_____ КООРДИНАЦИОННЫЕ ____ СОЕДИНЕНИЯ

УДК 548.31

КООРДИНАЦИОННЫЕ ПОЛИЭДРЫ MC_n (M = Ga, In, Tl) В СТРУКТУРАХ КРИСТАЛЛОВ

© 2021 г. М. О. Карасев^{а, *}, И. Н. Карасева^b, Д. В. Пушкин^a

^аСамарский национальный исследовательский университет им. академика С.П. Королева, Московское шоссе, 34, Самара, 443086 Россия

> ^bСамарский государственный технический университет, ул. Молодогвардейская, 244, Самара, 443100 Россия

> > *e-mail: maxkarasev@inbox.ru Поступила в редакцию 22.03.2021 г. После доработки 20.05.2021 г. Принята к публикации 21.05.2021 г.

С помощью метода пересекающихся секторов и полиэдров Вороного–Дирихле проведен кристаллохимический анализ соединений галлия, индия и таллия, в структуре которых содержатся координационные полиэдры MC_n (M = Ga, In, Tl). Установлено, что атомы металлов в углеродном окружении проявляют координационные числа 1–7, 9, 10, 12 и 18. Рассмотрено влияние координационного числа, степени окисления и химической природы атомов Ga, In, Tl на основные характеристики полиэдров Вороного–Дирихле (ПВД). Установлено существование единой линейной зависимости телесных углов граней ПВД, отвечающих валентным и невалентным контактам M–C (M = Ga, In, Tl), от соответствующих межъядерных расстояний. Дана количественная оценка стереоэффекта неподеленной пары электронов атомов M(I) (M = Ga, In, Tl), проявляющегося, в частности, в смещении ядер атомов M(I) из центров тяжести их ПВД (0.03–0.52 Å) и асимметрии координационной сферы. Проанализированы агостические взаимодействия M···H–C (M = Ga, In, Tl).

Ключевые слова: полиэдры Вороного–Дирихле, кристаллохимический анализ, галлий, индий, таллий, агостические взаимодействия, стереоэффект неподеленной электронной пары

DOI: 10.31857/S0044457X21110118

введение

Металлоорганические соединения галлия, индия и таллия находят широкое применение в современном органическом синтезе. Так, галлийорганические соединения используются для создания полимерных галлофлуоренов, применяющихся для изготовления различных оптоэлектронных материаллов [1]. Производные индия используются в качестве допирующих агентов в производстве полупроводников, в то время как таллийорганические соединения представляют исключительный интерес для органической химии, поскольку открывают пути к синтезу различных производных бензола, трудно синтезируемых косвенными путями [2], а также позволяют получать кетимины различного строения [3, 4].

К настоящему времени в базах данных [5, 6] присутствуют сведения о строении более 8000 соединений, в состав которых одновременно входят атомы металлов подгруппы галлия и атомы углерода. Несмотря на это кристаллохимический анализ соединений, включающих координационные полиэдры (**КП**) MC_n (M = Ga, In, Tl) не проводился.

Настоящая работа имеет целью установление особенностей стереохимии галлия, индия и таллия в кристаллах, структура которых включает КП MC_n (M = Ga, In, Tl), и продолжает цикл работ, посвященных изучению стереохимии элементов главных подгрупп в углеродном окружении [7–9].

МЕТОДИКА КРИСТАЛЛОХИМИЧЕСКОГО АНАЛИЗА И ОБЪЕКТЫ ИССЛЕДОВАНИЯ

Кристаллохимический анализ проводили с использованием компьютерного пакета TOPOS [10], с помощью которого выполняли расчет основных харкетеристик полиэдров Вороного–Дирихле (ПВД) [11]. К структурам предъявляли требования, аналогичные приведенным в работах [7–9]. Объектами кристаллохимического анализа являлись 109, 39 и 15 соединений, в состав которых входили 161, 48 и 20 кристаллографически разных атомов Ga, In и TI.

Рис. 1. Полиэдр Вороного–Дирихле атома галлия в структуре Ga(C₆Me₅)₃ {XODLUX} [12].

На рис. 1 приведен ПВД атома Ga(1) в структуре Ga(C₆Me₅)₃ {XODLUX} [12] (табл. 1). Запись в фигурных скобках обозначает код, под которым кристаллоструктурные данные для обсуждаемого вещества зарегистрированы в базах данных [5, 6]. В обсуждаемой структуре атом Ga(1) образует три химические связи Ga–C (d(Ga–C) = 1.974–1.986 Å (табл. 1)), а также семь невалентных контактов с атомами водорода (d(Ga…H) = 2.539-3.969 Å). При этом шесть контактов Ga-H являются прямыми и им соответствует диапазон длин d(Ga - H) == 2.539 - 2.585 Å, в то время как один невалентный контакт Ga-H, которому отвечает расстояние $d(Ga\cdots H) = 3.969$ Å, является непрямым. Отметим, что, согласно [13], под непрямыми контактами подразумевают контакты, для которых отрезок Ga…Z не пересекает соответствующую грань ПВД. Таким образом, ПВД атома Ga(1) в структуре $Ga(C_6Me_5)_3$ {XODLUX} [12] образован 10 гранями (рис. 1).

Координационные числа атомов галлия, индия и таллия устанавливали с помощью метода пересекающихся секторов [14]. В табл. 1 представлены примеры расчета КЧ по методу [14].

ОСОБЕННОСТИ СТРОЕНИЯ КП М(III)С_п

Согласно методу пересекающихся секторов [14], в структурах кристаллов реализуются комплексы, состав которых отвечает общей формуле MC_n , где n = 3-6 для атомов Ga(III), 3-5 для атомов In(III) и 2, 3, 5 для атомов Tl(III) (табл. 2). КЧ = 2 проявляется исключительно для атомов Tl, содержащихся в структуре [TIC₆H₃(C₆H₂Me₃)₂]TICl₄ · 2CHCl₃ {ZELCAW} [15]. Атомы Tl(1) координируют два углеводородных радикала, валентный угол CTIC близок к линейному и равняется 177.4°.

Все три элемента подгруппы галлия образуют трехкоординированные комплексы МС₃, на долю которых приходится 42.2 (Ga(III)), 25 (In(III)) и 50% (Tl(III)) от соответствующей выборки. КП комплексов MC_3 является треугольник, в центре которого расположен атом металла, способный выходить из плоскости, образованной тремя атомами углерода, на величину δ, лежащую в диапазоне 0.01–0.28 Å. При этом КП в виде плоского треугольника ($\delta = 0$) наблюдается только для двух структур: $GaC_{42}H_{47}$ {RUPJUH} [16] и GaPh₃ {ТРНЕGА10} [17], в которых атомы Ga расположены на поворотных осях второго порядка (позиционная симметрия C_2). Комплекс GaC₃ (δ = = 0.054 Å), характеризующийся сайт-симметрией C_3 , представлен единичным случаем и содержится в структуре GaC₂₇H₃₃ {FAVWAA} [18]. Остальные 73 комплекса MC_3 (M = Ga, In, Tl) располагаются в общих позициях в структурах кристаллов.

