.56	1.33	0.79	0.42	1.21
	V	-1.54	-2.52	-2.13	-0.66	-2.25	-2.4	-0.42	-1.51
-5	С	0.97	1.38	0.97	0.47	1.46	0.75	0.61	1.35
	V	-1.33	-2.58	-1.92	-0.47	-2.32	-2.22	-0.5	-1.61

Таблица 2. Энергии максимумов валентной зоны и минимумов зоны проводимости нанотрубки (10,5) в зависимости от Δh_z

Таблица 3. Энергии максимумов валентной зоны и минимумов зоны проводимости нанотрубки (12,1) в зависимости от Δh_z

Δh_z	Зона	А	В	С	D	Е	F	G	Н
0	с	0.45	0.82	0.97	0.64	0.39	1.31	1.36	1.36
	V	-2.54	-2.2	-1.66	-0.83	-0.39	-1.67	-1.89	-2.38
2	с	0.55	0.92	1.08	0.77	0.23	1.22	1.31	1.28
	V	-2.72	-2.39	-1.99	-0.98	-0.23	-1.51	-1.71	-2.25
5	С	0.72	1.08	1.24	1.0	0.16	1.14	1.28	1.24
	V	-2.92	-2.69	-2.0	-1.16	-0.16	-1.25	-1.47	-2.41
-2	С	0.47	0.83	0.98	0.63	0.59	1.55	1.54	1.55
	V	-2.24	-1.94	-1.35	-0.54	-0.47	-1.73	-2.03	-2.41
-5	с	0.31	0.67	0.8	0.36	0.92	1.7	1.62	1.67
	V	-1.91	-1.62	-1.04	-0.30	-0.76	-2.04	-2.34	-2.67

энергий при растяжении и сжатии (рис. 4, табл. 3). Отклик нанотрубки (12,1) на скручивание существенно более слабый по сравнению с трубкой (10,5).

Рис. 5 и табл. 4 отражают эволюцию зонной структуры и минимальной щели при растяжении и сжатии трубки (9,6). Это металлическая трубка с мини-щелью $E_g(F) = 0.035$ эВ в точке F на границе между состояниями с L = 1 и 2 и k = 0 [2, 24–26]. И растяжение, и сжатие сопровождаются быстрым увеличением щели $E_g(F)$ до 0.32 и 0.22 эВ. Щель $E_g(F)$ отделена от остальных прямых оптических переходов на 2–3 эВ, и они не образуют состояний в области уровня Ферми ни при растяжении,

Рис. 4. Зонная структура и изменение энергии двух минимальных оптических щелей при растяжении и сжатии нанотрубки (12,1).

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 11 2021

Рис. 5. Зонная структура и изменение энергии минимальной оптической щели при растяжении и сжатии нанотрубки (9,6).

ни при сжатии трубки, в отличие от ее скручивания против винтовой оси трубки, когда щель $E_g(A)$ быстро убывает и опускается ниже щели $E_g(F)$ [15].

Нанотрубка типа "кресло"

Обсудим теперь нехиральную трубку (7,7) типа "кресло". Как видно из рис. 6 и табл. 5, в свободном состоянии она обладает металлической зонной структурой из-за пересечения граничных π полос в точке A с L = 0, причем ни растяжение, ни сжатие не вызывают расщепления этих вырожденных уровней. Таким образом, металлический тип электронного строения устойчив по отношению к одноосной деформации. Этот результат резко отличается от реакции трубки на ее скручивание вокруг оси *z*, которое открывает щель $E_g(A)$ в запрещенной зоне, которая быстро достигает ~1 эВ и индуцирует переход металл—полупроводник.

Нанотрубки типа "зигзаг"

Как следует из рис. 7, 8 и табл. 6, 7, отклик зонной структуры полупроводниковых нехиральных нанотрубок типа "зигзаг" (13,0) с p = 1 и (11,0) с p = -1 на одноосные деформации очень сильный. Он определяется быстрым и разнонаправленным изменением двух минимальных щелей. В трубке (13,0) это щели $E_{o}(E)$ и $E_{o}(F)$, энергии которых для невозмущенной структуры равны 0.85 и 1.47 эВ. При сжатии трубки (13,0) щель Eg(E) падает до 0.31 эВ, а при растяжении $E_g(F)$ убывает до 0.69 эВ. При $\Delta h_z \approx 2\%$ зависимости энергии этих прямых переходов от Δh_z пересекаются и $E_g(E) =$ $= E_{o}(F) = 1.25$ эВ. В трубке (11,0) точка пересечения энергии двух минимальных щелей расположена при отрицательном значении $\Delta h_z \approx -2\%$, когда значение 1.25 эВ отвечает энергии переходов $E_{g}(E)$ и $E_{g}(D)$. Путем растяжения и сжатия минимальную щель $E_g(E)$ в трубке (11,0) можно варьировать в интервале 0.22-1.25 эВ. В нанотрубках