Тетракоординированное состояние MC_4 наблюдается лишь для атомов галлия и индия. На долю комплексов MC_4 приходится 53.9 (M = Ga) и 72.5% (M = In) от соответствующей выборки, содержащей трехвалентные металлы. КП металлов в таких комплексах является искаженный тетраэдр. Подавляющее большинство комплек-

координационные полиэдры

Характер	истики ПВД а	атома М*	Велич	ина перекрые атомов М и Х	зания (Å ³) дву с радиусами*'	х сфер *	Тип
атомы окружения Х	<i>r</i> (M–X), Å	Ω(M–X), %	$r_s \times r_s$	$r_s imes R_{CД}$	$R_{\rm CД} imes r_s$	$R_{\rm CД} \times R_{\rm CД}$	M–X***
			$Ga(C_6Me_5)_3 \{$	XODLUX} [15			<u> </u>
		Цен	тральный ато	м – Ga(1) с К	4 = 3		
C(1)	1.974	17.70	0.0009	0.6311	0	0.5362	Π_3
C(12)	1.984	17.72	0.0004	0.6231	0	0.5397	Π_3
C(23)	1.986	17.88	0.0003	0.6313	0	0.5594	
H(13)	2.539	8.11	0	0.06	0	0.1664	11 ₂
H(16)	2.565	7.75	0	0.0495	0	0.1605	
H(31)	2.575	7.84	0	0.0453	0	0.1567	Π_2
H(30)	2.578	7.46	0	0.04	0	0.1395	Π_2
H(43)	2.581	7.59	0	0.0436	0	0.1568	Π ₂
H(1)	2.585	7.94	0	0.047	0	0.1759	Π ₂
#H(8)	3.969	0.02	0	0	0	0.0011	Π ₀
		Центр	InCp* {DU ральный атом	RREN} [32] - In(1) c KH =	= 5 + 4		
C(4)	2.581	7.09	0	0.5289	0	0.4457	П2
C(5)	2.585	7.31	0	0.5535	0	0.5005	П2
C(3)	2.586	7.27	0	0.5414	0	0.4785	П2
C(1)	2.612	6.30	0	0.4248	0	0.3179	Π_2
C(2)	2.613	6.93	0	0.5206	0	0.4957	Π_2
H(12)	3.221	10.79	0	0.0699	0	0.557	Π_2
#H(2)	3.461	2.73	0	0	0	0.25	Π_0
#H(8)	3.545	3.32	0	0.0224	0	1.2158	Π
#H(12)	3.551	3.53	0	0	0	0.5415	Π
#H(5)	3.641	1.40	0	0	0	0.215	
H(12)	3 662	6.00	0	0	0	0.2359	Π
#H(1)	3 663	0.82	0	0	0	0.3579	Πο
#H(13)	3.68	1.25	0	0	0	0.2781	По
#H(10)	3 733	0.73	0	0	0	0.0938	
#H(14)	3 808	0.19	0	0	0	0.8987	
#H(7)	2 9 2 4	0.19	0	0	0	0.0507	п
#11(7)	2.042	0.39	0	0	0	0.9092	П ₀
H(13)	3.843	2.15	0	0	0	0.0843	
П(/)	3.902	3.38	0	0	0	0.146	
H(14)	3.94	1.55	0	0	0	0.059	
$In(1) \times 2$	3.943	6.23	0	0	0	0.367	Π_1
$In(1) \times 2$	3.963	6.94	0	0	0	0.4872	Π_1
#H(8)	4.47	0.52	0	0	0	0.2562	Π_0

Таблица 1. Анализ координации атомов галлия, индия и таллия в некоторых структурах

КАРАСЕВ и др.

Таблица 1. Окончание

Характер	истики ПВД а	атома М*	Велич ;	ина перекрыв атомов М и Х	ания (Å ³) дву с радиусами*'	х сфер ∗	Тип
атомы окружения Х	<i>r</i> (M−X), Å	Ω(M–X), %	$r_s \times r_s$	$r_s imes R_{C \square}$	$R_{\rm CJ} imes r_s$	$R_{\rm CД} imes R_{\rm CД}$	M–X***
		-	Γl(Cp(SiMe ₃) ₂)) {GIRBIS} [48	8]		
		Цен	тральный атог	M - Tl(1) c KY	= 10	T	
C(22)	2.938	5.49	0	0.8475	0	0.1973	Π ₂
C(1)	2.971	6.43	0	0.9902	0	0.3975	Π ₂
C(17)	2.972	5.46	0	0.9007	0	0.297	Π ₂
C(11)	2.985	5.45	0	0.9501	0	0.3743	Π_2
C(21)	2.989	5.40	0	0.9519	0	0.3829	Π ₂
C(10)	3.004	4.94	0	0.7451	0	0.1831	Π ₂
C(16)	3.005	4.99	0	0.8414	0	0.2821	Π ₂
C(5)	3.034	5.39	0	0.8288	0	0.314	П2
C(12)	3.04	5.21	0	0.9268	0	0.4472	П2
C(6)	3.128	4.89	0	0.9557	0	0.6913	П2
H(45)	3.341	5.43	0	0.3348	0	0.1477	П2
#H(42)	3.36	1.82	0	0.6368	0	0.7252	Π ₀
#H(20)	3.369	1.96	0	0.6262	0	0.7265	Π_0
H(33)	3.419	6.16	0	0.3067	0	0.2131	Π ₂
H(5)	3.443	6.65	0	0.3019	0	0.2423	П2
#H(41)	3.443	0.52	0	0.6352	0	0.9836	П ₀
H(55)	3.499	5.57	0	0.2536	0	0.2436	Π ₂
H(43)	3.504	4.80	0	0.311	0	0.3734	П2
#H(10)	3.567	0.02	0	0.7095	0	1.7124	Π ₀
H(44)	3.607	2.91	0	0.1416	0	0.1777	Π ₂
H(53)	3.644	3.74	0	0.1183	0	0.1773	Π ₂
H(54)	3.695	2.27	0	0.0526	0	0.0777	П2
H(29)	4.024	1.59	0	0	0	0.0251	Π_1
H(22)	4.075	1.35	0	0	0	0.0261	Π_1
H(18)	4.096	1.43	0	0	0	0.0279	Π_1
#H(4)	4.127	0.01	0	0	0	0.0822	Π_0
#H(38)	4.364	0.03	0	0	0	0.0004	Π_0
#H(11)	4.631	0.09	0	0	0	0.005	Π ₀

* r(M-X) – расстояния между атомами, $\Omega(M-X)$ – телесный угол, выраженный в процентах от 4π стерадиан, под которым общая грань ПВД атомов М и Х видна из ядра любого из них. Число симметрично равных контактов М–Х указано как (×n). Символом # отмечены атомы Z, для которых отрезок М•••Z не пересекает соответствующую ему грань ПВД и которые представляют собой неосновные или непрямые соседи [13].

** Во всех случаях первым указан радиус сферы атома М, а вторым — атома Х. Нулевое значение указывает на отсутствие пересечения соответствующих сфер.

*** В соответствии с [10], типы пересечения П₀ и П₁ следует интерпретировать как невалентные взаимодействия М···Х, в то время как химическим связям М–Х соответствуют типы перекрывания П₂, П₃ и П₄.

КООРДИНАЦИОННЫЕ ПОЛИЭДРЫ

Атом М	C.O.	КЧ	Число атомов	N_f	N _{nb}	$V_{\Pi B Д}, Å^3$	<i>R</i> _{СД} , Å	G ₃	$D_A, \mathrm{\AA}$
Ga	III	3	65	22(5)	6.3	12.9(1.2)	1.454(45)	0.088(2)	0.07(4)
		4	83	20(5)	4	11.9(7)	1.417(28)	0.088(2)	0.05(4)
		5	5	21(2)	3.2	12.4(8)	1.435(30)	0.88(3)	0.06(4)
		6	1	23	2.8	13.8	1.489	0.087	0.17
		Bce	148	21(5)	_	12.4(1.1)	1.434(40)	0.088(2)	0.06(4)
	Ι	1	1	18	17	20.5	1.698	0.084	0.20
		5	1	23	3.6	26.8	1.857	0.090	0.52
		12	4	27(1)	1.3	23.6(5)	1.780(12)	0.0815(4)	0.17(2)
		18	1	31	0.7	20.6	1.701	0.082	0.03
		Bce	7	27(5)	—	23.2(2.2)	1.768(55)	0.083(3)	0.20(15)
In	III	3	10	22(5)	6.3	15.1(1.3)	1.531(42)	0.086(1)	0.05(3)
		4	29	21(3)	4.3	14.8(5)	1.524(17)	0.086(2)	0.05(4)
		5	1	11	1.2	14.2	1.503	0.089	0.01
		Bce	40	21(4)	-	14.9(7)	1.525(25)	0.086(2)	0.05(4)
	Ι	1	1	26	7.7	29.1	1.909	0.085	0.37
		2	1	22	10	21.7	1.730	0.082	0.03
		5	2	27(4)	4.4	26.5(2.9)	1.848(67)	0.085(2)	0.35(8)
		10	4	29(3)	1.9	25.5(9)	1.825(21)	0.083(1)	0.26(3)
		Bce	8	27(3)	—	25.7(2.4)	1.829(57)	0.084(1)	0.26(11)
Tl	III	2	1	29	13.5	20.9	1.710	0.088	0.05
		3	2	18(5)	5	15.4(3)	1.545(9)	0.085(1)	0.06(1)
		5	1	11	1.2	15.0	1.530	0.089	0.01
		Bce	4	19(8)	—	16.7(2.8)	1.582(85)	0.087(2)	0.04(2)
	Ι	1	1	25	7.3	29.0	1.906	0.084	0.32
		6	1	21	2.5	25.6	1.828	0.082	0.22
		7	1	23	2.3	24.7	1.807	0.082	0.16
		9	1	23	1.6	21.0	1.713	0.081	0.07
		10	12	30(2)	2	25.3(1.1)	1.820(27)	0.082(1)	0.16(7)
		Bce	16	28(4)	—	25.2(1.8)	1.818(42)	0.082(1)	0.17(8)

Таблица 2. Характеристики ПВД атомов галлия, индия и таллия в окружении атомов углерода*

* С.О. – степень окисления; КЧ – координационное число; N_f – среднее число граней ПВД; N_{nb} – среднее число невалентных контактов, приходящихся на одну химическую связь; $V_{\Pi B \square}$ – объем ПВД; $R_{C \square}$ – радиус сферы, объем которой равен объему ПВД; G_3 – безразмерная величина второго момента инерции ПВД; D_A – смещение ядра атома металла из геометрического центра тяжести его ПВД.

сов занимает низкосимметричные позиции в структурах кристаллов – 76 комплексов GaC₄ и 26 комплексов InC_4 имеют сайт-симметрию C_1 . Тетракоординированные атомы галлия и индия с позиционной симметрией С2 представлены четырьмя примерами и встречаются в структурах $[Sm(Cp^*)_2][GaEt_2(MeC_5H_3N)]$ {RIKQEJ} [19], $[Ga(bpy)_2(CN)_2][Ga(CN)_4] \cdot pby \{MEDBIJ\} [20],$ InMe₂(CN) {JUWPOG} [21] И $[Sm(Cp^*)_2][InEt_2(MeC_5H_3N)] \{RIKQAF\}$ [19]. Сайт-симметрия С_s встречается у четырех комплексов GaC₄ и у одного комплекса InC₄ в структурах (GaMe₂)₂Fe₂C₂₀H₁₈ {VIDBUF} [22], GaMe₃(*t*-Bu₂Im) {FABYOZ} [23], Ca[GaMe₄]₂ (Ga(1) и Ga(2)) {BESREZ} [24] и InMe₃(*t*-Bu₂Im) {FABYUF} [23]. В изученной выборке встречается единственная структура (PPh₄[Ga(CN)₄] {MEDBAB} [20]), включающая в свой состав КП GaC₄, обладающий позиционной симметрией S_4 .

Комплексы MC_5 известны для всех трех металлов подгруппы галлия, находящихся в степени окисления +3, однако KY = 5 является для них крайне нехарактерным. Все пять комплексов

 GaC_5 содержат π -лиганды, связанные с атомами галлия за счет π-электронной плотности ароматической Например, системы. структура GaMe₂Cp {DMGACP} [25] содержит атомы галлия. координирующие два метильных радикала и два циклопентадиенид-аниона. Связь с последним осуществляется за счет π -электронной плотности ароматической системы - три из пяти атомов углерода Ср-цикла участвуют в связывании двух атомов галлия, в результате чего структура GaMe₂Cp построена на основе бесконечных цепей. КП атомов галия в комплексах GaC₅ можно представить в виде сильно искаженных квадратных пирамид. Все пять комплексов GaC₅ характеризуются позиционной симметрией C₁. Для индия и таллия пентакоординированное состояние представлено единственным примером, представляющим собой изоструктурные (PPh₄)₂[M(CN)₅], где $M = In \{MEDCEG\} [20] \ M T1 \{MEDCAC\} [20]. B$ структурах обсуждаемых соединений атомы индия и таллия образуют КП в виде тригональных бипирамид, характеризующихся неравноценностью длин связей между атомами металла и экваториальными или аксиальными атомами углерода: $d(In-C_{3KB}) = 2.200-2.204 \text{ Å}, d(In-C_{aKC}) = 2.342 \text{ Å},$ $d(\text{Tl}-\text{C}_{_{3\text{KB}}}) = 2.205 - 2.212 \text{ Å}, \ d(\text{Tl}-\text{C}_{_{a\text{KC}}}) = 2.462 \text{ Å}.$ $K\Pi MC_5$ (M = In, Tl) характеризуются сайт-симметрией C_2 .

Гексакоординированное состояние в рассматриваемой выборке встречается лишь в случае одного комплекса галлия. В структуре тетрахлороалюмината пентаметилциклопентадиенида галлия(III) [Ga(C₅Me₅)₂][AlCl₄] {CIZHEZ} [26] атом галлия образует химические связи с двумя ароматическими пентаметилциклопентадиенид-анионами. При этом один из С5Ме5-лигандов образует связь за счет сопряженных π -электронов, реализуя η^5 -тип координации, а другой — за счет σ -связывания. В результате лишь один из пентаметилциклопентадиенид-анионов является ароматическим лиганлом. КΠ галлия в структуре $[Ga(C_5Me_5)_2][AlCl_4]$ имеет вид искаженной пентагональной пирамиды. Дополнительным фактором, вызывающим искажение КП, является электростатическое взаимодействие между катионом $[Ga(C_5Me_5)_2]^+$ и анионом $[AlCl_4]^-$, в результате которого атом галлия образует слабые невалентные контакты Ga…Cl, характеризующиеся расстояниями 3.00–3.16 Å. Атомы галлия в структуре [Ga(C₅Me₅)₂][AlCl₄] обладают позиционной сайтсимметрией C_1 .

ОСОБЕННОСТИ СТРОЕНИЯ КП М(I)С_n

В соответствии с методом пересекающихся секторов [14], по отношению к атомам углерода атомы одновалентных металлов подгруппы галлия в структурах кристаллов образуют комплексы состава MC_n , для которых n = 1, 5, 12 и 18 в случае Ga(I), 1, 2, 5 и 10 для атомов In(I) и 1, 6, 7, 9 и 10 для атомов Tl(I) (табл. 2).

Наибольшее число кристаллических структур, содержащих атомы M(I), наблюдается в случае таллия — 44% от исследованной выборки, содержащей одновалентные металлы.