Таблица 4. Энергии максимумов валентной зоны и минимумов зоны проводимости нанотрубки (9,6) в зависимости от Δh_z

Δh_z	Зона	А	В	С	D	E	F	G	Н
0	с	0.88	1.21	0.8	1.09	1.11	0.02	0.93	0.96
	V	-1.11	-2.0	-2.56	-2.45	-1.90	-0.02	-1.1	-2.46
2	С	0.9	1.16	0.78	1.03	1.12	0.11	0.89	0.96
	V	-1.16	-1.96	-2.63	-2.44	-1.96	-0.11	-1.1	-2.48
5	С	0.97	1.11	0.79	0.96	1.15	0.16	0.85	0.97
	V	-1.24	-1.9	-2.72	-2.38	-2.05	-0.16	-0.98	-2.55
-2	С	0.87	1.31	0.85	1.21	1.16	0.027	1.02	1.01
	V	-1.03	-1.95	-2.49	-2.46	-1.81	-0.027	-1.16	-2.48
-5	С	0.78	1.37	0.87	1.31	1.11	0.11	1.06	1.0
	V	-0.92	-2.11	-2.37	-2.52	-1.72	-0.11	-1.24	-2.22

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 11 2021

Рис. 6. Зонная структура и изменение энергии двух минимальных оптических щелей при растяжении и сжатии нано-трубки (7,7).

Рис. 7. Зонная структура и изменение энергии двух минимальных оптических щелей при растяжении и сжатии нано-трубки (13,0).

(13,0) и (11,0) изменения энергии прямых переходов с деформацией приближенно линейные. Как установлено в [15], скручивание полупроводниковых трубок (13,0) и (11,0) вызывает лишь очень слабое возмущение зонной структуры: в (13,0) минимальная щель увеличивается от 0.85 до 0.94 эВ, а в трубке (11,0) она убывает от 0.78 до 0.73 эВ, причем изменения энергии других переходов также ограничиваются ~0.1 эВ. В идеальной квазиметаллической зигзагообразной трубке (12,0) с p = 0 и растяжение, и сжатие приводят к быстрому увеличению мини-щели $E_g(E)$ в точке Е с L = 8 от 0.04 до 0.8–0.9 эВ (рис. 9, табл. 8). Кроме того, вблизи $\Delta h_z = -5\%$ дно зоны проводимости смещается из точки Е в точку А, и минимальным оказывается непрямой переход между состояниями $E_v(E)$ и $E_c(A)$. Напомним, что отклик этой трубки на скручивание также до-

Таблица 5.	Энергии м	аксимумов	валентной	зоны и мин	имумов зон	ны проводи	мости нано	отрубки (7,7) в зависи-
мости от Δh	h_z								
A 1.	2		D	0	D	Г	F	0	TT

Δh_z	Зона	А	В	С	D	E	F	G	Н
0	с	0	1.32	0.89	0.89	1.09	1.09	0.87	0.87
	V	0	-2.20	-1.21	-1.21	-2.08	-2.08	-2.53	-2.53
2	С	0	1.31	0.93	0.93	1.09	1.09	0.86	0.86
	V	0	-1.95	-1.19	-1.19	-2.08	-2.08	-2.51	-2.51
5	С	0	1.0	0.92	0.92	1.06	1.06	0.8	0.8
	V	0	-1.65	-1.21	-1.21	-2.11	-2.11	-2.54	-2.54
-2	С	0	1.34	0.93	0.93	1.14	1.14	0.94	0.94
	V	0	-2.41	-1.19	-1.19	-2.04	-2.04	-2.46	-2.46
-5	С	0	1.29	0.95	0.95	1.20	1.20	1.02	1.02
	V	0	-1.77	-1.14	-1.14	-1.96	-1.96	-2.39	-2.39

Рис. 8. Зонная структура и изменение энергии двух минимальных оптических щелей при растяжении и сжатии нанотрубки (11,0).

Рис. 9. Зонная структура и изменение энергии минимальной оптической щели при растяжении и сжатии нанотрубки (12,0).

вольно сильный: минимальная щель $E_g(E)$ возрастает до 0.3 эВ [15]. В рассчитанных нехиральных нанотрубках изменения запрещенной зоны с деформацией приближенно линейные.