Все три металла – Ga, In и Tl – способны образовывать соединения, в которых они проявляют KЧ = 1. Такое столь необычное KЧ атомов Ga, In, Tl наблюдается в структурах 3,5-диизопропил-2,6-*бис*(2,6-диизопропилфенил)фенилгаллия {RUCXIX} [27], 2,6-*бис*(2,4,6-триизопропилфенил)фенилидах индия {NOBHUH} [28] и таллия {NOSTAQ} [29]. В указанных соединениях атомы M выполняют роль одновалентных заместителей в бензольном ядре. Атомы металлов занимают позиции с симметрией C_2 (Ga), C_1 (In) и C_8 (Tl).

Двухкоординированное состояние для одновалентных производных обсуждаемых металлов наблюдается лишь для индия и представлено всего одной структурой. Атомы In в [In(Im(*i*- $Pr_2C_6H_3)_2$][Al((CF₃)₃CO)₄] {XIGYOD} [30] координируют две молекулы замещенного по атомам азота имидазола, в результате чего образуется КП состава InC₂. Валентный угол CInC равен 120.4°. Позиции, которые занимают атомы индия в [In(Im(*i*-Pr₂C₆H₃)₂][Al((CF₃)₃CO)₄], характеризуются симметрией C₁.

Пентакоординированное состояние наблюдается для атомов галлия и индия. В изоструктурных п⁵-пентаметилциклопентадиенидах МСр* (M = Ga или In), кристаллизующихся в тригональной сингонии, атомы металлов координируют по одному η^5 -ароматическому лиганду, образуя полусэндвичевые комплексы. Под полусэндвичевыми комплексами понимают металлоорганические соединения, в которых атомы металлов связаны с одним ароматическим лигандом посредством π-электронного облака [2]. Интересной особенностью структур MCp^* (M = Ga {RAHBEH} [31] или In {DURREN} [32]) является образование октаэдрических псевдокластеров - шесть молекул МСр* ориентируются атомами металла по отношению друг к другу, образуя сильно искаженный октаэдр. В результате ПВД каждого атома металла в МСр* имеет четыре грани, отвечающие слабым взаимодействиям М. М. Расстояния между атомами металлов в псевдокластере, ПВД которых имеют общие грани, равны 4.073–4.173 Å в случае галлия и 3.943-3.963 Å в случае индия (табл. 1). Заметим, что в базе данных [6] присутствует аналогичное производное таллия TlCp* {FEXDUH} [33], однако вследствие статистической разупорядоченности пентаметилциклопентадиениданионов оно не вошло в исследованную выборку.

Для индия, помимо InCp*, известна еще одна структура, в которой он проявляет KЧ = 5. В структуре In(C₅Bn₅) {VAKMAV} [34] атом металла координирует η^5 -ароматическую систему полностью замещенного циклопентадиенид-аниона. В структуре In(C₅Bn₅) наблюдаются специфические взаимодействия между атомами индия (d(In…In) = = 3.632 Å), входящими в состав двух соседних комплексов. Такому взаимодействию, согласно [13], отвечает тип перекрывания П₁. Пентакоординированные атомы галлия и индия характеризуются позиционной сайт-симметрией C₁.

Координация шести, семи или девяти атомов углерода наблюдается исключительно для атомов Tl(I), причем все они представлены единичными случаями. Структура Tl₄[Pt(C≡C−FeCp₂)₄]₂ · 2Me₂CO · 2CHCl₃ {EWUHEK} [35] представляет собой островной шестиядерный комплекс, в котором каждый атом платины координирует четыре ацетиленовых фрагмента посредством σ-связи, а четыре атома Tl взаимодействуют с π -электронной плотностью тройной связи С≡С. При этом структура содержит два кристаллографических сорта атомов Tl, связанных с шестью атомами С ацетиленового фрагмента. Атомы Tl(1) образуют КП TlC₆ (рис. 2а), в то время как атомы Tl(2) помимо шести атомов С координируют атом кислорода молекул ацетона, увеличивая тем самым свое КЧ до 7.

Атомы Tl, входящие в состав KП TlC₇, содержатся в структуре Tl₄[Pt(C=C-C₆H₄Me)₄]₂ · 4Me₂CO {HECGEC} [36], в которой они координируют семь атомов углерода четырех ацетиленовых фрагментов.

Координация девяти атомов углерода атомами таллия наблюдается в структуре [TlC₆Me₃(CH₂Im-*t*-Bu)₃]CF₃SO₃ · 2TГФ {LULZUN} [37]. В обсуждаемой структуре атомы Tl образуют связи двух типов за счет одновременного σ - и π -связывания с ароматическим лигандом. Атомы Tl образуют три σ -связи с атомами углерода трех имидазольных систем. Углы CTIC лежат в диапазоне 109.7°– 124.0°. Помимо σ -связывания атомы Tl координируют бензольное ядро, проявляющее по отношению к атому металла η^6 -координацию (рис. 26). Атомы таллия в структуре [TlC₆Me₃(CH₂Im-*t*-Bu)₃]CF₃SO₃ · 2TГФ {LULZUN} [37] характеризуются позиционной симметрией C₁.

Координационные полиэдры состава MC_{10} встречаются только для атомов индия и таллия, причем для Tl(I) KЧ 10 является наиболее характерным. Все 16 комплексов MC_{10} (4 для In и 12 для Tl) образованы за счет η^5 -координации ароматических циклопентадиенид-анионов атомом металла. Атомы индия в структуре InCpMe₄ {JUDJEX} [38] занимают позиции с сайт-симметрией C_s , в то

время как оставшиеся 15 КП MC_{10} (M = In, Tl) характеризуются позиционной симметрией C_1 .

В изученной выборке три структуры содержат в своем составе атомы галлия с KЧ = 12. Комплексы GaC₁₂ в структурах [Ga(C₆Et₆)(PhMe)][GaCl₄] \cdot $\cdot 1/2C_6Et_6$ [SARKEB} [39], [Ga(C₆H₄Cl₂][Al₂F((CF₃)₃CO)₆] {VUWRAH} [40] и [Ga(PhMe)₂] [Al((CF₃)₃CO)₄]{VUWROV} [40] образованы путем координации двух молекул замещенного бензола, проявляющих по отношению к ато-

Рис. 3. Зависимость телесных углов Ω (выраженных в % от 4 π стерадиан) граней ПВД атомов Ga от межатомных расстояний Ga–C, соответствующих этим граням.

мам галлия η^6 -координацию и располагающихся под углом 38.8°—54.6° по отношению друг к другу. Атомы Ga в комплексах GaC₁₂ располагаются в общих позициях в структурах кристаллов.

Координация 18 атомов углерода наблюдается в единственной структуре $[GaC_{24}H_{24}][GaBr_4]$ {FIGKOV} [41], в которой атомы Ga(2) координируют три бензольных ядра (2.2.2)парациклофановой системы. Атомы Ga(2) занимают позиции с сайт-симметрией C_1 .

ХАРАКТЕРИСТИКА ПВД АТОМОВ ГАЛЛИЯ, ИНДИЯ И ТАЛЛИЯ

В структуре 157 исследованных соединений ПВД всех сортов атомов галлия, индия и таллия в сумме образуют 4795 граней. Проведенный анализ показал, что химическим взаимодействиям M-C (M = Ga, In, Tl) отвечает 951 грань. Роль атомов Z, образующих невалентные контакты М… Z, чаще всего играют H, C и F (2889, 726 и 70 граней соответственно). В табл. 3 приведена краткая характеристика всех валентных и невалентных взаимодействий между атомами М (М = = Ga, In, Tl) и углерода. Наглядно охарактеризовать такие взаимодействия позволяет график зависимости телесных углов (Ω), выраженных в процентах от полного телесного угла 4π стерадиан, под которыми грани ПВД "видны" из ядер атомов обсуждаемых металлов или углерода, от соответствующих межъядерных расстояний М-С и $M \cdots C$ (M = Ga, In, Tl). В качестве примера на рис. 3 представлена зависимость $\Omega(d)$ для атомов Ga. В случае In и Tl подобные зависимости имеют практически аналогичный вид. Как видно из рис. 3, невозможно однозначно разделить валентные и

невалентные контакты M-C только на основании межатомных расстояний и телесных углов. Длины химических связей M-C лежат в диапазоне 1.93–3.53 Å (для атомов Ga), 2.12–3.17 Å (для атомов In) и 2.13–3.30 Å (для атомов Tl) (табл. 3).

Независимо от КЧ и степени окисления атомов Ga, In и Tl, а также от формы и симметрии их ПВД валентные и невалентные взаимодействия между атомами M (M = Ga, In, Tl) и С описываются едиными линейными зависимостями значений телесных углов граней ПВД от соответствующих межатомных расстояний:

$$\Omega(Ga - C) = 42.42(50) - 12.890(19)d(Ga - C), (1)$$

$$\Omega(\text{In}-\text{C}) = 37.00(79) - 10.19(27)d(\text{In}-\text{C}), \quad (2)$$

$$\Omega(\text{T}1-\text{C}) = 29.90(1.17) - 7.84(37)d(\text{T}1-\text{C}) \quad (3)$$

с коэффициентами корреляции $\rho = -0.895$ (для 1179 граней Ga–C), -0.893 (для 354 граней In–C) и -0.835 (для 194 граней Tl–C). Согласно [42], существование таких линейных зависимостей является критерием существования ближнего порядка, обусловленного химическим взаимодействием между атомами, и дает основание полагать, что взаимодействия М–С (M = Ga, In, Tl) в структурах изученных кристаллов подчиняются общей закономерности, не зависящей от валентного состояния атомов металлов подгруппы галлия.

Интересной особенностью координационноненасыщенных металлов в структурах кристаллов является возможность существования агостических взаимодействий М…Н-С, критерии существования которых представлены в работах [10. 13]. В изученной выборке наблюдается значительное количество "прямых" контактов Ga-H (436 из 2036), In…H (205 из 656) и Tl…H (163 из 326), которые могут отвечать агостическим взаимодействиям $M \cdots H - C$ (M = Ga, In, Tl), обусловленным ненасыщенностью валентных возможностей атомов галия и его аналогов. Среди основных граней типа $M \cdots H$ (M = Ga, In, Tl) встречаются грани, которым соответствуют типы пересечения П₂. Следует отметить, что данные грани, в соответствии с [10, 13], следует интерпретировать как агостические взаимодействия $M \cdots H - C$ (M = Ga, In, Tl), соответствующие внутри- и межмолекулярным контактам. В обсуждаемой выборке агостические взаимодействия с атомами водорода присутствуют в 21 структуре, содержащей 32 атома атома галлия, в 7 структурах, в состав которых входят 7 атомов индия, и в 3 структурах, включающих 3 атома таллия. Атомы водорода, участвующие во взаимодействиях M - H - C (M = Ga, In, Tl), входят в состав группировок, содержащих как *sp*³- (метильные и метиленовые группировки), так и *sp*²-гибридные атомы углерода (фенильные и винильные фрагменты). Агостические взаимодействия в изученных

				CBA3N	1 M-C		HeB	алентные ко	OHTAKTЫ]	MC	He	валентные	контакты Л	1…M
-	КЧ	Число	число	d(M-C)	C),Å	диапазон	число	d(M…C	2),Å	диапазон	огли	<i>d</i> (M…]	M), Å	диапазон
		atomob ivi	связей	диапазон	среднее	Ω(M–C), %	контак- тов	диапазон	среднее	Ω(M···C), %	контак- тов	диапазон	среднее	Ω(M…M), %
1	3	65	195	1.93-2.06	1.98(2)	15.2-23.8	324	2.72-4.68	3.14(36)	<6.5	34	3.04-4.63	3.26(32)	<2.8
	4	83	332	1.93-2.78	2.07(17)	6.6-24.3	195	2.69-4.26	3.04(27)	<5.3	21	2.88 - 4.41	3.26(35)	<3.4
	5	5	25	1.96 - 2.87	2.26(35)	2.5-22.3	19	2.73-4.24	3.24(46)	<4.0	5	3.04 - 3.51	3.29(23)	<2.5
	9	-	9	2.00 - 2.40	2.21(16)	6.6 - 18.4	5	2.77-3.59	3.14(42)	<2.7	I	I	I	I
	Bce	154	558	1.93-2.87	2.05(16)	2.5-24.3	543	2.69-4.68	3.11(34)	<6.5	60	2.88-4.63	3.26(32)	<3.4
1	-	1	1		2.03	20.8	6	3.13-3.75	3.45(28)	<4.9	I	I	I	I
	5	1	5	2.38-2.42	2.40(2)	7.7–7.9	Ι	Ι	Ι	Ι	4	4.07-4.17	4.12(6)	<5.4
	12	4	48	2.86 - 3.53	3.04(17)	2.4 - 6.0	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι
	18	-1	18	2.91 - 3.08	2.99(5)	3.8-5.9	I	Ι	Ι	I	I	Ι	Ι	Ι
	Bce	٢	72	2.03-3.53	2.97(24)	2.4-20.8	9	3.13-3.75	3.45(28)	<4.9	4	4.07-4.17	4.12(6)	<5.4
Γ	3	10	30	2.11-2.23	2.17(3)	14.1 - 20.9	31	2.95-4.08	3.25(29)	<4.9	1	I	3.67	<0.3
	4	29	116	2.12-2.85	2.26(12)	8.3-21.3	88	2.78-4.37	3.30(38)	<5.6	3	3.30 - 3.58	3.39(16)	<0.8
	5	1	5	2.20 - 2.34	2.28(8)	16.9 - 20.4	I	Ι	Ι	Ι	I	Ι	I	Ι
	Bce	40	151	2.11-2.85	2.24(11)	8.3–21.3	119	2.78-4.37	3.29(36)	<5.6	4	3.30-3.67	3.46(19)	<0.8
I	1	1	1	1	2.26	19.1	6	3.29-4.51	3.89	<4.6	I	I	I	I
	2	1	2	2.49-2.51	2.50(1)	16.9 - 14.3	9	3.46-4.06	3.75(25)	<2.4	Ι	Ι	Ι	Ι
	5	2	10	2.58-2.72	2.63(5)	5.7-7.3	12	3.48-4.41	3.74(24)	<3.9	5	3.63-3.96	3.89(14)	<7.7
	10	4	40	2.73-3.17	2.94(12)	3.9-6.6	4	3.93-4.49	4.18(29)	<0.1	3	3.98 - 3.99	3.99(1)	<5.2
	Bce	8	53	2.26-3.17	2.85(19)	3.9-19.1	31	3.29-4.51	3.84(35)	<4.6	8	3.63-399	3.93(12)	<7.7
Ι	7	1	2	2.12-2.13	2.13(1)	20.0-20.9	15	2.96-4.45	3.66(44)	<6.2	I	Ι	Ι	I
	б	2	9	2.17-2.22	2.20(2)	14.9-16.7	I	Ι	Ι	I	I	Ι	Ι	Ι
	5	1	5	2.20-2.46	2.31(14)	16.0 - 20.8	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι
	Bce	4	13	2.13-2.46	2.23(11)	14.9–20.9	15	2.96-4.45	3.66(44)	<6.2	I	I	I	I
	-	1	1	2.34	Ι	18.4	8	3.35-4.44	3.84(42)	<4.3	Ι	Ι	Ι	Ι
	9	1	9	2.84 - 3.19	3.00(12)	5.6 - 10.6	4	3.19-3.88	3.51(33)	<4.9	Ι	Ι	Ι	Ι
	7	1	7	2.90-3.11	3.00(9)	4.9–9.9	4	3.19-4.13	3.76(40)	<4.7	Ι	Ι	Ι	Ι
	6	1	6	2.89 - 3.30	3.14(15)	2.5-11.2	I	Ι	Ι	Ι	Ι	Ι	Ι	Ι
	10	12	120	2.71-3.23	2.99(10)	3.5-6.8.	7	3.75-4.39	4.03(26)	<1.0	1	4.60	Ι	<0.5
	Bce	16	143	2.34-3.30	3.00(13)	2.5-18.4	21	3.19-4.44	3.87(36)	<4.9	1	4.60	I	<0.5