ЗАКЛЮЧЕНИЕ

Рассчитано влияние растяжения и сжатия на зонную структуру углеродных нанотрубок. Результаты сопоставлены с электронными эффек-

Таблица 6. Энергии максимумов валентной зоны и минимумов зоны проводимости нанотрубки (13,0) в зависимости от Δh_z

Δh_z	Зона	А	В	С	D	E	F	G	Н
0	с	0.52	0.63	0.99	1.04	0.42	0.71	1.4	1.4
	V	-2.64	-2.48	-2.10	-1.46	-0.43	-0.76	-2.16	-2.16
2	С	0.64	0.75	1.11	1.13	0.68	0.58	1.36	1.36
	V	-2.68	-2.66	-2.28	-1.57	-0.58	-0.58	-1.95	-1.95
5	С	0.63	0.86	1.14	1.19	0.83	0.34	1.25	1.25
	V	-3.02	-2.93	-2.54	-1.88	-0.84	-0.35	-1.71	-1.71
-2	С	0.35	0.48	0.83	0.79	0.29	0.86	1.42	1.42
	V	-2.53	-2.47	-1.94	-1.30	-0.28	-0.94	-2.39	-2.39
-5	С	0.17	0.43	0.64	0.57	0.16	0.51	1.11	1.6
	V	-2.21	-2.03	-1.63	-0.98	-0.15	-1.25	-2.61	-2.61

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 11 2021

Δh_z	Зона	Α	В	С	D	E	F	G	Н
0	С	0.27	0.64	1.01	0.81	0.52	1.99	1.48	1.48
	V	-2.54	-2.38	-1.77	-0.84	-0.26	-2.6	-1.83	-1.83
2	С	0.28	0.65	1.02	0.86	0.19	1.85	1.32	1.32
	V	-2.85	-2.62	-2.02	-1.12	-0.19	-2.52	-1.75	-1.75
5	С	0.43	0.71	1.16	1.05	0.11	1.72	1.22	1.22
	V	-3.1	-2.1	-2.29	-1.36	-0.11	-2.31	-1.52	-1.52
-2	С	0.31	0.69	1.06	0.83	0.9	2.2	1.73	1.73
	V	-2.2	-1.95	-1.42	-0.49	-0.31	-2.72	-1.87	-1.87
-5	С	0.18	0.52	0.87	0.6	1.27	2.31	1.85	1.85
	V	-1.85	-1.59	-1.05	-0.15	-0.55	-2.87	-2.18	-2.18

Таблица 7. Энергии максимумов валентной зоны и минимумов зоны проводимости нанотрубки (11,0) в зависимости от Δh_z

Таблица 8. Энергии максимумов валентной зоны и минимумов зоны проводимости нанотрубки (12,0) в зависимости от Δh_z

Δh_z	Зона	А	В	С	D	E	F	G	Н
0	с	0.38	0.54	0.86	0.91	0.02	1.21	1.32	1.32
	V	-2.69	-2.51	-2.03	-1.27	-0.02	-1.33	-2.45	-2.45
2	С	0.38	0.64	1.04	1.0	0.25	1.04	1.32	1.32
	V	-2.81	-2.77	-2.24	-1.34	-0.25	-1.16	-2.27	-2.27
5	с	0.56	0.82	1.15	1.16	0.45	0.9	1.29	1.29
	V	-2.99	-2.9	-2.43	-1.54	-0.46	-0.87	-1.99	-1.99
-2	с	0.32	0.42	0.86	0.73	0.12	1.37	1.42	1.42
	V	-2.55	-2.33	-1.86	-1.09	-0.07	-1.5	-2.62	-2.62
-5	с	0.21	0.52	0.74	0.58	0.62	1.7	1.62	1.62
	V	-2.08	-1.86	-1.38	-0.58	-0.21	-1.65	-2.75	-2.75

тами скручивания нанотрубок. Установлено, что возмущение зонной структуры под действием механических деформаций может резко различаться в зависимости от геометрии нанотрубок. Полученные результаты можно использовать для управления оптическими и электрическими свойствами материала и дизайна наноэлектромеханических систем на основе углеродных нанотрубок.