2021

Таблица 3. Характеристики взаимодействий М-С и М…М (M = Ga, In, Tl) в структурах кристаллов

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 11

координационные полиэдры

1555

Рис. 4. Молекула С₃₀H₃₇Ga {ZAWGUZ} [43]. Большой черный кружок – атом галлия, белые большие кружки – атомы углерода, маленькие черные кружки – атомы водорода, маленькие белые кружки – атомы водорода, образующие агостические взаимодействия Ga[…]H–C (обозначены пунктирными линиями).

структурах характеризуются следующими параметрами: d(Ga - H) = 2.00 - 2.81 Å, $\Omega(Ga - H) =$ $= 5.2 - 17.5\%; d(\text{In} \cdot \text{H}) = 2.55 - 3.03 \text{ Å}, \Omega(\text{In} \cdot \text{H}) = 2.55 - 3.03 \text{ Å}, \Omega(\text{In} \cdot \text{H}) = 3.55 - 3.55 - 3.03 \text{ Å}, \Omega(\text{In} \cdot \text{H}) = 3.55 - 3$ = 5.4 - 10.9%; d(T1 - H) = 2.68 - 3.36 Å, $\Omega(T1 - H) =$ = 6.8–8.7%. Из приведенных значений d(M - H)видно, что движение по группе сверху вниз сопровождается закономерным увеличением межатомных растояний, что связано с увеличением радиуса атома M (M = Ga, In, Tl) при переходе от галлия к таллию. Поскольку значения межатомных растояний и телесных углов являются количественной мерой силы взаимодействия двух атомов, ПВД которых имеют общую грань, можно сделать вывод, что наиболее прочная связь типа $M \cdots H - C$ наблюдается в случае M = Ga в структуре C₃₀H₃₇Ga {ZAWGUZ} [43], показанной на рис. 4. В обсуждаемой структуре атомы Ga(1) и атом H(8) метильной группировки образуют агостическое взаимодействие с характеристиками $d(Ga - H) = 2.00 \text{ Å}, \Omega(Ga - H) = 17.5\%$. Помимо атома H(8) в агостических взаимодействиях с атомами галлия в структуре C₃₀H₃₇Ga {ZAWGUZ} [43] принимают участие атомы H(25) и H(26).

Согласно данным табл. 3, в рассмотренных соединениях длина связи М–С в КП МС_{*n*} (M = Ga, In, Tl) изменяется более чем на 0.7 Å, однако такая вариация межатомного расстояния М–С практически не сказывается на величине объема ПВД атомов М, который в пределах $3\sigma(V_{\Pi B d})$ является постоянной величиной, практически не зависящей от значения КЧ. Напротив, изменение степени окисления атома металла неминуемо сказывается на величине $V_{\Pi B d}$. Как видно из табл. 2, уменьшение степени окисления атома М сопровождается закономерным увеличением $V_{\Pi B A}$ атомов галлия, индия и таллия. Факт постоянства величин $V_{\Pi B A}$ и $R_{C A}$ в пределах одной и той же степени окисления атомов галлия и его аналогов свидетельствует в пользу модели атома как "мягкой", обладающей способностью легко деформироваться сферы [44–46], объем которой фиксирован и зависит исключительно от степени окисления атома М и химической природы атомов, непосредственно связанных с ним.

В соответствии с ранее полученными данными о характеристиках ПВД атомов бора и алюминия, находящихся в углеродном окружении [8, 9], $V_{\Pi B \Lambda}$ центрального атома в комплексах M(III)C_n (M = = B, Al, Ga, In, Tl) монотонно увеличивается, принимая значения 7.3(7), 11.4(7), 12.4(1.1), 14.8(7) и 16.7(2.8) Å³ для атомов B, Al, Ga, In и Tl соответственно.

Нецентросимметричность окружения атомов элементов подгруппы галлия можно охарактеризовать, используя величину вектора смещения ядра атома из центра тяжести его ПВД (D_A) [45]. Из приведенных в табл. 2 данных видно, что величина *D_A* для большинства атомов M(III) равна нулю в пределах $2\sigma(D_A)$, в то время как для атомов $M(I) D_A \gg 0$, что вызвано наличием неподеленной электронной пары (Е-пара). В то же время среди трехвалентных производных лишь комплекс Ga(III)C₆ имеет довольно высокое значение $D_A =$ = 0.17 Å. Гексакоординированное состояние Ga(III) представлено структурой $[Ga(C_5Me_5)_2][AlCl_4]$ {CIZHEZ} [26], строение которого подробно обсуждалось выше. Столь высокое значение D_A (0.17 Å)

обусловлено строением комплекса, а именно сильным искажением ПВД атома галлия, вызванным различным способом координации двух анионов одной химической природы — пентаметилциклопентадиенид-анионов, и наличием двух дополнительных невалентных контактов Ga…Cl. Как отмечалось выше, наличие *E*-пары в случае одновалентных соединений элементов подгруппы галлия приводит к асимметрии в распределении электронной плотности в области ядер атомов галлия и его аналогов, что легко можно определить по ненулевым значениям величины D_4 .

В изученной выборке присутствуют комплексы одновалентных металлов, ПВД которых характеризуются очень низкими значениями D_A. Аномально низкое значение D_A для атомов M(I) реализуется в комплексах GaC_{18} , InC_2 и TlC_9 (0.03, 0.03 и 0.07 Å соответственно (табл. 2)). Авторами [30] с помощью квантово-механических расчетов продемонстрировано, что комплексы MC_2 (M = Ga(I) и In(I)), образованные путем координации атомами металлов лигандов карбеновой природы, реализуются за счет перекрывания sp²-гибридной орбитали атомов углерода и негибридной р-орбитали атомов галлия или индия. E-пара атома Ga(I) или In(I), согласно [30], располагается на s-орбитали, участвующей в перекрывании с π-орбиталями имидазольного фрагмента. Данное предположение подтверждается в рамках проведенного нами кристаллохимического анализа. Расположение *E*-пары на *s*-орбитали и ее участие в делокализации по ароматической системе объясняют столь аномально низкое значение вектора $D_A = 0.03$ Å для ПВД атома In(I) в $[In(Im(i-Pr_2C_6H_3)_2)][Al((CF_3)_3CO)_4]]$ структуре {XIGYOD} [30], хотя величина D_A для других комплексов $In(I)C_n$ (n = 1, 5 и 10) лежит в диапазоне 0.21-0.40 Å. Отметим, что аналогичный комплекс $Ga(I)C_2$ в изученную выборку не попал, поскольку содержит статистически разупорядоченные трифторметильные группы.

На наш взгляд, низкие значения величины D_A в случае GaC₁₈ и TlC₉ могут быть связаны с аналогичными комплексам MC₂ (M = Ga, In) особенностями электронного строения. Отсутствие стереохимической активности *E*-пары у GaC₁₈ и TlC₉, по всей видимости, вызвано ее расположением на сферически симметричной *s*-орбитали атома металла.

Помимо вектора D_A искажение ПВД описывается величиной второго момента инерции (G_3) – безразмерного параметра, характеризующего степень сферичности полиэдра [47] (табл. 2). Для комплексов GaC_n величина G_3 изменяется в диапазоне 0.081–0.098, комплексы InC_n характеризуются параметром G_3 в интервале 0.082–0.092, а для комплексов TIC_n значения G_3 укладываются в диапазон 0.081–0.089. Согласно [47], на основании величины G_3 связи M–C (M = Ga, In, Tl) следует рассматривать преимущественно как ковалентные ($G_3 > 0.082$).

Дополнительный анализ показал, что средняя длина углерод-углеродной связи фрагмента М-С-С не зависит от химической природы атома М и закономерно изменяется в зависимости от гибридизации атома С. Так, в ряду М-С-С, M-C=C и M-C=C средние величины d(C-C)принимают значения 1.51(6), 1.39(3) и 1.21(1) Å соответственно. Указанные значения d(C-C) в пределах погрешности совпадают с длинами связей С-С в структурах соединений, содержащих КП AlC_n [9]. Данный факт, на наш взгляд, можно объяснить исходя из предположения о несущественном перекрывании π-орбиталей этиленового и ацетиленового фрагментов с вакантными орбиталями металлов 13-й группы, поэтому взаимодействия между ионами Tl(I) и кратными С≡С-связями структурах типа Tl₄[Pt(C≡C−FeCp₂)₄]₂ в $\cdot 2Me_2CO \cdot 2CHCl_3$ {EWUHEK} [35] и Tl₄[Pt(C=C-C₆H₄Me)₄]₂ · 4Me₂CO {HECGEC} [36] следует рассматривать преимушественно как ионные. На это обстоятельство также указывает низкое значение $G_3 = 0.0816 \Pi B Д$ атомов Tl в указанных выше комплексах.

С учетом данных о характеристиках ПВД атомов бора и алюминия, входящих в состав комплексов BC_n и AlC_n [8, 9], максимальное значение параметра G_3 для обсуждаемых элементов 13-й группы имеют комплексы BC_n, для которых $G_3 =$ = 0.094(3). ПВД атомов алюминия и его аналогов, образующих КП M(III)C_n, характеризуются одинаковой в пределах погрешности величиной параметра G_3 , значения которого равны 0.087(2), 0.088(2), 0.086(2) и 0.087(2) для Al, Ga, In и Tl соответственно.

Наглядно охарактеризовать особенность окружения атомов подгруппы галлия в исследованных структурах позволяет (d, φ)-распределение [45]. В качестве примера на рис. 5 представлен график (d, φ)-распределения для ПВД атомов Ga(III) и In(I). Отметим, что аналогичный вид имеют графики (d, φ)-распределения для ПВД атомов In(III), Tl(III), Ga(I) и Tl(I).

Атомы элементов подгруппы галлия в степени окисления +3 на (d, φ) -распределении имеют две контактные кривые, отвечающие двум координационным сферам атомов металлов. В качестве примера рассмотрим (d, φ) -распределение для контактов Ga–C в комплексах Ga(III)C_n, изображенное на рис. 5а. Первая координационная сфера атомов Ga(III) включает в себя валентные вза-имодействия Ga–C, которым соответствует контактная кривая с радиусом ~2.01(5) Å. Вторая координационная сфера представляет собой не-

Рис. 5. Распределение (d, φ) для ПВД атомов Ga, входящих в состав 148 комплексов Ga(III)C_n (a), и атомов In, входящих в состав 8 комплексов In(I)C_n (б).

валентные взаимодействия Ga/C, которым отвечает контактная кривая с радиусом ~3.09(34) Å.

Несколько иной вид имеет (d, ϕ)-распределение для комплексов одновалентных металлов подгруппы галлия. В данном случае отчетливо удается различить контактные кривые, отвечающие сильным взаимодействиям M-C (M = Ga, In, Tl). При этом диффузный слой второй координационной сферы практически отсутствует. Следует отметить, что в случае одновалентных Ga, In, Tl первая координационная сфера искажена наличием стереоактивной неподеленной электронной пары, что отчетливо видно на (d, ϕ) распределении для ПВД атомов In(I) (рис. 5б). В данном случае контактные кривые для атомов одновалентных металлов подгруппы галлия в первом приближении можно рассматривать как образующие эллипса, а первые координационные сферы одновалентных атомов галлия и его аналогов – как эллипсоиды вращения, длинная ось которых совпадает с направлением вектора

 D_A . Такая асимметрия контактной кривой для атомов M(I) (M = Ga, In, Tl) обусловлена анизотропией валентно-силового поля в области ядер атомов M(I) (M = Ga, In, Tl), вызванной стереохимической активностью *E*-пары.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено за счет гранта Российского научного фонда (проект № 20-73-10250).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

1. *Matsumoto T., Tanaka K., Chujo Y.* // Macromolecules. 2015. V. 48. № 5. P. 1343. https://doi.org/10.1021/ma502592c

1559

- 2. Эльшенбройх К. Металлоорганическая химия. М.: БИНОМ. Лаборатория знаний, 2011. 746 с.
- 3. Fernandez E.J., Laguna A., Lopez-de-Luzuriaga J.M. et al. // Organometallics. 2006. V. 25. № 7. P. 1689. https://doi.org/10.1021/om051030j
- Fernandez E.J., Garau A., Laguna A. // Organometallics. 2010. V. 29. № 713. P. 2951. https://doi.org/10.1021/om100188f
- 5. Inorganic crystal structure database. Gmelin-institut fur Anorganische Chemie & FIC Karlsruhe. 2019.
- 6. Cambridge Structural Database System. Version 5.32 (Crystallographic Data Centre, Cambridge, 2019).
- 7. *Karasev M.O., Karaseva I.N., Pushkin D.V.* // Russ. J. Inorg. Chem. 2018. V. 63. № 3. Р. 324. [*Карасев М.О., Карасева И.Н., Пушкин Д.В.* // Журн. неорган. химии. 2018. Т. 63. № 3. С. 307.] https://doi.org/10.1134/S0036023618030105
- Karasev M.O., Karaseva I.N., Pushkin D.V. // Russ. J. Inorg. Chem. 2018. V. 63. № 8. Р. 1032. [Карасев М.О., Карасева И.Н., Пушкин Д.В. // Журн. неорган. химии. 2018. Т. 63. № 8. С. 996.] https://doi.org/10.1134/S0036023618080107
- 9. *Karasev M.O., Karaseva I.N., Pushkin D.V.* // Russ. J. Inorg. Chem. 2019. V. 64. № 7. Р. 870. [*Карасев М.О., Карасева И.Н., Пушкин Д.В.* // Журн. неорган. химии. 2019. Т. 64. № 7. С. 714.] https://doi.org/10.1134/S003602361907009X
- 10. Blatov V.A., Shevchenko A.P., Serezhkin V.N. // Russ. J. Coord. Chem. 1999. V. 25. № 7. Р. 453. [Блатов В.А., Шевченко А.П., Сережкин В.Н. // Коорд. химия. 1999. Т. 25. № 7. С. 483.]
- Вайнштейн Б.К., Фридкин В.М., Инденмоб В.Л. Современная кристаллография в четырех томах. Т. 1. М.: Наука, 1979. С. 161.
- Vohs J.K., Downs L.E., Barfield M.E. et al. // Polyhedron. 2002. V. 21. № 5–6. P. 531. https://doi.org/10.1016/S0277-5387(01)01034-8
- Serezhkin V.N., Mikhailov Yu.N., Byslaev Yu.A. // Russ. J. Inorg. Chem. 1997. V. 42. № 12. Р. 1871. [Сережкин В.Н., Михайлов Ю.Н., Буслаев Ю.А. // Журн. неорган. химии. 1997. Т. 42. № 12. С. 2036.]
- 14. Blatova O.A., Blatov V.A., Serezhkin V.N. // Russ. J. Coord.Chem. 2000. V. 26. № 12. Р. 847. [Блатова О.А., Блатов В.А., Сережкин В.Н. // Коорд. химия. 2000. Т. 26. № 12. С. 903.]
- Ahmad S.U., Beckmann J. // Organometallics. 2009.
 V. 28. № 24. P. 6893. https://doi.org/10.1021/om9007967
- Crittendon R.C., Li X.W., Su J., Robinson G.H. // Organometallics. 1997. V. 16. № 11. P. 2443. https://doi.org/10.1021/om970110n
- Malone J.F., McDonald W.S. // J. Chem. Soc. A. 1970.
 V. 1970. P. 3362. https://doi.org/10.1039/J19700003362
- 18. Beachley O.T., Churchill M.R., Pazik J.C., Ziller J.W. // Organometallics. 1986. V. 5. № 9. P. 1814. https://doi.org/10.1021/om00140a010