БЛАГОДАРНОСТЬ

Работа выполнена в рамках государственного задания ИОНХ РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Автор заявляет, что у него нет конфликта интересов.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 11 2021

СПИСОК ЛИТЕРАТУРЫ

- 1. Saito R., Dresselhaus G., Dresselhaus M.S. Physical Properties of Carbon Nanotubes. London: Imperial College Press, 1998.
- 2. *Дьячков П.Н.* Электронные свойства и применение нанотрубок. М.: Лаборатория знаний, 2020. 491 с.
- Sazonova V., Yaish Y., Üstünel H. et al. // Nature. 2004. V. 431. P. 284. https://doi.org/10.1038/nature02905
- Tombler T.W., Zhou C., Alexseyev L. et al. // Nature. 2000. V. 405. P. 769. https://doi.org/10.1038/35015519
- Gómez-Navarro C., de Pablo P.J., Gomez-Herrero J. // Adv. Mater. 2004. V. 16. P. 549. https://doi.org/10.1007/s10854-006-8094-7
- Semet V., Binh V.T., Guillot D.K. et al. // Appl. Phys. Lett. 2005. V. 87. P. 223103. https://doi.org/10.1063/1.2136229
- Cohen-Karni T., Segev L., Cohen S.R. et al. // Nature Nanotechnol. 2006. V. 1. P. 36. https://doi.org/10.1038/nnano.2006.57

- Changa T. // Appl. Phys. Lett. 2007. V. 90. P. 201910. https://doi.org/10.1063/1.2739325
- Craighead H.G. // Science. 2000. V. 290. P. 1532. https://doi.org/10.1126/science.290.5496.1532
- 10. *Wang M.Z.* Carbon Nanotube NEMS // Encyclopedia of Nanotechnology / Ed. Bhushan B. Dordrecht: Springer, 2015. P. 11.
- Chiu H.Y., Hung P., Postma H.W.C. et al. // Nano Lett. 2008. V. 8. P. 4342. https://doi.org/10.1021/n1802181c
- Chaste J., Eichler A., Moser J. et al. // Nature Nanotechnol. 2012. V. 7. P. 301. https://doi.org/10.1038/nnano.2012.42
- Moser J., Güttinger J., Eichler A. et al. // Nature Nanotechnol. 2013. V. 8. P. 493. https://doi.org/10.1038/ncomms3843
- 14. Jensen K., Weldon J., Garcia H. et al. // Nano Lett. 2007. V. 7. P. 3508.
- https://doi.org/10.1021/nl0721113
 15. *D'yachkov P.N.* // Russ. J. Inorg. Chem. 2021. V. 66.
 № 6. Р. 852. [Дьячков П.Н. // Журн. неорган. химии. 2021. Т. 66. № 6. С. 750.
- https://doi.org/10.31857/S0044457X21060088] 16. *Yang L., Anantram M.P., Han J. et al.* // Phys. Rev. B.
- 1999. V. 60. P. 13874. https://doi.org/10.1103/PhysRevB.60.13874
- 17. *Yang L., Han J.* // Phys. Rev. Lett. 2000. V. 85. P. 154. https://doi.org/10.1103/PhysRevLett.85

- Kane C.L., Mele E.J. // Phys. Rev. Lett. 1997. V. 78. P. 1932. https://doi.org/10.1103/PhysRevLett.78.1932
- Bundera J.E., Hill J.M. // J. Appl. Phys. 2010. V. 107. Art. 023511. https://doi.org/10.1063/1.3289320
- 20. Heyd R., Charlier A., McRae E. // Phys. Rev. B. 1997. V. 55. P. 6820. https://doi.org/10.1103/PhysRevB.55.6820
- Dmitrović S., Milošević I., Damnjanović M. et al. // J. Phys. Chem. C. 2015. V. 119. P. 13922. https://doi.org/10.1021/acs.jpcc.9b10718
- Rochefort A., Avouris P., Lesage F. et al. // Phys. Rev. B. 1999. V. 60. P. 13824. https://doi.org/10.1103/PhysRevB.60.13824
- Bailey S.W.D., Tomanek D., Kwon Y.-K. et al. // Europhys. Lett. 2002. V. 59. P. 75. https://doi.org/10.1209/epl/i2002-00161-8
- 24. D'yachkov P.N., Makaev D.V. // Phys. Rev. B. 2007. V. 76. Art. 195411. https://doi.org/10.1103/PhysRevB.76.195411
- 25. *D'yachkov P.N.* Quantum chemistry of nanotubes: electronic cylindrical waves. London: CRC Press, Taylor and Francis, 2019. 212 p.
- 26. *D'yachkov P.N.* // Russ. J. Inorg. Chem. 2018. V. 63. № 1. Р. 55. [Дьячков П.Н. // Журн. неорган. химии. 2018. Т. 63. № 1. С. 60.] https://doi.org/10.1134/S0036023618010072