- Zeckert K. // Organometallics. 2013. V. 32. № 5. P. 1387. https://doi.org/10.1021/om301032x
- 20. *Haiges R., Deokar P., Vasiliu M. et al.* // Chem. Eur. J. 2017. V. 23. № 38. P. 9054. https://doi.org/10.1002/chem.201700611
- 21. *Blank J., Hausen H.D., Weidlein J.* // J. Organomet. Chem. 1993. V. 444. № 1–2. P. C4. https://doi.org/10.1016/0022-328X(93)83082-7
- 22. Lee B., Pennington W.T., Laske J.A., Robinson G.H. // Organometallics. 1990. V. 9. № 11. P. 2864. https://doi.org/10.1021/om00161a007
- 23. *Schnee G., Faza O.N., Specklin D. et al.* // Chem. Eur. J. 2015. V. 21. № 49. P. 17959. https://doi.org/10.1002/chem.201503000
- 24. Wolf B.M., Stuhl C., Maichle-Mossmer C., Anwander R. // J. Am. Chem. Soc. 2018. V. 140. № 6. P. 2373. https://doi.org/10.1021/jacs.7b12984
- Mertz K., Zettler F., Hausen H.D., Weidlein J. // J. Organomet. Chem. 1976. V. 122. № 2. P. 159. https://doi.org/10.1016/S0022-328X(00)80608-7
- 26. *Macdonald C.L.B., Gorden J.D., Voigt A. et al.* // Dalton Trans. 2008. V. 37. № 9. P. 1161. https://doi.org/10.1039/B716220K
- 27. *Zhu Z., Fischer R.C., Ellis B.D. et al.* // Chem. Eur. J. 2009. V. 15. № 21. P. 5263. https://doi.org/10.1002/chem.200900201
- Haubrich S.T., Power P. // J. Am. Chem. Soc. 1998.
 V. 120. № 9. P. 2202. https://doi.org/10.1021/ja973479c
- Niemeyer M., Power P.P. // Angew. Chem. 1998. V. 37. № 9. P. 1277. https://doi.org/10.1002/(SICI)1521-3773(19980518)37: 9<1277::AID-ANIE1277>3.0.CO;2-1
- Higelin A., Keller S., Gohringer C. et al. // Angew. Chem. 2013. V. 52. № 18. P. 4941. https://doi.org/10.1002/anie.201209757
- Loos D., Baum E., Ecker A. et al. // Angew. Chem. Int. Ed. 1997. V. 36. № 8. P. 860. https://doi.org/10.1002/anie.199708601
- 32. Beachley O.T., Churchill M.R., Fettinger J.C. et al. // J. Am. Chem. Soc. 1986. V. 108. № 15. P. 4666. https://doi.org/10.1021/ja00275a077
- Werner H., Otto H., Kraus H.J. // J. Organomet. Chem. 1986. V. 315. № 3. P. C57. https://doi.org/10.1016/0022-328X(86)80461-2
- 34. Schumann H., Janiac C., Gorlitz F. et al. // J. Organomet. Chem. 1989. V. 363. № 3. P. 243. https://doi.org/10.1016/0022-328X(89)87112-8
- 35. *Diez A., Fernandez J., Lalinde E. et al.* // Inorg. Chem. 2010. V. 49. № 24. P. 11606. https://doi.org/10.1021/ic102000s
- 36. *Berenguer J.R., Fornies J., Gil B., Lalinde E. //* Chem. Eur. J. 2006. V. 12. № 3. P. 785. https://doi.org/10.1002/chem.200500471
- Nakai H., Tang Y., Gantzel P., Meyer K. // Chem. Commun. 2003. V. 39. № 1. P. 24. https://doi.org/10.1039/B209071F

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 11 2021

- 38. *Schumann H., Kucht H., Kucht A. et al.* // Z. Naturforsch., B: Chem. Sci. 1992. V. 47. № 9. P. 1241.
- 39. Schmidbaur H., Nowak R., Huber B., Muller G. // Z. Naturforsch., B: Chem. Sci. 1988. V. 43. № 11. P. 1447.
- 40. *Slattery J.M., Higelin A., Bayer T., Krossing I.* // Angew. Chem., Int. Ed. 2010. V. 49. № 18. P. 3228. https://doi.org/10.1002/anie.201000156
- 41. Schmidbaur H., Hager R., Huber B., Muller G. // Angew. Chem., Int. Ed. 1987. V. 26. № 4. P. 338. https://doi.org/10.1002/anie.198703381
- 42. Корольков Д.В., Скоробогатов Г.А. Теоретическая химия. СПб.: Изд-во СПбГУ, 2004. 503 с.
- Decken A., Gabbai F.P., Cowley A.H. // Inorg. Chem. 1995. V. 34. № 15. P. 3853. https://doi.org/10.1021/ic00119a002

- 44. *Сережкин В.Н., Блатов В.А., Шевченко А.П.* // Коорд. химия. 1995. Т. 21. № 3. С. 163.
- 45. Serezhkin V.N., Byslaev Yu.A. // Russ. J. Inorg. Chem. 1997. V. 42. № 7. Р. 1064. [Сережкин В.Н., Буслаев Ю.А. // Журн. неорган. химии. 1997. Т.42. № 7. С. 1180.]
- 46. *Сережкин В.Н., Сережкина Л.Б.* // Коорд. химия. 1999. Т. 25. № 3. С. 182.
- 47. Блатов В.А., Полькин В.А., Сережкин В.Н. // Кристаллография. 1994. Т. 39. № 3. С. 457.
- 48. *Harvey S., Raston C.L., Skelton B.W. et al.* // J. Organomet. Chem. 1987. V. 328. № 1–2. P. C1. https://doi.org/10.1016/S0022-328X(00)99784-5